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We unveil a new cosmic-string evolution code which evolves the string very accurately down to
the very small scales (quite close to the separation of our grid points). We argue that high resolu-
tion is necessary in order to understand even the large-scale evolution of the string network and we

present the results of a careful and comprehensive study of the large-scale evolution of the string
network. This comprehensive study includes a large number of numerical tests which guarantees
that our results are indeed physical. Finally, our numerical results are compared to an analytic
model introduced by Kibble.

I. INTRODUCTION

One of the most exciting predictions of grand unified
theories (GUT's) is the possibility that a phase transition
at the GUT scale (

—10' GeV) could have produced to-
pological defects that would still survive today. Of the
three types of defects that could have been produced in
this phase transition only cosmic strings seem likely to be
present in a detectable abundance. '

Cosmic strings are also of interest to cosmologists be-
cause of the possibility that GUT-scale strings could be
responsible for galaxy formation either as seeds for grav-
itational accretion or, if the strings are superconduct-
ing, ' as the energy source for large explosions. The
cosmic-string theory of galaxy formation is particularly
attractive because cosmic strings have been predicted by
theories that were constructed purely for particle-physics
reasons. Furthermore, the value of the string's mass per
unit length predicted from galaxy-formation considera-
tions p - 10 c /6 is in the range to be expected from
grand unified theories. This value for p is also interesting
from an observational standpoint because strings with
p, -10 c /6 will produce a characteristic anisotropy
pattern for the cosmic-microwave-background radiation
that should soon be detectable. Strings may also be
detectable through gravitational lensing, ' or they may
be ruled out by the limits placed on low-frequency gravi-
tational radiation from millisecond pulsar timing. '

Although the cosmic-string galaxy-formation scenario
is (in principle) highly predictive, the predictions of the
scenario are presently very uncertain. The reason for this
is that the details of how cosmic strings evolve in an ex-
panding universe have been poorly understood. We be-
lieve that our current simulations have achieved the reso-
lution required to make reasonably accurate estimates of
the predictions of the cosmic-string scenario.

The formation of cosmic strings is thought to be
governed by the "Kibble mechanism'" which states that
when the GUT-scale phase transition completes, the

Higgs field responsible for the phase transition has a
correlation length which must be smaller than the hor-
izon size. On scales larger than the correlation length,
the orientation of the Higgs fields are random. The sepa-
ration of the topological defects formed in the transition
should be roughly equal to the correlation length. Va-
chaspati and Vilenkin' have shown that most of the
string formed by this "Kibble mechanism" would be part
of strings that are infinitely long (or much longer than the
horizon). If all the string had been in the form of small

loops, then the strings could all oscillate and decay into
gravitational radiation leaving no trace of their presence.
Infinite strings, however, cannot decay away, so some of
these infinite strings are expected to be present today.

Immediately after the strings are formed, their motion
is damped by friction with the surrounding matter, ' but
after the Universe cools to 6 p —10' GeV or so, fric-
tion becomes negligible, and the strings move freely ac-
cording to the equations of motion generated by the
Nambu action. ' The basic concept for a discussion of
cosmic-string evolution when friction is no longer impor-
tant is the scaling solution. ' In a scaling solution,
there are a fixed number (up to statistical fiuctuations) of
long strings crossing each horizon volume. This implies
that the long-string energy density must scale as a in
the radiation-dominated era and a in the matter era
where a is the scale factor of a Friedmann-Robertson-
Walker universe, so that the strings contribute a (small)
fixed fraction of the total energy content of the Universe.
If we ignore the interactions that may occur when long
strings cross each other, then it is not hard to show' that
the energy density of the long strings must decrease
slower than a . If string interactions had no inAuence
on the scaling of the 1ong-string energy density with the
expansion, then the Universe would eventually become
dominated by cosmic strings. For Gp/c —10, this
would happen very early, contrary to observation.

Therefore, if GUT-scale strings are to exist today, it
must be that interactions play an important role in the
evolution of long strings. Interactions would cause two
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string segments to "intercommute" (split and reconnect
the other way) when they cross rather than just pass
through each other. The question of whether intercorn-
mutation occurs depends (in principle) on the details of
the field theory that has given rise to the strings, but
there is now accumulating numerical evidence that it al-
ways occurs ' (for all relative velocities and crossing
angles in all theories checked). Interommutation allows
the long-string network to lose some of its energy by
chopping off loops which can then decay by radiating
gravitationally. Since a loop's gravitational decay life-
time is proportional to its length, a scaling solution distri-
bution of loops would look the same at all times when
measured in units of the horizon. In order to achieve a
scaling solution in the radiation era, we must also require
that the net rate of loop production be sufficient to allow
the long-string energy density to fall as a . This turns
out to be quite difficult to verify, and as of yet the only
verification has been by numerical calculation such as the
one presented herein.

There have been several attempts to tackle this prob-
lem analytically which have shed some light on the prob-
lem. Kibble' has modeled the cosmic-string network
with a single parameter: the scale length of the network,
L. (Frequent intercommutations imply that both the
mean separation between long-string segments and the
persistence length along the long strings should be -L.)

The production of loops was described by an unknown
loop-production function. Kibble derived a constraint on
this loop-production function that must be met in order
for a scaling solution to exist, and he showed that the
scaling solution (if it exists) is a stable fixed point of his
equations. This leaves only two possibilities: either the
string network settles down to a stable scaling solution,
or the string density grows until the Universe is no longer
radiation dominated. Bennett ' studied the Kibble
model in great detail and found that a scaling solution is
unlikely to exist unless the typical size of the stable non-
self-intersecting loops produced by the string network is
considerably smaller than the scale length L of the long-
string network. If the majority of the string length
chopped off the long-string network ends up in loops of
size L which do not self-intersect and split up into srnall-
er loops, then the inverse process of loops reconnecting to
the long strings reduces the net loop production enough
to prevent scaling. On the other hand, if the loops break-
ing off the long strings are very small or fragment a great
deal, then Bennett has shown that a scaling solution
should exist.

Another type of analytic approach has been attempted
by Mitchell and Turok who studied the statistical
mechanics of strings in flat spacetime. They found that
the equilibrium distribution of strings in flat spacetime is
dominated by the smallest strings they allowed. This sug-
gests that the strings in an expanding universe might
show a tendency to chop themselves up into very small
pieces which would make a scaling solution inevitable.
This seems to be quite similar to what we see in our sirnu-
lations, but unfortunately, no one has been able to
come up with a convincing connection between these
flat-spacetime statistical mechanics calculations and

string evolution in an expanding universe, despite some
claims to the contrary. ' In fact, it is even possible to
come up with a loop-production function for the Kibble
model which seems to be consistent with the statistical
mechanics results and cannot produce a scaling solution.
Thus, although a lot has been learned from these analytic
approaches, they have not been able to tell whether or
not a scaling solution exists.

The basic strategy for studying cosmic-string evolution
by numerical simulation was developed by Albrecht and
Turok, but they were unable to convincingly establish
that a scaling solution exists. The first strong evidence
for the existence of a scaling solution was provided by
our earlier simulations. ' We found that the long-
string density at scaling was more than an order of mag-
nitude larger than the "one long string per horizon"
value that had been expected' and that the size of the
loops produced was more than two orders of magnitude
smaller than the horizon size. In fact, loop production at
small sizes was so important that our early results for the
long-string density were sensitive to our lower cutoff on
loop size. But by running with a high density of sampling
points along the string and with small cutoffs on loop
size, we were able to achieve good enough resolution so
that the behavior of the long strings no longer had much
dependence on the small loop cutoff. However, the loop
distribution remained cutoff dependent, and since many
of the observational consequences of cosmic string de-
pend sensitively on the loop distribution, we decided that
a major improvement in our code was called for.

The main difficulty encountered in evolving cosmic
strings numerically is the presence of large numbers of
"kinks" which are physical discontinuities in the velocity
of and the tangent vector to the string. Four kinks (one
left moving and one right moving on each piece of string)
are formed whenever two pieces of string intercommute,
and they remain infinitely sharp at the resolution of the
simulations. As we show in Appendix B, their amplitude
decays very slowly ( -a ' in the radiation era) due to
the expansion. So, the kinks are responsible for lots of
small-scale structure on the long strings, and it is this
small-scale structure which is responsible for the fact that
the only non-self-intersecting loops produced tend to be
very small. Thus, in order to have an accurate cosmic-
string-evolution code, we must go to great lengths to see
that the kinks are preserved. This is exactly what we
have done with our new code (hereafter code II). As we
shall see, the results of this code II are actually quite
similar to our highest-resolution results with the old code
(hereafter code I). This gives us confidence that both of
our numerical codes are quite reliable, and it has allowed
us to substantially reduce our estimated errors.

The main results of our simulations of string evolution
have been summarized in Ref. 28. We have found that in
the radiation era, the evolution of the long-string network
is well described by a simplified version of Kibble's one
scale model. (This is the same model used by Albrecht
and Turok ' in their recent paper describing results from
an improved version of their numerical simulation code. )
However, we also find that about 45% of the string
energy is in modes with a wavelength smaller than the
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persistence length of the network g-L. This energy is
smoothly distributed in all wavelengths from ( down to
the limit of our resolution. Since our resolution (as mea-
sured in horizon units) increases with time, this distribu-
tion is time dependent. Because the total energy in short
wavelengths is constant, this time dependence has little
effect on the long-string density, but it does have a large
influence on the distribution of stable non-self-
intersecting loops produced by the long strings. We find
that as our simulations run and more and more kinks
bulk up on the long strings, the stable loops that are pro-
duced are smaller and smaller. Even when we introduce
a large density of kinks into our initial conditions, we do
not produce a scaling distribution of loops.

This has rather important consequences for the upper
bound that can be placed on Gp from millisecond pulsar
timing measurements. ' ' The lower resolution simula-
tions of Albrecht and Turok ' (AT) haue indicated an ap-
parent scaling distribution of loops, but as we show in
Appendix A, the smoothing length in their simulations
scales with the horizon size and is only slightly smaller
than the scale length of the long strings. Thus, their scal-
ing distribution of loops is likely due to the scaling of
their smoothing length. If their distribution of loops was
real, it would indicate a limit ' of Gp&2. 5X10
which would rule out the cosmic-string galaxy-formation
scenario. (We have inserted Taylor's latest number' into
the formulas of Refs. 31 and 35, and we have set c =—l. )

However, when the evolution of the loop-production
function as seen in our high-resolution simulations is
properly taken into account, ' the best limit that can be
obtained is Gp(4X10 which is only slightly better
than the best previous limit, Gp & 5 X 10,which comes
from upper bounds on the anisotropy of the microwave
background.

We also differ somewhat with the recent results of AT
in our values for the long-string density. We find that

pLs
= ( 52+10)p/H in the radiation era and

pLs=(31+7)p/H in the matter era where
H=ar=a J dt/a is the horizon length (and not the
Hubble constant). AT (Ref. 31) have found pLs
=210@/H in the radiation era and pLs=64p/H in the
matter era. In the main body of their paper, they quote
their errors as +40% or 50%, but they admit to not sys-
tematically investigating errors associated with their
solution. They also suggest in a "note added in proof"
that a comparison with unpublished results of their Aat-

spacetime simulations indicates that their value for pLs
could be too high by a factor of 4. More recently, Allen
and Shellard (AS) have developed a new string simula-
tion code and found that pL=s(64+16)p H/in the radi-
ation era in confirmation of our results. They also
confirm qualitatively most of our results on the small-
scale structure of the string network and the nature of the
loop production function.

In the next section, we mill give a detailed explanation
of the numerical methods of both of our codes. We will
compare these methods with each other as well as with
the codes of AT and AS. We will also show the results of
some simple tests of our codes. In Sec. III, we will

display our main results on the evolution of the string
network in the radiation, matter, and transition eras. We
will also show the results of many tests that we have per-
formed to ensure that our results are not contaminated
by numerical effects. In Sec. IV we will compare our re-
sults to a simple version of Kibble's one scale model and
to some extensions of this model that were suggested by
AT (Ref. 31), and we will make some concluding remarks
in Sec. V. A discussion of the numerical smoothing in
string evolution codes is given in Appendix A, and a
derivation of the formula which governs the (very slow)
decay of kinks with the expansion is given in Appendix
B.

The reader should note that there are several very im-
portant issues that have been left out of this paper. The
main points of our study of the evolution of the small-
scale structure on the long strings and its effects on the
loop-production function have been discussed in previous
papers ' and will be covered in great detail in the
sequel to this paper. The two-point correlation func-
tion of cosmic-string loops was studied in Ref. 37.

II. NUMERICAL METHODS

In this section, we briefly review the basic ingredients
of the numerical calculations in both the old and new ver-
sions of our code. Readers who are not interested in the
details of our numerical calculations might prefer to skip
all but the latter part (Sec. II E) of this fairly technical
section. We shall also point out some of the important
differences between each of our codes and the codes of
AT (Ref. 31) and AS (Ref. 36). The basic strategy of our
codes (as well as those of AT and AS) is to generate some
"reasonable" initial conditions, and to evolve the result-
ing network forward in time. The time evolution in-
volves solving the equation of motion, detecting the
string crossings and then performing the intercommuta-
tions. Each of these steps must be done every time step.

A. Generation of the initial conditions

The numerical approach taken here is first to generate
"reasonable" initial conditions, i.e., to create a string
configuration which is a network of random walks of
given step size go in a box with periodic boundary condi-
tions. To do so, we simply follow the procedure intro-
duced by Vachaspati and Vilenkin. ' (One draws discre-
tized random phases for each cell of a cubic periodic lat-
tice; assuming the phases vary in the minimal way, if the
winding number around an edge is nonzero, the link is
occupied. ) Sampling points and their attached pointers
are then laid down accordingly. The initial condition
code is fully vectorized, and takes very little time to run.

A common misconception about these initial condi-
tions has arisen from the fact that this algorithm was
originally developed to study the phase transition which
originally produced the strings. It is frequently assumed
that the Vachaspati-Vilenkin-type initial conditions are
used as the starting point for string simulations because
they are the ' correct initial conditions for strings. " This
argument neglects the fact that soon after string forma-
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tion the motion of the strings is heavily damped by fric-
tion' with the surrounding hot gas. One might then ex-
pect that the "correct initial conditions*' would be the
configuration at the end of the heavy damping era, but
this is not quite right either.

The point is that the string system is supposed to settle
down to a scaling solution shortly after the heavy damp-
ing period. Since our main goal is to study the properties
of this scaling solution, we would like to start most of our
runs as close to the scaling solution as possible. It is also
desirable to do some runs which start in configurations
which do not resemble the scaling solution in some way
in order to test Kibble s prediction that the scaling solu-
tion is a stable fixed point of the system.

The Vachaspati-Vilenkin initial conditions have the ad-
vantages that they are very easy to implement and that
they look like the scaling solution (i.e., a network of ran-
doin walks) on scales larger than the initial persistence
length go. The one free parameter that the Vachaspati-
Vilenkin initial conditions allow is the ratio of go to the
initial horizon size. Adjusting the initial horizon size is
equivalent to adjusting the density of strings in a horizon
volume, so we can look for the relaxation to the scaling
solution from high- and low-density initial conditions
simply by adjusting the initial horizon size.

In code I, which (as we shall see) did not deal with
kinks as well as code II does, we decided to roundoff the
sharp corners produced by the Vachaspati-Vilenkin pro-
cedure in order to diminish the number of discontinuous
derivatives the evolution program had to cope with. We
also added some small transverse velocities with a wave-
length of go in order to avoid degeneracies that occur
when stationary loops collapse.

Code II has no difficulty with kinks in the initial condi-
tions because kinks are evolved just as accurately as the
rest of the string with code II. As we shall see, one of the
main differences between the strings in these smooth ini-
tial conditions and the strings at the end of a run is that
at the end of a run the strings have gained a lot of small-
scale structure by the end of the run. Therefore, the way
to get closer to the scaling solution at the start is to add
lots of structure on the smallest scales. We have accom-
plished this by including an option to add random veloci-
ties of fixed amplitude at each and every point along the
string. As we shall see below, the velocity component
parallel to the direction of the string is unphysical and is
constrained to be zero by our gauge condition. There-
fore, we simply throw away the parallel component of the
velocity. We shall see that starting a run with "kinky"
initial conditions does indeed bring us closer to the scal-
ing solution.

For comparison, AT use the Vachaspati-Vilenkin ini-
tial conditions without modification while AS do the
same sort of rounding that we do. AS also add velocities
of 1/&2 to the strings with a coherence length of about
go. These differences seem to have little effect on the final
results. Another difference between the AS code and
ours is that they have randomly reassigned the directions
of all the string in the box. This means that their string
networks can have nonzero winding numbers. (The
Vachaspati-Vilenkin procedure ensures that all the wind-

ing numbers are zero. ) This should have noticeable
effects only after a simulation has been run so long that
the effects of the finite box size and the periodic boundary
conditions become important.

B. Numerical solution of the equation of motion

1. Equations of motion

The equations of motion for cosmic strings can be de-
rived from the Lagrangian of the field theory that pro-
duces the strings, but the Nambu action' that describes
strings of zero thickness is a very good approximation for
cosmic strings. ' The equations of motion for strings
are most conveniently written in comoving coordinates
where the Friedmann-Robertson-Walker metric takes the
form ds =a (

—d r +d r ). The comoving spacial coor-
dinates of the string, x(r, o ), are written as a function of
conformal time ~ and the length parameter cr. It is also
convenient to choose a gauge in which the unphysical
parallel components of the velocity vanish, i.e.,

x x'=0 . (2.1)

In these coordinates, the Nambu action yields the equa-
tion'

'x+2 —x(1 x)=-6 ~ ~ 2 1

a
(2.2)

Overdots denote derivatives with respect to conformal
time ~; primes denote partial derivatives with respect to
o. e=+x' /(1 —x ) is the string energy per unity cr (in
comoving units), so that pa Jodo is the string energy.
Equation (2.2) implies that

Q . 22 X
E a

(2.3)

X=X (2.4)

where we have set @=1. With the gauge condition (2.1),
(2.4) implies that x +x' =1. The general solution to
(2.4) is

x= —,'[a(o —r)+b(o +r)], (2.5)

where

a' = (2.6)

We require the functions a(o. —r) and b(o +r) to be con-
tinuous (because the string must be continuous), but their
derivatives need not be. In fact, whenever two strings in-
tercommute, both x and x' will be discontinuous on both
new string segments at the point of intersection. From
the general solution (2.5), it is clear that these initial

The only gauge freedom still remaining is the choice of
the parametrization by 0. at a particular time. The
choice usually made is to choose 0. such that a=1 in the
initial conditions.

Some very important insights into the problem of
string evolution can be obtained by looking at the flat-
space limit of Eq. (2.2):
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discontinuities are composed of right- and left-moving
pieces (known as kinks) which will travel down the string
at the speed of light. In Oat space if we neglect gravita-
tional radiation back reaction, it is clear that these kinks
will remain infinitely sharp and retain their amplitudes
indefinitely.

2. Evolution in code I
In this subsection, we describe the method used to

solve the equation of motion (2.2) in our original code.
The strings are represented by a series of "sampling"

points which are linked by "upstring" and "downstring"
pointers so that neighboring points can be determined.
The string positions between the points are obtained by
linear interpolation between the sampling points (a
higher-order interpolation scheme would be less accurate,
since the strings are not very smooth. ) In order to evolve
the positions and velocities of the sampling points, we
discretize the equation of motion (2.2). After many tests
involving many different schemes, we decided to use a
simple modified leapfrog scheme with spatial derivatives
at rnidpoints obtained by finite differences. Our discre-
tized version of (2.2) is

v(%+AD/2)=v(1 AT/2)+ST 2A (r)v(r)(1 v )+ 2 1

e(o+ Acr/2)+e(o —Ao /2) b, o

x(o +ho. )
—x(0 ) x(0 )

—x(cr —Ao )

e(0 + her /2)b, o e(o +ho /2)b, cr
(2.7)

x(~+ hr) =x(~)+

b'av(r+

b r/2), (2.8)

where v=x is the velocity which is stored at half-integral
time steps, and h =a /a is the Hubble "constant. "The lo-
cal "energy density" e is stored at integral time steps but
half-integral spacial steps. In order that the scheme be
(formally) second-order accurate in time, v must be deter-
mined (to first order) at time r for use on the right-hand
side of (2.7). This is done by using the first-order version
of (2.7), i.e., replacing v(r) with v(~ —b r/2), and
v(r+b, r/2) with v(r) in (2.7), and taking a half-time
step. We also independently evolve (with a semi-implicit
scheme) the local "energy density" E according to Eq.
(2.3), which yields

1 —A ae(r+b~)=e(r), A =br —v'.1+3 '
a

(2.9)

(v is obtained by averaging over the end points. ) The
accuracy of the calculation can then be checked by corn-
paring the evolved value of e with the value computed
from x and x' (see below). Each loop carries its own time
step satisfying the Courant stability condition
[b,r(min(e)bo], and our time-step halving routine
preserves the second-order accuracy of the overall calcu-
lation. These routines are fully vectorized.

The major diSculty encountered by this method is due
to the constant production of kinks whenever strings
cross and intercomrnute. As we shall see below, these
kinks remain infinitely sharp (since we ignore gravitation-
al radiation and its back reaction) and their amplitude
changes very slowly with time. (See Appendix 8 for a
proof of this. ) For these reasons we have made a consid-
erable effort to evolve these kinks properly in our simula-
tions. In a code without numerical diffusion these discon-
tinuities would cause some rather serious problems since
short-wavelength modes are handled very poorly by finite
diff'erencing schemes. (One can analyze this by consider-
ing that a discretized operator, such as a spatial deriva-
tive, is equal to the continuous one times a transfer func-
tion which depends on the wavelength. This transfer
function generically behaves as some power of sin(z)/z,

V + X
1

E
(2. 10)

which is conserved by the equations of motion and
should remain equal to unity. This check is possible be-
cause we evolve e separately even though it is not in-
dependent of x and v. By averaging the velocities over
neighboring points whenever this quantity gets to be
larger than 1 by a few percent, we are able to smooth out
the short-wavelength instabilities (see Fig. 4). This also
increases the width of the kinks somewhat, but since the
numerical diffusion is invoked only when an instability
starts to develop, the kinks should be smoothed out much
less than in routines which smooth the kinks at every
time step such as the codes of AT (Refs. 31 and 32).

One apparent drawback of our numerical diffusion
scheme is that it does not preserve the gauge condition
(2.1). We have tried imposing this condition numerically,
but we have found that this further degrades our accura-
cy. One might argue that it would be better if we im-
posed the gauge condition anyway, but we prefer an ap-

with z =2rrehcr/k;i. e., the dis. cretized operator is not a
very good approximation to the continuous operator for
waves with wavelengths close to the Nyquist wavelength. )

One effect of these large errors for the short-wavelength
modes is that these modes will propagate at different ve-
locities. This has a rather dramatic effect on a sharp
discontinuity such as a kink: as the kink propagates
down the string, these erroneous velocities for the short-
wavelength modes cause the short-wavelength modes to
decorrelate. This causes the kinks to spread out some-
what, but more importantly, it also causes short-
wavelength oscillations to grow in sections of string that
should be straight (see Fig. 4 below for a graphical illus-
tration of this).

To avoid this problem, we introduce some numerical
diffusion only when and where these short-wavelength in-
stabilities start to develop. This is accomplished by
checking the quantity

2
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proximate solution that violates the gauge condition to a
less accurate approximate solution that preserves it.

A somewhat more serious difficulty with our diffusion
scheme is that it systematically underestimates v . This
means that according to (2.3) [and (2.9)] the value of i
will be systematically overestimated causing unphysical
stretching of the string. In order to prevent this sort of
systematic error from developing, we replace v in (2.9)
[v +1—(x'/e) ]/2 whenever v +(x'/e) (1. This
correction certainly removes most of the systematic error
in the evolution of e, but it is difficult to tell whether any
remaining systematic error is left. In fact, the possibility
that this procedure might undercorrect or overcorrect
the error in the evolution of e was one of the main factors
contributing to the relatively large error bars quoted in
our first paper. As we shall see, our fears were greatly
exaggerated; the systematic error left by this procedure
seems to be too small to detect.

Overall, we have found that this evolution scheme has
worked fairly well. The method of dealing with kinks has
been carefully tested on loops with a few kinks where it
has been found to work very well. All seemed fine until
we began to do large high-resolution runs on the Cray-2
and found that by the end of the run there was one kink
for every three sampling points on the string. For just
the long-string network the ratio was more like 1:5, but
this still seemed worrisome because a typical kink would
have spread out over a few points by the end of the run.
We were also concerned because the errors seemed to
build up quite systematically during a run, so we were not
sure quite how long we could run the simulation and still
trust the results. These were the main factors which
motivated us to write code II, but as we will see when we
compare the results of codes I and II, most of these wor-
ries were not justified.

3. Evolution in code II

X X
p(7, $ )=——v, q(7, $+ )—:—+v, (2.11)

where p =q = 1 and

$p = f EdlT+7 (2.12)

then the equation of motion (2.2) implies

p= —
—,lq —(p q}p]

(2.13)

aE= ——e(1+p q) .
a

The crucial change here has been the change to the in-
dependent variables s+ for p and q. This change has left
only terms proportional to a/a on the right-hand side of
the equation, so the Qat-space equations are just
p=q=i=O. Clearly a numerical solution to these equa-
tions can be made exact in Hat space for any time step
satisfying the Courant condition.

The method we use to solve Eqs. (2.13) and (2.12) is
quite similar to the method of characteristics. ' In fact,
the curves of constant $+ are the characteristics of (2.2).
However, the method of characteristics would have us
solving (2.13) on a grid of the intersections of the charac-
teristic curves. This would be just fine if we only needed
the solution to Eq. (2.13), but we also want to check for
crossings. Therefore we need the solution to (2.13) on
surfaces of constant r. Figure 1 shows the relationship
between the ~-o. grids used and the characteristic curves
of constant s+ and s . Different pairs of characteristic
curves do not meet at the same values of v because e
varies from point to point. One way around this
difficulty would be to interpolate between the characteris-
tic curves to obtain p and q on the vertices of ~-0 grid.
The great danger with this procedure is that it might

As we mentioned in the Introduction, these kinks are
the dominant feature of the strings on scales smaller than
L, and the small-scale structure is responsible for deter-
mining the distribution of non-self-intersecting loops that
are generated by the long-string network. Therefore, it is
very important to evolve the kinks accurately and
preserve their discontinuous nature. This is quite easy to
do in flat space where we can simply use the solution (2.5)
of the corresponding equation of motion (2.4). In fact, a
very large class of numerical integration schemes [includ-
ing (2.7) and the AT scheme] can be made exact in flat
space if the time step is set equal to the space step, i.e.,
h~=ebcr. But in the expanding universe, e varies from
point to point, and we must have b r ~ min(e }b,cr in order
to satisfy the Courant stability condition. Therefore, the
advantages of the simple Bat-spacetime solution can only
be realized if our routine is exact in fiat space for an arbi-
trary time step (limited perhaps by the Courant condi-
tion}.

It is not too difficult to construct such a scheme if one
uses the appropriate dependent and independent vari-
ables. If we define

i
1

0—

FIG. 1. This figure shows the diferent lattices used in our
code II evolution scheme. The solid lines are the characteristic
curves which are surfaces of constant s (moving to the right)
and constant s+ (moving to the left) while the long-dashed lines
are surfaces of constant a and the short-dashed lines are sur-
faces of constant ~ which represent consecutive time steps.
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smooth out the kinks which appear as discontinuities in p
and q at about 20% of the grid points.

We have avoided this danger with the following stra-
tegy: we store p and q on grids in s+ and s while e and
x are still stored on a o. lattice. A bit of numerical
machinery is required to keep track of how the s lattices
move with respect to the o. lattice. In order to avoid any
artificial smoothing of the kinks, we do not interpolate to
get values of p or q between the lattice points. Instead
we take p and q to be constant over a segment on the s+
and s grids. (By a segment we mean just the bit of
string between two grid points. ) Thus, p and q are con-
stant between grid points and discontinuous at grid
points. These discontinuities can have large amplitudes
when a kink is present, but they are small otherwise.

In order to use Eqs. (2.13) to evolve p (or q), we must
first obtain values for q(p) and p q. Since p and q are
taken to be constant over a segment, the proper values
for q(p) and p q are obtained by averaging the discrete
values of q(p) that intersect the area in the r aplane -that
is traversed by the segment of the s (s+ ) lattice in the
time interval A~. The right-hand side of the e equation is
done in the same way.

To calculate the positions from p and q one can use ei-
ther

x= —,'(q —p)

and integrate from the initial positions, or

x' =
—,
' e( p+ q)

(2.14)

(2.15)

and integrate along o. from a known position. If we limit
ourselves to initial values for p and q which can be
represented exactly on our lattices with our "interpola-
tion" procedure, then both methods for calculating the
positions are exact in flat space. In practice, we combine
both of these methods: at every time step, we move the
positions forward in time via (2.14), but after every ten
time steps or so, we reset all the positions using (2.15)
while keeping the center-of-mass position fixed. This
cancels the cumulative numerical errors that might oth-
erwise build up between neighboring points. [Once all
the bugs were removed from the program though, the cu-
rnulative errors canceled by this procedure became al-
most negligibly small for (typical) runs of 1000 time
steps. ]

A potential difficulty with the evolution scheme as out-
lined above is that in some places along the string, the
separation of neighboring points on the s grids can be-
corne very small. Intercommutation can cause this to
occur very frequently, but it can also occur when a sec-
tion of one of the s+ grids has been on a piece of string
that has been moving at a high velocity for a long period
of time. (This causes e to decrease quite rapidly. ) Since
the size of each string's time step must be smaller than
half the minimum separation on the s+ grids for that
string, small separations on the s+ grids could slow down
the code very significantly. To avoid this, we have a rou-
tine which removes points from the s+ grids when their
separation becomes too small ( & one-half of the mean
separation on the o grid). This routine changes three

segments on a s~ grid to two while conserving both ener-

gy and momentum. This is accomplished by interpolat-
ing on the p (s+ )=1 [or q (s )=1] sphere to obtain
new values of p(s+ ) [q(s )] at the new points on the
s+(s ) grid. This has the effect of smearing the struc-
ture on scales smaller than the mean o.-grid spacing and
moving the structure to scales between one and two steps
on the o grid. Since this smoothing routine is not called
very frequently (in a typical simulation only one point out
of ten will ever be effected), it is fair to say that our reso-
lution scale is quite close to the spacing on the o. grid.

AT have suggested ' that our smoothing routine
might increase the size of the kinks and the amount of
small-scale structure on the strings, but this is not the
case. Our smoothing routine clearly moves the structure
from scales that are smaller than our mean grid spacing
to a scale slightly larger. In fact, our routine does not
change the mean value of the parameter 0 defined in Ref.
43, so according to Albrecht's arguments, this routine
should have no net effect on the loop-production rate.

We have performed numerous numerical tests on this
evolution scheme. Some of these will be discussed in Sec.
II D. Formally, this new evolution scheme is only first-
order accurate, so one might expect that the leapfrog
scheme of code I would be more accurate for smooth
strings because it is second order accurate. This is not
the case. We have tested both schemes against a run of
the leapfrog code with 40 times the number of points, and
found that the new scheme is more accurate than the old
one even for loops without kinks. The reason for this is
that the errors in code II are all proportional to a/a
which is quite small compared to the frequency of the
dominant modes on the string. In short, this evolution
scheme has the advantage that all the violent oscillation
of the strings has been removed by the choice of indepen-
dent variables. The evolution that we are left with is just
the very slow variation of p and q due to the expansion.

AT's new code uses an equation that is quite similar to
Eq. (2.13), but they use r and 0 as their independent vari-
ables. Because e varies along the string and their time
step is limited to be &min(e)bo, they cannot take time
steps that are large enough so that the characteristics
that start at integral multiples of Ao. will meet at integral
multiples of Acr at the end of the time step. (See Fig. 2.)

Instead of keeping the values of p and q at fixed values of
s+ like we do, they interpolate at every time step to get
new values for p and q at integral multiples of ho. . As we
demonstrate in Appendix A, this incessant interpolation
smooths out of the short- and medium-wavelength struc-
ture considerably, and it seems clear that this smoothing
contributes substantially to the differences in our results.
Despite their pervasive smoothing, AT have suggested '

that their code might somehow "approximate the contin-
uum limit" better than our code. It is difficult to imagine
how this could possibly be the case since our smoothing
procedure is quite similar to theirs. The main difference
is that our smoothing routine is invoked about 10 times
in a typical run with 10 points and 1000 time steps while
AT would invoke smoothing 10 times in such a run.

Like us, AS have gone to some effort to come up with a
code which will preserve the kinks. They have chosen a
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FIG. 2. This figure shows how the lattice used in the AT evo-
lution scheme differs from our lattice (Fig. 1). The main
difference is that they require the s+ and s grids (solid lines) to
be lined up with the 0 grid (short-dashed lines) at every time
step. This implies that they must reparametrize their s+ grids
at every time step.

C. Crossing detection and intercommutstion

Our basic crossing detection routine has remained un-
changed in our new code, but we have added some new
features in order to take advantage of the improvement in
resolution allowed by our new string representation and
differential equation solver. The basic routines are fully
vectorized, but in code I they were the most time-
consuming part of the program. In code II crossing
detection and the differential equation solver take compa-
rable amounts of time. In this section, we will first dis-
cuss the basic routines which are common to both of our
codes, and then mention the refinements we have made in
code II.

l. Our basic crossing detection scheme

In order to obtain a list of candidate segments that
might have crossed, we first lay down a detection grid di-
viding the simulation box in small cubes whose optimal
size is determined by the maximum distance separating
segments that might have crossed during a time step. We

"total variation nonincreasing" scheme that was original-
ly developed to handle shock waves. They claim that
their routine halts the spreading of kinks after they have
reached a width of 3 or 4 grid points. This is roughly
comparable to the amount of spreading we observed in
code I (although this spreading is never "stopped" in
code I), but it is considerably more spreading than we
have in code II in which kinks are only very rarely spread
over a distance as large as two grid spacings. This means
that code II can be run with a factor of roughly 3 or 4
fewer grid points (on each grid) than code I or the AS
code in order to achieve the same accuracy. Thus, al-

though code II is considerably slower per step per grid
point than code I or the AS code, it is much faster than
code I and may well be faster than the AS code when run
at the same level of accuracy.

then fill a linked list of all our segments with the heads of
list being the detection array. For each segment a list of
neighbors eligible for crossing is built by using the linked
lists corresponding to the cell containing the segment and
its 26 nearest neighbors. (In fact, the search may be re-
duced to seven neighboring cells most of the time. ) This
list of candidates is scanned to throw out all pairs of seg-
ments that are too far away to cross.

A detailed checking for crossing is done for the
remaining pairs of string segments. First, the volume of
the tetrahedron spanned by the four points on the two
segments is checked to see whether it changed sign dur-
ing the time step. If it did, the configuration is checked
at the time the volume is zero to see if a crossing did real-
ly occur (the positions of the points are extrapolated
linearly between time steps). The crossing time obtains
by solving a cubic equation which is (usually) done using
Newton's method, and the crossing condition may then
be expressed as sign checks of expressions involving sca-
lar and vector products of the edge vectors at crossing.
This overall procedure is exact but for the tetrahedron
sign check since there might be a crossing with a double
sign change. We tested for this by turning off this screen-
ing test in one of our runs and we found that we actually
missed only a few crossings corresponding to very degen-
erate loops. So, we decided to keep the test in order to
speed up the calculation.

Finally, the internal dynamics of loops is on a smaller
time scale than the displacement of complete loops. A
given loop is thus checked for self-crossings at each of its
individual time steps, while the crossings between loops
are done only at each system time step when all loops are
synchronized. This in particular allows us to "focus" the
detection array on each loop checked for self-
intersection.

2. Intercommutation with code I
We keep track of the neighboring points along a string

by means of forward and backward pointers, so the inter-
change of partners itself is straightforward. Before per-
forming the intercommutations, we implement a
minimum cutoff on the size of the loops that can be
formed by requiring that a new loop have a minimum
number of points. This allows us to vary the lower cutoff
to analyze its effect on the physical quantities that we are
attempting to measure. To do this we simply perform the
crossings chronologically and inhibit further crossings for
string segments in the vicinity of an interchange. We also
must do some initial smoothing of the kinks in order to
minimize the amount of numerical diffusion that will be
invoked by the evolution routine. This is accomplished
by averaging the positions and velocities of the points on
either side of the kinks with their nearest neighbors. At
this stage, we also update a "genealogical tree, " which
records in a compact form, for each crossing, the labels
of the "parent" loops and of the "child*' loops, as well as
such relevant quantities as "birth" and "death" times, en-
ergies, center-of-mass position and velocity, etc. This en-
ables us to get a posteriori a detailed picture of the string
system evolution.
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3. Refinements for code II

In code II the crossing detection scheme outlined
above is only the first step of the crossing detection pro-
cedure. Once candidates are selected with the routine de-
scribed above, they are checked again for crossing with a
different sort of interpolation between neighboring
points. As described above, the exact string positions are
obtained from Eq. (2.15) using the fact that p and q are
constant on segments of their lattices and discontinuous
at s+ grid points. It is then straightforward to calculate
the "exact" string crossing point if we neglect the time
evolution of p and q due to the expansion for a fraction
of a time step. Once we have the crossing point, we inter-
change partners, and we add one new right-moving and
left-moving grid point at the position of the new kinks on
each of the new string segments. This intercommutation
procedure is exact in flat space, and so the only error in
the expanding universe case is that we do not include the
evolution of p and q over the fraction of a time step be-
tween the end of the time step and the time when the
crossing occurs.

There is also a potential problem with adding new

points on the s+ grids for the new kinks generated at
every intercommutation. Occasionally, a new kink will

form very close to an old s+ grid point, and this can
make the minimum separation between grid points ex-
tremely small. This would force the time step to also be
very small via the Courant condition and would virtually
halt the code. To avoid this, we must invoke the routine
described in the previous section to delete points from the
s+ grids if their separation is too small (roughly less than
half the mean separation on the o grid). This routine is
used in such a way as to avoid altering the segments con-
taining the new kinks in order to avoid unnecessary
smoothing of the kinks.

The minimum loop size that we allow in our simula-
tions has generally been set to three points (that is, three
points on the 0. grid; these loops typically have from two
to four points on their s+ grids). We cannot set this
cutoff to be smaller because our intercommutation rou-
tine cannot handle the reconnection of loops smaller than
this. With this finite cutoff, we have found that there are
a substantial amount of energy in loops which are not
much larger than the cutoff. It is quite natural to wonder
if these loops would fragment into even smaller loops if
they were not prevented by the finite lower cutoff'. There-
fore, we have added a small loop fragmentation routine in
order to check this and to further increase our resolution.

This small loop fragmentation routine is called when-
ever a loop is produced with fewer than about 15—20
points. The fragmentation routine then finds the self-
crossings of the loop and performs the fragmentation at
the first crossing. These small loops are assumed to
evolve as though they were in flat space. Each new loop
that is produced in this fragmentation process is checked
for crossings until only non-self-intersecting loops are
left. Throughout this process new grid points are added
on the s+ grids whenever new kinks are created, and we
do not delete any grid points until the fragmentation pro-
cess is completed. When the fragmentation process is

done, the resulting stable loops which are not too small
(i.e., those that are as large as the smallest loops we
would have allowed before we implemented this pro-
cedure) have all the very small segments of their s+ grids
deleted and are returned to the simulation. The smaller
loops are never checked for crossings again.

4. Comparison with AS and AT

The crossing detection scheme used by AS is essentially
the same as our basic crossing detection scheme de-
scribed above. This procedure is essentially exact up to
details of the interpolation between points. The AT
crossing detection scheme is too complicated to describe
here, but it has several differential "blind spots" that can
cause it to miss crossings. It is not easy to tell a priori
how often these crossing detection gaps would cause
them to miss a crossing, so we have done a couple runs
with our codes in which we tried to mimic the "blind
spots" of their crossing detection scheme. In comparison
with runs of our code with the same initial conditions we
have found that their scheme missed 62% of all the cross-
ings, but only 13% of the crossings between different
strings. These "blind spots" caused the mean loop size to
be a factor-of-4 larger than the mean loop size in the con-
trol runs without the "blind spots, " but the correspond-
ing error in the evolution of the long-string density was
too small to explain the factor-of-4 difference in our
values for the long-string density

D. Tests of the evolution of isolated loops

Tests in fiat space

One of the simplest tests one can apply to test the evo-
lution algorithms described in the previous sections in-
volve the evolution of a single loop in flat spacetime
where the real trajectory is periodic. This test is not very
interesting for code II because it is exact in flat space, but
it is an important test of code I. We will follow the evo-
lution of a loop over many periods to see how errors
propagate. It is convenient to select a loop from Turok's
two-parameter family of loop solutions because these
loops have a simple analytic solution. We have plotted in
Fig. 3 the X-Y coordinates of one of these loops [with pa-
rameters a=0.4, cos(P) =0.5] every five and a half
periods over a span of more than 100 periods. (The
period of a loop is L /2 where L is the length of a loop. )

The left plot corresponds to the computed evolution
when 128 sampling points are used (case 1), and the right
one when 32 sampling points are used (case 2); the solid
line outlines the initial configuration which is also the
solution given by code II for integral periods. In both
cases, the time step At was 0.8 times the maximum value
allowed by the Courant condition (cAt, „=distance be-
tween neighboring points =ado ). Even though errors do
build up in the latter case (which has a larger time step),
the loop nevertheless retains its general shape (and thus
its cross section for reconnection). A measure of the er-
ror is given by 5=—((r—r, ) /r, ) ' where the subscript a
denotes the value computed analytically. This error in-
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FIG. 3. The flat-space evolution with code I of loops from
Turok's family of solutions with a=0.4 and cos(P}=0.5 using
128 sampling points (left) and 32 sampling points (right). The
X-F positions are plotted every 4.5 periods for more than 100
periods. —5—

creases linearly with time and reaches 5, =0.6% in the
first case after 8000 steps, and 5z —-5% in the second case
after 2000 steps. (This was 100 periods in both cases. )

In both cases, the center-of-mass position and velocity
were conserved to machine accuracy (i.e.,
hr, m»Av, m, —10 —10 on a 32-bit Vax on which
these tests were conducted for convenience; but our real
experiments were performed on a 64-bit Cray-2). Even in
the rather extreme case when only eight sampling points
are used, we measure after 100 periods (500 steps only)
53-—40%. All these numbers are fairly representative of
what we get in many different cases obtained by varying
a and cos(P), and also by including a period two right
mover. We should note that even though these perfor-
mances might not seem very impressive for flat-space
evolution (since it is trivial to build an exact evolution
code for c b, t = b, rJ ), the numbers we quote are for the
realistic case where we used our actual mover with all its
bells and whistles, and realistic values of every parame-
ters.

As was already discussed in the subsection concerning
the integration of the equations of motion, we introduce
some numerical diffusion when and where the gauge con-
dition (2.10) is violated by more than 5%. The effect of
this prescription may be most easily visualized by consid-
ering an initially straight string in the x direction with a
transverse velocity discontinuity along the z axis, which
is the instantaneous superposition of a left-moving and a
right-moving kink each with half the amplitude of the to-
tal discontinuity. Note that there has been some initial
rounding of the kink to correspond with the amount of
rounding that occurs in our intercommutation routine.
As the string evolves, the two kinks separate. But be-
cause of the periodic boundary conditions, they super-
pose again when they have traveled a distance corre-
sponding to half the box size. After an integer number of
such periods, one can then compare the initial signal and
the "filtered" one.

In Fig. 4 we have plotted the initial discontinuity and
the transformed one after two periods (top illustrations),
and after ten periods (bottom illustrations), when no
smoothing is applied (left illustrations), and when we use

0 .2 .4 .6 .8 1 0 .2 .4 .6 .8 1
X X

FIG. 4. The velocity component v, vs x is plotted for a sim-
ple loop with a large amplitude kink for flat-space runs with and
without our diffusion scheme. The evolution of v, vs x after two
periods is compared with (a) the initial profile without any
diffusion and (b) with our scheme to invoke the diffusion only
when it is needed. Plots (c) and (d) show the same thing after
ten periods.

our standard procedure (right illustrations). This test has
used 64 sampling points, and the velocity difference on
each side of the discontinuity was 1.8c. Other tests on a
wide variety of "kinky" loops yielded similar results. For
comparison, if we were to evolve these strings with code
II, we would find that the loop profile is exactly con-
served since code II is exact in flat space. In fact, the
discontinuity would be even sharper than the initial
discontinuities in Fig. 4 because the intercommutation
routine in code II does not smooth the kinks at all.

2. Expanding universe tests

All the single loop tests that have been described above
have also been performed on code II, but the results were
rather trivial because the evolution is always exact in flat
space for any time step. This should not be taken as a
weakness of the flat-space tests, but as a manifestation of
the power of code II. Of course, it is also important to
test the codes in an expanding universe as well. The
diSculty here is that there are no known analytical solu-
tions for string evolution in an expanding universe.
Therefore we can only do tests between different numeri-
cal solutions.

One such test is shown in Fig. 5. The solid curve in
this figure is the final position of a kinkless loop of length
I =0.5HO evolved for an expansion factor of 4.0 using
code I with 800 sampling points. The open circles give
the position of the same loop evolved with only 20 points
using code I, and the closed circles are for the same loop
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coordinates (due to the expansion) and moving to the
right. The majority of this evolution is just due to the
changing superposition of the right- and left-moving
waves, so p and q evolve very little throughout the run.
Figure 7 shows the initial and final configurations of
p(s+ ). The evolution of p has been virtually monotonic,
so p has really evolved very little during this test. The
main effects have been the displacement of the points by
about one point spacing along the original curve, and the
reduction of the kink amplitude by a factor of about 0.86.
q and e also evolve in a similar manner. Thus code II has
allowed us to replace the violent oscillations of x and v
with the very slow and smooth evolution of p, q, and e.

FIG. 5. The evolution of a kinkless loop in an expanding
background is compared for three different runs. The solid line
shows the X-Y positions for a run of code I with 800 points; the
open circles show the configuration of the same loop evolved by
code I with 20 points; and the filled circles are the same loop
evolved by code II with 20 points.

evolved with 20 points using code II. For smooth loops,
code I is essentially the same as the standard leapfrog
which should be quite reliable particularly when we use
800 points. The fact that the 20 point code II run
matches the 800 point code I run more closely than the
20 point run of code I indicates that code II is more accu-
rate than code I even for loops that are very smooth.

It is also important to test the evolution of "kinky"
loops in an expanding universe. We have performed
numerous tests on loops with two kinks that are related
to simple Oat-space solutions. Figure 6 shows the evolu-
tion (using code II) of such a loop of length I from
~ =0.381 to ~0=2.5l: an expansion factor of 6.6. The
loop starts o6'at a high velocity and quickly expands. It
then oscillates several times while shrinking in comoving

3. Crossing detection tests

We now turn to the question of the reliability and ac-
curacy of our crossing detection and reconnection pro-
cedure. The reliability of the detection is not really an is-
sue since our procedure is essentially exact. As a matter
of fact, during the early testing period of these routines,
we could not recover the phase-space diagram delimiting
the region in [a,P] where intersections occur as initially
determined by Turok. We checked the discrepant cases
by numerically solving the intersection equation
[x(0 &, g)=x(crz, 7l)] which can be reduced to an eighth-
order polynomial equation, and confirmed our findings.
Our results were also independently confirmed by Chen,
DiCarlo, and Hotes. ' Moreover, we used this procedure
to predict the occurrence as well as the detailed time and
location of a crossing and the subsequent ones in a larger
family obtained by adding a period-two right mover. Our
routines never failed to detect an intersection, nor yielded
spurious ones. Still, the position and time of the intersec-
tion are not infinitely precise, nor is our reconnection
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FIG. 6. The X-Y positions for a 40 point loop of length
2.63~o at various times as the Universe expands by a factor of
6.6. This loop has two kinks.

FIG. 7. The open circles show the initial values of p„vs p~
for the loop plotted in Fig. 6, and the solid circles show the final

values ofp vs p~.
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procedure. When one loop fragments many times, a tiny
perturbation might result in a fairly different final out-
come, but this just means that the final pattern is quite
sensitive to small changes in the initial loop trajectory.
The comprehensive numerical tests that we have per-
formed on our code (presented below) have demonstrated
that this sensitivity to initial conditions does not effect
the general statistical properties of the strings that are
our primary interest.

E. Numerical characteristics of our production runs

We measure the physical size of our runs by the ratio
of the initial horizon size to the persistence length gp of
the strings in their Vachaspati-Vilenkin initial
configuration. Since our simulation box has a fixed
comoving size, we will refer to the box size in units of the
comoving initial persistence length g~. (gp is defined to be
constant in physical units so gp

=a gp is constant in

comoving units. ) We will measure distances (or times) in
terms of the horizon size H=aw when we use physical
units and in terms of r (the conformal time) when we use
comoving units. The physical density of the string net-
work is adjusted by varying the ratio of the initial hor-
izon size to gp. We have found that we can run for a time
interval equal to the box length (in units where c =1)
without encountering any difficulties due to the finite box
size (see below), so most of our runs were run for this
time interval.

Our largest simulation (done with code I) was in a box
36(p on a side, with an initial horizon size

Hp =2crp = 14' or ~p= 14$p. It was evolved for an ex-
pansion factor of 3.2 (more than a factor of 10 in physical
time), so that the final horizon size was v=45(p. The to-
tal number of strings increased from about 1000 at the
beginning to about 16500 at the end. The strings were
sampled by about 350000 points (which corresponds to
ten sampling points per initial correlation length gp).
Our highest resolution code I run was run on a (21(p)
box and used 33 sampling points per gp for a total of
220000 points. It was run from rp=8. 75$p to x=29.8(p.
an expansion factor of 3.4. During the course of the run
the number of strings grew from 200 to about 10000.
Each of these runs took about 40 CPU hours on a Cray-2.

Our largest matter-era run was done on a (26gp) box
with ten sampling points per correlation length which
corresponds to 130000 points in all. It was run from
rp=6. 5(p to ~=28.6(p which is an expansion factor of
19.4. The expansion factor accessible to our simulations
is much larger in the matter era because a ~r in the
matter era as opposed to a ~ ~ in the radiation era. The
main drawback of this is that a~a ' according to Eq.
(2.3), so that the time steps in the matter era become
much smaller than in a radiation-era run that has run for
a similar conformal time (w) interval. Furthermore, the
matter-era string network at scaling does not chop itself
into small loops nearly as fast as a radiation-era network
does. This tends to slow down the code because the most
inefficient part of the crossing detection is the detection
of crossings involving the long strings. For these reasons,
this run took almost 50 Cray-2 CPU hours.

This situation has been substantially improved with
code II. We did a similar run on a 26gp box with six sam-

pling points per g'p on each of the three grids (s+ and cr).
As we discussed above, this is considerably better resolu-
tion than the one we get with ten points per gp with code
I. This run went from rp=6. 5)p to r =26(p for an expan-
sion factor of 16, and it took only 10 Cray-2 CPU hours.
Allowing for the somewhat smaller expansion factor for
this run compared to the code I run as well as hardware
improvements which occurred between the runs, the code
II run is a factor of 3 or 4 faster. The main reason for
this reduced run time is that the time step for code II
tends to be larger (i.e., closer to the Courant stability lim-
it}. This is due to a more flexible method for changing
the time steps, and the larger separation between sam-
pling points.

For the radiation-era runs there is not any spectacular
gain in time used by code II, but there are some
significant differences between the radiation-era runs with
the two codes. The largest radiation-era code II runs
that we have performed to date used a (28(p) box with
ten points per gp on each grid for a total of —160000
points initially on each grid. These runs took about 25
CPU hours each which is about the same as a code I run
with 15 points per gp. The largest run went from
~p=6. 5(p until x=42 0(p or a.n expansion factor of 6.5 (a
factor of 42.45 in real time). During this run the number
of loops grew from about 500 to over 85000. 75000 of
these loops are ones that have been produced by the Aat-

space fragmentation routine which are too small to in-
clude in the code for further evolution. For comparison
the number of loops produced in the code I run with 15
points per gp is about 20000.

III. EVOLUTION OF THE LONG-STRING
NETWORK: NUMERICAL RESULTS

A. The scaling solution in the radiation era

The main result of our first paper was strong evi-
dence for the existence of a scaling solution in the radia-
tion era. The major difficulty that we encountered with
our early simulations was the dependence of our results
on the minimum size we allowed for small loops. This
did not cast any doubt on the existence of a scaling solu-
tion, but it did make the determination of the parameters
of the scaling solution much more difficult. In this sec-
tion, we will see how this situation has been greatly im-

proved with code II ~

As discussed above, the basic objective of our simula-
tions is to study the properties of the scaling solution.
Our basic strategy is to start with some initial state which
is realistic (i.e., Brownian) on very large scales and which
is not too far from the scaling solution. We then follow
the evolution in time as the simulated network relaxes to
the scaling solution. The question of how long this relax-
ation takes depends on what scale we are interested in.
Figure 8 shows snapshots of half-horizon-sized fractions
of one of our simulation boxes at several times during the
course of a simulation run. Horizon-sized boxes were
chosen because if the evolution is described by a scaling
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FIG. 9. Normalized energy density in strings p, H'/p as a
function of the conformal time ~ in units of the initial comoving
correlation length go. The upper curve represents all the strings
in the simulation, and the lower curve is the density in strings
with energy E & Hp.
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FIG. 10. The relaxation to scaling of the normalized long-
string energy density pL&H'/p for three runs of code II (solid
lines) with different initial densities is plotted vs conformal time
~ in units of the initial correlation length. (Long strings are
de6ned as those with energy E &Hp. ) The dashed line is the
highest-resolution run of code I.

is quite difficult to judge from Fig. 8 alone because of the
preponderance of very small loops.

It is only for the infinite strings that Fig. 8 seems to
show clear evidence of scaling. The total length of the
long strings crossing a horizon volume settles down fairly
quickly to the scaling value although the small-
wavelength structure of the long strings relaxes much
more slowly (more about this later). The scaling behavior
of the long strings can be seen more quantitatively in Fig.
9. The solid curve in Fig. 9 represents the energy density
in long strings pLs multiplied by the factor H /p—:a r /p, plotted versus conformal time r. This quantity

pLsH IIJ, is just the total proper length (length in the rest
frame of the string) in units of H of all the long strings in
a horizon volume H . Long strings are defined to be
strings with a proper length longer than H. Since there
are rarely any loops with a size close to H, the length in
long strings is very insensitive to the precise numerical
value used to distinguish between long strings and loops.
In a scaling solution, the total number of long strings
crossing a horizon volume and hence pLsH /p should be
constants, so the flatness of the solid curve in Fig. 9 indi-
cates scaling. Note that the x axis of Fig. 9 is in confor-
mal time units so that the run shown in Fig. 9 ran for a
factor of 4.3 in expansion or 18.5 in real time.

The dashed curve in Fig. 9 gives the total energy densi-
ty of all the strings in our computational box multiplied
by the same scale factor (H Ip). The difference between
the dashed and solid curves is due to loop production by
the long strings, so Fig. 9 provides graphic evidence that
loop production is an efficient energy-loss mechanism for
the long strings. In the real Universe, the dashed curve
would also become flat in a scaling solution, but our
simulation does not reflect this because we have not in-
cluded the gravitational radiation energy-loss mechanism
for the loops.

Figure 10 shows the relaxation of the long-string ener-

gy density to the scaling solution value for several runs of
code II. The dashed curve is the highest-resolution run
that was done with code I, so it is clear that the two
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FIG. 11. A comparison of the evolution of pL&H /p for runs
with different cutoffs done with the different codes. The solid
lines are for code II and the dashed lines refer to runs of code I.
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codes give quite similar results. A better comparison of
the difference between the results from our two codes can
be seen from Fig. 11 which shows the evolution of pLs for
two pairs of runs with identical initial conditions and nu-
merical parameters. The solid lines are the results ob-
tained with code II, and the dashed lines are from code I.
The curves sloping upward are (28/&) runs with a small

loop cutoff of g&„and the lower, more horizontal curves
are from (21(o) runs with a cutoff of -0.14(o.

Thus, it is clear that the results from our different
codes are very similar. This fact and the fact that code II
has corrected some suspected systematic errors that we
feared might have affected the results from code I have
led us to substantially reduce the estimated errors on our
value for pLs. Our new value for the radiation-era scaling
solution is p Ls=( 52+1 0)p /H . [We should note that we

now use H as our unit of length rather than t which was
used in Ref. 33. In the old units our new value is
pLs=(13+2.5)p/t ]Althou. gh the error bars we have

quoted for our new value are completely contained in the
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error bars given in Ref. 33, our central value for pLsH /p
is a bit lower than the value pLs=(80+40)IJ/H reported
in Ref. 33. This may seem a little puzzling since the re-
sults from our two different codes are much closer than
this. The reason that we reported such a high central
value for p„s in Ref. 33 was that we suspected that a sys-
tematic error having to do with our velocity averaging
scheme might have a significant effect on our results. The
new results from code II have shown that this is not the
case, so we have reduced both our estimated errors and
the central value for our estimate of pLs.

B. Tests for numerical effects in the evolution of pLs

In Ref. 33, we indicated that we had studied the effects
of various numerical parameters such as the cutoff' on
small loops, the box size, and the density of sampling
points along the string. We found that only the small
loop cutoff had a significant effect on our results. The
small loop cutoff is enforced in our simulations by only
allowing loops to be formed when they have more than a
fixed number of points (ranging from 3 to 15). Because
we also vary the density of sampling points of the string
(the number of grid points per go), it is convenient to
refer to the cutoff as a fixed fraction of g&&=(minimum
No. of points per loop)/(No. of points per go). Our study
of loop production from the long strings has indicated
that the rate of loop production does not depend on the
small loop cutoff, but that the rate at which energy is re-
turned to the long strings via the reconnection of loops
does depend on the cutoff. The reason for this is that, as
was emphasized in Ref. 25, the number of small loops
reconnecting to the long strings is roughly independent of
the loop size for a given total string length in loops, but
the amount of energy returned to the long-string network
is proportional to the loop size. When a relatively large
lower cutoff is used, a significant number of strings are
artificially prevented from fragmenting into smaller
loops. This increases the amount of energy returned to
the long strings via reconnections, and therefore de-
creases the efficiency of loop production.

This is the reason why the numerical smoothing of the
AT code has such a drastic effect on their value for
pLsH /p at scaling. As is shown in Appendix A, the
structure on scales smaller than the scale length of the
long strings in their simulations is smoothed out quite
efficiently. Thus, the loops that break off the long strings
in their simulations tend to be much too smooth and
break up into fewer stable loops than they should. (The
"blind spots" in their crossing detection scheme could
also play a role in this. ) This means that their loop distri-
bution has far too many large loops so that the reconnec-
tion of loops back onto the long-string network can
transfer a significant amount of energy back to the long-
string network. In fact, they find that about 50/o of the
energy lost to loops in their simulations is returned to the
long strings via reconnections. In our high resolution,
small cutoff simulations, this figure is about 10%%uo while in
some of our large cutoff run it is somewhat higher than
30%. Thus, AT's results are what we would expect from
our code if we had run with an even larger lower cutoff
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FIG. 12. The effect of the small loop cutoff on the evolution
(using code II) of long strings is examined by comparing the
evolution of pLsH'/p, for runs with sharp cutoffs at go (the
upper curve with alternating dots and dashes) and 0.3(0 (the
long-dashed curve) with runs with cutoffs of 0.33$o (the short-
dashed curve) and 0. 13/0 (the solid curve) for the large loops
only.

than any. of the runs that we have done.
We also believe that this sort of cutoff' effect is respon-

sible for the relatively small difference between our re-
sults and those of Allen and Shellard (AS). They have
done the majority of their runs with a cutoff of about
0.5(o and obtained pLsH /@=64+16. This is noticeably
higher but still in agreement with our result of
pLsH /@=52+10. The runs we have done with a cutoff
of this size seem to approach scaling near the upper limit
of our error bars, which suggests that the difference be-
tween our central values may just be due to a small resid-
ual cutoff effect in their code.

With the improved resolution of code II, we have been
able to set the cutoff small enough so that this cutoff
effect has disappeared. Furthermore, our flat-space frag-
mentation scheme has allowed us to do runs with an
effective cutoff that is very much smaller than the values
which can influence the long-string evolution. The cutoff
must be set to be small enough so that the amount of en-
ergy returned to the long strings via loop reconnections
has become independent of the lower cutoff. This can be
seen in Fig. 12. The top curve (with alternating long and
short dashes) of this figure is a run with a cutoff of go. It
is apparently heading toward a cutoff-dependent scaling
solution at p Ls-100 )u/H like the runs of code I with the
same cutoff that were shown in Fig. 2 of Ref. 33. The
solid curve in Fig. 12 has a cutoff of 0.3'. The curves
made of long and short dashes correspond to runs in
which the flat-space fragmentation scheme has been
turned on. This means that their effective lower cutoff is
smaller than the actual cutoff because small loops can
fragment into arbitrarily tiny loops (although there is
limit on the number of tiny loops it can fragment into
based on the number of grid points on the initial loop's
s+ and s lattices. ) The cutoffs for these runs are 0.33(o
(the short-dashed curve) and 0. 13)o (the long-dashed
curve), but their effective cutoffs are considerably smaller.
In any event, the cutoffs for two of the runs at the bottom
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of Fig. 12 differ by a factor of & 2.5. This makes it quite
clear that the cutoff effect essentially disappears for
cutoffs of 0.3/o or smaller.

Figure 12 is also useful for studying the effect of the
density of sampling points on our results. The two
dashed curves at the bottom of Fig. 12 differ in their sam-
pling density by a factor of 2.5. The long-dashed curve is
for a run with 15 points per go for each of the three lat-
tices (s+ and o ), and the short-dashed curve is for a run
with six points per go. Thus, the evolution of pLs is
unaffected by sampling densities as small as six points per
go (with code II).

The effect of varying the sampling density for code I is
shown in Fig. 13. The top two curves in this figure were
generated using a small loop cutoff' equal to go. The top
dashed curve used five points per go, and the top solid
curve used ten points per go. The lower curves used a
cutoff of 0.3(o and sampling point densities of 20 (for the
lower solid curve) and 10 (the lower dashed curve) sam-
pling points per go. When the small loop cutoff is large, a
sampling density as small as five points per go seems to
work fine, but when the cutoff is small, a small systematic
error seems to develop with ten points per go. This sys-
tematic error is probably caused by the numerical
diffusion that we have introduced into code I in order to
prevent the development of instabilities at the kinks.
With a small cutoff, the smoothing of the strings on small
scales will inhibit the production of very small loops
which will decrease the eSciency of loop production as
an energy-loss mechanism for the long strings. Since this
smoothing is confined to a few lattice lengths or so, it be-
comes less of a problem when a larger sampling density is
used.

Another numerical parameter which could strongly
influence the evolution of pLs is the finite box size. Since
we are using periodic boundary conditions, if we attempt
to run a simulation for too long a time then the horizon
H will grow to be much larger than the size of the box.

When this happens, the string network in our periodic
box no longer resembles a string network in the real
Universe. One possibility is that some of the long strings
can become tightly stretched across the box with nonzero
winding number. This would always occur if our initial
state had an overall winding number, but the
Vachaspati-Vilenkin procedure that we employ always
generates states of zero winding number. Nonetheless, it
is possible to have two or more strings each with net
winding number (but with zero total winding number)
which become frozen in place and start stretching with
the expansion so that pLs-a as t ~ ~. The other pos-
sibility is that all the long strings would annihilate leav-
ing pLs=0 forever.

Because signals on the string cannot travel faster than
the speed of light, a string network cannot "know" that it
is confined to a finite box until the simulation has been
run long enough so that the light travel distance (r —ro)
equals the box size. In fact, one might hope that we
could run considerably longer than ~—~„since the scale
length of the long strings is always considerably smaller
than ~.

Figure 14 shows the evolution of p„s for several runs of
code I with box sizes of (16(o), (21(o), and (36(„') . The
initial horizon size (or conformal time) r„ in each of these
runs was 12.6)o. Thus, according to the argument given
above, the (16(o) runs should be free of finite box effects
until at least r=28. 6(o, and the (21/~) run should not
have any problems until at least r=33.6(t'i. It is clear
from Fig. 14 that finite box-size effects are not important
when r—ro(the box size. In fact the (16(o) runs seem
to show only a small deviation from scaling at
r r~=27.4'—which is 1.7 titnes the box size. It is not
clear whether this small deviation is due to boundary
condition effects or is just a manifestation of the larger
statistical fluctuations to be expected when ~&)the box
size. Figure 15 shows two (21(o) runs which were run
for an interval of ~—~o equal to twice the box size. The
solid curve shows no apparent effect of the finite box, but
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FIG. 13. A comparison of the evolution of pL&H-'/p for pairs
of different runs of code I which differ only in the number of
sampling points per initial correlation length (o. The top two
runs have a small loop cutoff of I, =(0 and are sampled with five
and ten poirts per go. The bottom two runs have I, =0.3(o and
are sampled with 10 and 20 points per $0. The higher-resolution
runs are shown by the solid curves.
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FIG. 14. The effect of the periodic boundary conditions and
the finite box size on the evolution of pLsH'/p for runs of code
I. The solid curve is from a run on a (36/o) box, the short-
dashed curve comes from a run on a (21(0), and the long-

dashed lines come from (16go)' runs.



2424 DAVID P. BENNETT AND FRANCIS R. BOUCHET

I

I
I I I I

I

I I I I

I

60—
CI5

40—

30—

I I I I I I l I l I l I I I l I I I I

10 20 30 40
~/(o

50

FIG. 15. The evolution of pLsH'/p for two long radiation-
era runs using code II. These runs were done on (21(~)' boxes,
they were run for twice the usual time interval: r —ra=42/0, an
expansion factor of 5.8. The initial conditions for these runs
were only slightly different, but the run with the dashed curve
seems to have experienced spurious energy loss due to finite
box-size effects.

the run corresponding to the dashed curve seems to have
lost most of its long-string energy through spurious frag-
mentation of the long strings when the box length was
well inside the horizon. Our conclusion from these tests
is that we are certainly safe in running the simulation for
a time interval equal to the box size and probably a bit
longer. The exact point where finite box-size effects start
to dominate is not clear due to the poor statistics in boxes
with ~&)the box size, but strong finite box effects do
occur (in some cases) when r ro is twice —the box size.

C. The eÃect of small-scale structure
on the evolution of pr s

Although the details of the development of small scale
structure on the long-string network will be dealt with in
great detail in the sequel to this paper, we must demon-
strate that our long-string evolution results are not sensi-
tive to the details of the small-scale structure in order to
be confident that the long-string results are correct. If we
start with smooth initial conditions, the natural tendency
is for the amount of small-scale structure to build up as
more and more kinks are produced over the course of the
run. There are a couple physical mechanisms that might
serve to slow or stop the buildup of small-scale structure
such as stretching by the expansion and the tendency for
very "wiggly" pieces of string to preferentially chop off
the network as loops. (Gravitational-radiation back reac-
tion is a third mechanism which could smooth the small-
scale structure, but it does not operate on the scales avail-
able in the sitnulation. ) As we have shown in Appendix
B, however, the expansion of the Universe reduces a kink
amplitude as -a ', so this is not very effective at
smoothing out the strings. The effectiveness of the
second smoothing mechanism is rather diScult to judge
except by observing what happens in the simulations. We
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FIG. 16. The evolution of pLsH /p for runs of code II with
varying amplitudes of initial short-wavelength structure. The
initial random velocities at every point have an average ampli-
tude of 0.73 (for the solid curve), 0.41 (for the short-dashed
curve), and 0 (the long dashed curve).

find that, when the strings are studied in units with a con-
stant physical size, the strings are rapidly smoothing
themselves on all scales (after an initial transient period
when the small-scale structure first appears). However,
when we change to units that grow with the horizon, we
find that the small-scale structure extends to smaller and
smaller scales as the simulation runs and our resolution
improves with respect to the horizon. (The fraction of
the total string energy in the small-scale structure
remains constant, however. ) Since this small-scale struc-
ture never reaches scaling, it is important to show that it
does not affect the large-scale structure of the strings.

One simple way to check that the small-scale structure
does not influence the evolution of p„s is to compare the
short-dashed and long-dashed curves in Fig. 12. Recall
that these runs started with identical initial conditions
but that the short-dashed curve run had only six points
per gc per lattice while the long-dashed curve run had 15.
Toward the end of the run, enough kinks have built up on
the runs with six points per go so that many pairs of the
neighboring kinks must be merged to form single kinks.
This happens much less frequently with the 15 points per
go run, but we can apparently see no effect of this in the
evolution of pLs.

A much more drastic variation of the small-scale struc-
ture on the long strings can be obtained by varying the
initial conditions. As we have mentioned in Sec. II A, we
have added an option to our initial conditions that allows
us to start with random velocities at each point on the
strings. We select these velocities completely at random
with a fixed magnitude which we can vary between runs.
In order to satisfy the gauge condition (2.1), the com-
ponent of velocity parallel to x' must be discarded. This
reduces the average random velocity by &2/3. The run
displayed in Fig. 8 started with a random velocity ampli-
tude of 0.9 (before applying the gauge condition con-
straint), and Fig. 8(a) shows the configuration after one
time step when this short-wavelength structure has just
begun to be transferred to the string positions. Figure 16
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influenced by the small-scale structure on the long strings
as long as we run with sufficient resolution ( ~ six points
per go per lattice for code II) and a sufficiently small
lower cutoff on loop size ( &0.33)o). These conclusions
are further strengthened by our discussion of loop-
production mechanisms in Ref. 30.
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D. Evolution in the matter and transition eras

I. The matter era

Figure 17 shows a series of boxes of size H/2 that have
been taken out of one of our matter-era simulations that
ran for an expansion factor of 16. There are a few obvi-
ous differences between Fig. 17 and the radiation-era
string network shown in Fig. 8. The matter-era string
network has much less small-scale structure, and it pro-
duces many fewer loops. The lower loop-production am-
plitude can also be seen in Fig. 18 which is the matter-era
analog to Fig. 9. The reason for the smaller amount of
loop production in the matter era is that the energy den-
sity of a noninteracting network of long strings scales as
g 3+s where 0&5«1. In the radiation era, loop pro-
duction must be sufficient to make p„s~ a while in the
matter era we only require pLs ~ a to have a scaling
solution. Clearly, a scaling solution in the matter era re-
quires much less loop production. Less loop production
also implies fewer total interactions between the strings,
so it is not surprising that Fig. 17 shows much less small-
scale structure than Fig. 8.

Figure 19 shows the relaxation of pLs toward the scal-
ing solution value versus conformal time r/go for runs
with diferent initial long-string densities. We have deter-
mined the scaling solution value to be pLs=(31+7)H /IJ, .
The dashed curve shows a run of code I which seems to
show a slight systematic difference toward the end of the
run. We believe that this is probably just a fluctuation
due to the statistically different initial conditions, but it
could also be caused by systematic errors caused by the
numerical diffusion scheme used in code I.

The effect of varying the small loop cutoff is shown in
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FIG. 19. The relaxation to scaling of the long-string energy
density pL&H /p for 4 matter-era runs of code II and one
matter-era run of code I (dashed curve) with different initial
densities.

Before we discuss the evolution of the string network
during the transition between radiation and matter domi-

Fig. 20. Varying the cutoff has a considerably smaller
effect in the matter era than the radiation era. Since the
Universe expands faster and there are many fewer loops
produced in the matter era, loop reconnection has a
smaller effect on the evolution of p„s than in the radiation
era.

Figure 21 shows the effect on the evolution of p„s of
varying the amount of initial small-scale structure on the
long strings. As in the radiation era, there is a noticeable
difference in the transient behavior of the runs with
different amounts of initial small-scale power. However,
the difference always remains small, and the different
runs seem to be approaching very similar values of pLs.
We therefore conclude that neither the small loop cutoff
nor the amount of initial small-scale power on the long
strings has a significant influence on our determination of
the scaling solution value of pLsH /p

2. The radiation-matter transition
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FIG. 18. Normalized energy density in strings p, H /p as a
function of the conformal time ~ in units of the initial comoving
correlation length go. The upper curve represents all the strings
in the simulation, and the lower curve is the density in strings
with energy E )Hp.
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FIG. 20. The effect of the small loop cutoff on the evolution
of p„s in the matter era. The long-dashed curve shows the evo-
lution of p„s for a code I run with a cutoff of go, and the short
dashes represent two code I runs with a cutoff of 0.5$~. The
solid curves represent two code II runs with a cutoff of 0.33$o
which used the flat-space fragmentation routine.
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FIG. 21. The evolution of pLsH'/p for matter-era runs of
code II with differing amplitudes of initial short-wavelength
structure. The initial random velocities at every point have an
average amplitude of 0.41 (for the solid curves) and 0 (the
dashed curve).

FIG. 22. The evolution of pLsH /p for six code II runs span-
ning the transition between the radiation- and matter-
dominated eras is plotted vs the logarithm of conformal time.
The dashed curve is a "Kibble model" fit.

nance, let us comment on the choice of a unit of length to
measure the string density. We chose the horizon length
H as our unit of length, so we measure pLs in units of
p/H in contrast with our first paper, where we mea-
sured pLs in units of p/t . AT (Ref. 31), on the other
hand, have taken the Hubble radius RH=a/a as their
fundamental unit of length so they measure pLs in units
of p!RH. Although these three different units of length
are all proportional to each other, the relative constants
of proportionality are different in the radiation and
matter eras. Thus, an unnatural choice of units could
tend to exaggerate the changes in p„s during the transi-
tion between radiation and matter dominance.

One might argue that the appropriate choice of units is
the Hubble radius ' because it is RH' that actually ap-
pears in the damping term of the equation of motion
(2.2). This would certainly be correct if the motion of the
strings were dominated by the damping term, but it is
not. The motion of the strings in both the radiation and
rnatter eras seems to be closer to the free oscillation of
strings in flat space than to motion that is dominated by
damping. One indication of this is that the mean-square
velocity of the string network in both the radiation
((v ) =0.43) and matter ((v ) =0.37) eras is much
closer to the freely oscillating string limit ((u ) =0.5)
than to the heavy damping limit ((u ) =0). Therefore
we have the horizon size H as our length unit because it
corresponds to the conformal time ~ in comoving coordi-
nates, and r is the unit of time in Eq. (2.2). It is waves of
wavelength H that have had time for a single oscillation.

Another indication that H is the proper choice of units
is that the variation of pLs is not very large when mea-
sured in these units. We find that the matter-era value of
pLsH /p is 58% of the radiation-era value. If we had
taken t as our unit of length this ratio would be 26%
while with AT's choice of RH as the unit of length it
would be 14%.

The evolution of pLsH /p for six transition era runs is
shown in Fig. 22. The earliest transition era runs shown
here started at about 7 0 37eq at a value of
pLsH /p —56—58 which is somewhat larger than our

central scaling solution value but well within the error
bars. When the latest run ends at r = 19m,q, pLsH /p has
almost reached the range of acceptable matter-era values
(31+7), so these runs have covered most of the range of
variation of pLsH /p during the transition. The mid-

point of the transition is roughly 5&,q which is also the
midpoint of the transition for the scale factor power law:

(3.1)a o- r(1+arlr, q),

where a = (&2—1)/2= —,', so there is little time to lag be-

tween the change of the expansion law and the response
of the string network. Further discussion of string evolu-
tion in the transition era will follow in the next section
after we have introduced the Kibble model.

PLs ( v ) PLs Pto loops Pfrom loopsa
(4.1)

where ( v ) is a spatial average of v, and the dots refer
to derivatives with respect to the conformal time ~.
Equation (4.1) can be derived by integrating the E evolu-
tion equation (2.3) over o and adding the loop production
and reconnection terms. The fundamental assumption
made by Kibble is that there should be a sirigle scale L
which characterizes the long strings. This implies that

IV. KIBBLE'S ONE-SCALE MODEL

A. The simplified Kibble model in the radiation and matter eras

In this section, we will compare our numerical results
with the analytical model that has been developed by
Kibble' to describe string evolution in an expanding
universe. This model has been further developed by one
of us ' (D.P.B.), and variation of it has also been used
by AT (Ref. 31) to try and fit their numerical results. We
will see that Kibble's one scale model fits some of our re-
sults fairly well, but in other respects it seems to miss
much of the important physics. This contradicts some of
the claims of AT who found that Kibble's model seemed
to fit their results very well.

The basic starting point for the Kibble model is the fol-
lowing equation for the energy density in long strings:
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p
PLs (4.2)

and

Ca Ca JM

Pto loops L PLs 3
(4.3)

—=—(1+(u ))+a 2 Ca
L a 2L

(4.4)

If we set L =yH =ya~ so that y is a constant at scal-
ing, then we obtain the scaling solution conditions

C„=2(1—( u )„)y„

in the radiation era, and

(4.5)

C =2(1—2(u ) )y (4.6)

in the matter era. Note that if we set ( v ) to its flat-
space value (u ) =

—,', then Eq. (4.5) implies C„=y„while
Eq. (4.6) implies that C =0. This indicates a qualitative
difference between the energy balance of the scaling solu-
tions in the radiation- and matter-dominated eras. If we
take the limit where the scale length of the long strings L
is very much smaller than the horizon, then (u ) ap-
proaches its flat-space value. In this limit, a finite
amount of loop production would be necessary for scal-
ing during the radiation era, but in the matter era, scaling

[The factor of a appears in Eq. (4.3) because the time
derivative of p„„,, is with respect to conformal time. ]
Equation (4.2) has defined L so that a volume L contains
a total (proper) length L of string. Equation (4.3) can be
regarded as the definition of the loop production parame-
ter C, so the one-scale hypothesis of Kibble would imply
that C is a constant independent of L. The scaling solu-
tion implies that L is proportional to H =a~. We should
note that the value of C depends on our choice of time
variable. If we had taken t or H as our time variable in-
stead of r, then the value of C in Eq. (4.3) would be
different.

The chief difficulty with the analysis of Kibble's one-
scale model has been the treatment of the Pf„ l„,term.
Bennett ' has shown that the importance of this loop
reconnection term depends quite sensitively on the shape
of the loop-production function. In fact, as we have ex-
plained in the previous section, the difference between
our results and those of AT can be explained largely by
the difference in our loop-production functions and the
different rates of loop reconnection onto the long strings
that these loop-production functions imply. Neverthe-
less, our results indicate that loop reconnections do not
play a very important role in long-string evolution. This
conclusion is supported by the insensitivity of our long-
string results to our lower cutoff' (see Fig. 12) and to the
"kinkyness" of our initial conditions (see Fig. 16). Both
of these parameters have a large influence on the shape of
our loop distribution but very little influence on the evo-
lution of PLs. This implies that our loop sizes are small
enough so that reconnection is negligible.

Once we have dropped the pr„, „,~, term from (4.1), it
reduces to

y yf

yo yr ao
(4.7)

in the radiation era and

ym

yo ym ao

) —i/2
(4.8)

in the rnatter era where y =L/H is no longer assumed to
be a constant and ao and yo are initial values. Figure 23
shows the evolution of y vs (a/ao)(' ) ' for several
radiation-era runs. The simplified one-scale model pre-
dicts that these curves should be linear and intersect at
(a/ao)(' '=0 (a ~ ~ ) at the scaling solution value

y„=0.14. Except for an initial transient due to the pecu-
liarities of the initial conditions, these curves seem to fit

straight lines intersecting at a~(x) very well, so this
simplified version of Kibble's one-scale model seems to
accurately describe the relaxation to scaling in the radia-
tion era.

The situation is somewhat different in the matter era as
can be seen from Fig. 24. The simplified one-scale model
predicts that the approach to scaling should be much
slower than in the radiation era: y

—y
& v~) —i/2-a ' ' =a ' for (v ) =0.37 in the matter era

&v') —iversus y —y, -a(' '=a ' for (v2) =0.43 in the ra-
diation era. In Fig. 24 this translates into the prediction
that the curves should be straight lines intersecting at

&
') —in(a/ao)(' ' =0. The curves in Fig. 24 seem to be con-

can be achieved with no loop production at all. Realisti-
cally, we certainly do not expect loop production to cease
in the matter era, so it must be that ( u ) is significantly
less than —,

' during matter domination. This means that
there will be a significant amount of string stretching to
balance the energy loss to loop production during the
matter era.

These simple arguments lead to the following qualita-
tive predictions of the Kibble model' ' ': (1) (u ) will
decrease during the transition from radiation to matter
domination; (2) y will increase during the transition be-
cause the scale length of the strings L must be close to
the horizon size for string stretching to be important; (3)
finally, one expects that C will probably decrease during
the transition because loop production is not so impor-
tant then.

Our radiation-era simulations indicate that
y„=0.139+0.013 and (u )„=0.43+0.02 which implies
that C„=0.16+0.02. Similarly, our matter-era simula-
tions give y =0.18+0.02 and (v ) =0.37+0.02 im-

plying C =0.09+0.02. Thus, the loop-production pa-
rameter C seems to vary by a factor of about 2 between
the radiation and matter eras. This indicates that it is
probably not a very good approximation to use the Kib-
ble model to extrapolate through the transition between
the matter and radiation eras.

In order to study the relaxation to the scaling solution
from initial states with L larger or smaller than the scal-
ing value, we can solve (4.4) if we take (u ) to be a con-
stant (which is a good approximation in the radiation
era). The solutions are
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ing into the production of loops comes initially from
wavelengths ' on the string of order L, so that the time
scale for loop production is of order L. The fact that the

p (1 results do not fit the Kibble model probably means
that for p & 1, the features on the string destined to break
off into loops get a second or third chance to break off the
long-string network if they do not break off at the first
crossing. This seems to imply that there should be a no-
ticeable difference between the shape of long strings for a
p = 1 string network and a p ( 1 network.

R

V

.45—

I I I

I

I I I I I I I I

I

I I I

&v ) measured

analytic fit

B. The Kibble model in the transition era

(v'&„+(v') r/(7r„)(v')(r)=

0.43+0.37'/(7r, )

+Ir(/7 ,r)
A comparison of this formula to the velocities
in our transition-era simulations is given in Fig.

It is considerably more difficult to measure
tion of C during the transition-era runs than it

(4.9)

measured
26.
the varia-
is to mea-

I

In order to apply the simplified Kibble model [Eq.
(4.4)] to the transition era, it is necessary to find some
way to account for the variation of C and ( v ) between
the radiation and matter eras. In their variation of the
Kibble model, AT suggest the formula
(v ) =(1 L/R —H)/2 which would imply that
(v )„=0.43 and (v ) =0.32. This formula gives the
correct qualitative behavior and accurately predicts the
radiation-era value (v )„=0.43+0.02 but it does not do
so well with the matter-era value (v ) =0.37+0.02.
The AT velocity formula would give a 40%%uo error in the
exponent in Eq. (4.8). Since we are hoping for better ac-
curacy than this, we have chosen to use the following for-
mula which we have found to fit our transition-era runs
very well:

.35
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FIG. 26. The mean-square velocity of the long strings ( v') is
shown as a function of time as measured in our transition-era
runs of code II. We estimate that the errors are +0.01 statisti-
cal and +0.01 systematic. (The systematic error would be about
the same for all points. ) The solid curve represents the analytic
fit given in Eq. (4.9).

sure (v ) because the value of C fiuctuates quite a bit
over the course of a run. We have found that the formula

C„+C r/(10m, )C(r)=
1+r/(10', )

0. 16+0. 10'/( 10~,„)
1+r/(10', )

(4.10)

is consistent with our measured variation of C, but it
would not be fair to say it is a good fit because the mea-
surements are so noisy.

If we insert the fit formulas (4.9) and (4.10) into the
scale-length evolution equation (4.4), the resulting equa-
tion is linear and has the solution

,' f draC(r—)exp —Jdr(a/a)[1+(v )(r)] +const

exp — dv a a 1+ U

(4.11)

Despite our simple choices for (v )(r) and C(r), the in-

tegrals in (4.11) must be done numerically. The result of
this fit is shown as the dashed curve in Fig. 22. This
curve seems to be a reasonably good fit to the general
features of the runs shown in Fig. 22. It seems to fit the
individual runs about as well as the runs which start at
similar times match each other. Thus, once we have in-
cluded the empirical fits for (v )(r) and C(r), the Kib-
ble model seems to describe the transition era fairly well.

V. CONCLUSIONS

In this paper, we have presented details of the two
computer codes that we have written to study the evolu-
tion of a cosmic-string network in an expanding universe.
With code I, we discovered that kinks play a very impor-

I

tant role in string evolution, but we also found that the
density of kinks grows so large that we were concerned
that serious systematic errors related to our smoothing of
these kinks might develop. This led us to develop a
second, very-high-resolution code in which the smooth-
ing of the kinks was kept to an absolute minimum.

We have presented the results of many numerical tests
of these codes which have convinced us that both codes
(and especially code II) are quite reliable. These tests
show that our results are not influenced by the periodic
boundary conditions, the density of sampling points, or
the small loop cutoff (when it is made sufficiently small).
The results of code II are found to agree extremely well
with the highest-resolution results of code I as well as the
results of the independent code of Allen and Shellard.
Our results do not agree so well with the results recently
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published by AT (Ref. 31), but we have shown that their
code has excessive numerical smoothing that seems likely
to explain the discrepancy. We have found that the
radiation-era scaling solution value of the long-string en-

ergy density is p„s=(52+10)p/H (where H =a fdt/a
is the horizon size} while our matter-era value for the
long-string density is p„s=(31+7)p/H .

We have compared our numerical results with an ana-
lytic model invented by Kibble. A simplified version of
the Kibble model seems to fit our radiation-era results
fairly well, and it gives a reasonable qualitative descrip-
tion of our matter-era results. The simplified Kibble
model cannot account for our matter- and transition-era
results quantitatively without some ad hoc modifications
to account for the variation of the loop-production pa-
rameter C and the mean-square velocity of the strings
(v ) as a function of rlr, q

and/or y. This contrasts
with the simulations of AT (Ref. 31) who found their ver-
sion of the Kibble model fit their results in almost every
detail. This seems to be an indication that the physics
missing from the Kibble model must come from scales
that are small enough so that the AT code does not
resolve them (i.e, 5 L}.

The prevalence of small-scale structure on the strings is
one of the most important new results of our high-
resolution simulations. This small-scale structure is re-
sponsible for the fact that virtually no stable (non-self-
intersecting) loops are produced by the string network ex-

cept at the smallest scales that we can resolve. This
significantly decreases the magnitude of the gravity-wave
background expected to be generated by string decay, '

and it means that cosmic-string loops will probably play
only a minor role in seeding the formation of galaxies and
large-scale structure. ' A calculation of the pattern of
structure formation to be expected in the string scenario
is currently underway.

p, (t +At) =a/, , (t)+( I —a)p, (r), (Al)

where a =At /her is the ratio of the time step to the grid
spacing and e= l. The subscript of p& refers to the jth
spatial grid point. In order to generalize Eq. (Al) to the
more realistic case where p deviates from a great circle,
we must assume that p does not vary much between grid
points as is the case when the amplitude of the short-
wavelength modes is small. (Long-wavelength modes can
still have large amplitudes. ) In this case, we can approxi-
mate the small patch of the sphere that contains the grid
points in question by a plane and use a two-dimensional
analog of Eq. (Al). To apply the standard von Neumann
stability analysis to Eq. (A 1), we simply insert a Fourier
expansion of P(t, a),

for waves with wavelengths much smaller than the hor-
izon. (To apply our fiat-space formulas to the expanding
universe, we need only to replace her by eb,a. ) In the
flat-space limit, (2.12) reduces to s+ =eo+r, and (2.13)
becomes simply p =q =a=0. As described in the caption
of Fig. 2 the numerical smoothing in the AT code is ac-
complished by interpolating the p and q functions so they
can be stored at fixed values of cr (rather than fixed values
of s+) at every time step. The only complication is that
because of the condition p =q =1, this interpolation
must be done on a sphere. We can avoid having to im-
pose this nonlinear constraint by considering a portion of
string in which the p (or q) function is confined to an arc
of a great circle. We can also rid ourselves of this non-
linear constraint by considering only small amplitude or
long-wavelength modes so that the patch of the sphere on
which we do the interpolation is well approximated by a
plane.

Since we have taken p to lie on a great circle, we can
replace p by the variable P which is just the angle vari-
able of polar coordinates on the p plane. The difference
equation describing the successive interpolations is just
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APPENDIX A: NUMERICAL SMOOTHING
IN STRING EVOLUTION CODES

In this appendix, we wi11 study the effect of numerical
smoothing in the numerical solution to Eqs. (2. 12) and
(2.13). We will consider these equations in flat spacetime
(a =0) because the analysis is much easier than the ex-
panding case and because we can compare the numerical
solutions with exact analytic solutions. Our Aat-space
analysis can be applied to expanding universe simulations
because the smoothing due to the expansion is very much
smaller than the numerical smoothing we are studying

into Eq. (A 1 ). In the real solution, of course,
P(t, k)=P(to, k), but with the difference equation (Al), we

obtain

P(t +br, k)
P(t, k)

(A3)

if(t + b, t, k) =&1—2a(1 —a)(1—cosk4o. ) . (A4)

For k Ao. (( 1 we obtain

k)
I

—((& —t) )() —a)k ha/2

/()I)(r, , k)/
(A5)

for the decay of the amplitude of the wave during the
time interval t 2

—t, .
In context of an expanding universe, it is useful to

define the smoothing wavelength A,, =2m /k, to be the
wavelength for which ~P(t2, k)/P(t(, k)~ =

—,
' when

t2 =2t ] ~ Wavelengths smaller than k, will be numerically



2432 DAVID P. BENNEL I AND FRAN~IS R. BOUCHET 41

damped by more than a factor of 2 when t grows by a fac-
tor of 2 (or a grows by a factor of &2). Equation (A5}
tells us that

APPENDIX B: THE STRETCHING OF KINKS
BY THE EXPANSION

1 —e
tAo

ln2

1/2

(A6}

A simple formula for the decay of the kink amplitude
with the expansion can be derived from Eq. (2.13). Let us
consider a kink discontinuity in the left-moving wave
with an amplitude given by

If we had defined A,, to be the wavelength of the wave
whose amplitude decreases by a factor of 2 when

~, —t, =0.1t,, then A,, would be reduced from the value
given in Eq. (A6) by a factor of ~5.

It is quite instructive to apply Eq. (A6) to the precise
conditions in AT's largest radiation-era run. ' This run
started with Acro/to= —,'„and the mean value of b,cr

remains roughly constant in physical units throughout
the run. Their mean value for a decreases as a (x: a
Inserting these numbers into Eq. (A6), we obtain

a
—i/2

=0.21
2t a

(A7)

The function on the right-hand side of Eq. (A7) starts oF
at 0 for a = 1, rises rapidly through 0.045 at a = 1.125 to
reach a maximum of 0.060 at a =1.5625. It then de-
creases very slowly reaching 0.048 at a =2.8 which cor-
responds to the end of AT's longest radiation-era run.
Thus, throughout almost the entire run the smoothing
wavelength ~,, remains within 15%%uo of 0.053(2t) which is

three quarters of AT's long-string scale length
L =0.069(2t). We note that ~,, ranges from 1 lho at the
beginning of their run to 8760. at the end of the run.
These are long enough wavelengths so that the long-
wavelength approximation is reasonably accurate
throughout the run, so our analysis is approximately
correct even for modes that are not confined to a great
circle on the Kibble-Turok sphere. Therefore, we con-
clude that the AT code will smooth very significantly any
structure on a scale smaller than the long-string scale
length L =0.07(2t).

k—=p+ —p with k=~k~, (81)

located at s+ =s+. [p+ are just p(s++5] evaluated in

the limit 5~0. ) Equation (2.13) implies that

I =—Pp+ q}I+—(p- q)p-).
a

(82)

An expression for k can be obtained by taking a scalar
product with k and dividing by k yielding

k kk 1a= ——((q p+)+(q p-))
k k2 2a (83)

where we have used the identity p+ =p = 1. Using Eq.
(2.14), we can reduce this to

k a—= ——(1—2v ),
k a

(84)

where we have defined u =(u++v )l2 to be the square
velocity averaged over both sides of the kink. When we
average over a long period of time Eq. (84) indicates that
the kink amplitude should decay as

'2(U~) —
&

Q
k =ko

ao
(85)

where (u ) is the mean-square velocity of string contain-
ing the kink. For kinks on the long strings in the radia-
tion era, we have (u ) =0.43 which implies k ~ a ' so
that the half-life of a radiation-era kink due to stretching
is a factor of 140 in expansion. In the matter era,
(u ) =0.37 which implies k ~a so that the half-life
of a matter-era kink is a factor of 14 in expansion.
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