
PHYSICAL REVIEW D VOLUME 41, NUMBER 7

Quantum chromodynamics and Bloom-t ilman duality

1 APRIL 1990

Carl E. Carlson
Physics Department, College of William cfog Mary, Williamsburg, Virginia 23185

Nimai C. Mukhopadhyay
Institute of Nuclear and Particle Physics, University of Virginia, Charlottesville, Virginia 22901,

Paul Scherrer Institut, CH-5232 Villigen, Switzerland,

and Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180-3590
(Received 12 June 1989)

We study the quantum-chromodynamic explanation of the long-established empirical connec-

tion, called Bloom-Gilman duality, between scaling and resonance regimes of the inelastic struc-

ture function vW2(to'), where v and to' are the usual kinematic variables. We show how QCD ex-

pectations for the baryon transition form factors lead to the observed constancy with momentum

transfer of the resonance/"background" ratio. We can also understand why the resonance contri-

bution follows with changing Q', a curve whose shape is the same as the scaling-limit curve. We

comment on the longitudinal response function and on possible contrasts in exciting resonances

with different isospins. These await experimental scrutiny in newer-generation electron facilities.

Bloom and Gilman' observed some twenty years ago
that the prominent resonances in inelastic electron-proton
scattering do not disappear with increasing q relative to a
"background" under them, but instead fall at roughly the
same rate as any background. Further, the smooth scal-
ing limit seen at high Q~ and W for the structure function
vWq(ro'), where to' (2m tvv+m tv) /Q 1+W /Q, Q
and v are the invariant mass squared and laboratory ener-

gy of the photon, mtv is the nucleon mass, and W is the in-

variant mass of the hadronic final state, is an accurate
average for the resonance bumps seen at lower Q and W,
but at the same ro'. These two related observations have
come to be known as Bloom-Gilman duality. As these au-
thors pointed out, the connection between the behavior of
the resonances and the scaling limit hints at a common
origin for both. A QCD explanation of why the resonance
bumps must average to the curve was given by De Rujula,
Georgi, and Politzer. 2 They showed that at moderate Q2
corrections to the lower moments of the structure function
due to higher-twist effects (e.g., final-state interactions)
are small while corrections to the higher moments are
large. Hence at moderate Q, the average value of the
structure function cannot be much different from its
high-Q value, but at any given point the change could be
considerable. The main objective of our work is to ex-
plain, using the QCD predictions for the transition form
factors in resonance electroproduction, the constancy of
the resonance-to-background ratio with Q . This also ex-
plains why the resonance contributions to vW2 tracks,
with changing Q2, a curve whose shape is the same as the
scaling-limit curve. The QCD explanations of Bloom-
Gilman duality also apply to the longitudinal structure
function, for which precise data do not exist now but may
become available in the future.

Let us begin with the resonances. The double-differ-
ential inelastic-electron-scattering cross section is
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where 8 is the electron scattering angle and trst is the
Mott cross section
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At a resonance peak we have
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FIG. 1. Leading-order diagram for the transition amplitude
G+. The external wavy line is a photon and the internal wavy

lines are gluons. Solid lines are quarks. The amplitudes Go and

G —require flipping one or two quark helicities, respectively.

Here G+ n are the helicity amplitudes evaluated in the
Breit frame for electroproduction of a resonance, charac-
terized by mass mt' and width I tt, and are labeled by the
virtual-photon helicity. 3 We have approximated the reso-
nances as having a Breit-Wigner shape with a width

independent of W. Note that with increasing Q,
v'/Q' v/2mtv.

The QCD predictions for G ~ n at high Q are based on
calculations of Fig. 1. The gluon exchanges ensure that
the final quarks, like the initial ones, have low relative mo-

menta, so that no powers of Q2 come from the initial or
final wave functions. The counting proceeds by having
one factor of Q for each unbroken fermion line, a factor of
1/Q for each internal fermion propagator, a factor of 1/Q
for each gluon propagator, and an additional factor of 1/Q
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the latter again being valid at a resonance peak. In terms
of the longitudinal cross section

8K QPl~2L, , WL (8)
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The QCD result for the scaling behavior of aL is given
as (trL/trT) -m /Q, where m is some characteristic mass
or Fermi-momentum scale for the quarks, so that

m
trL — (m' —1)trT (m' 1)-—

W
(10)

for co' l. Again, the resonance peak moves with chang-
ing Q along a curve with the same shape as the scaling

for each quark helicity flip. This gives

G+ —,Gp, and G—f+ fo (4)Q3! Q4t Q5 r

where g~ u are constants up to factors of logQ and
dependent on the wave functions of the nucleon and reso-
nance. Thus, at high Q for a given resonance,

2m 2 2
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Finally, noting that 1/Q2 (m' —I)/8'2, we get, with

mg,

vW, - (m' —1)'+0((m' —1)'). (6)
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This equation applies to each resonance. The (m' —1)
dependence is precisely the same as what is seen' as the
m' 1 scaling behavior of v$V2 at high Q2 and W. It is
also what is obtained4 using lowest-order perturbation
theory and QCD to calculate the m' 1 behavior of in-
elastic electron scattering from a proton, neglecting final-
state interactions among the quarks. Hence, with chang-
ing Q2 a given resonance peak will move along a curve
with the same (m' —l)3 shape as the high-Q2 scaling
curve. Also, assuming, as we find natural, that the back-
ground under the resonance peak has the same form ob-
tained from neglecting final-state interactions in the QCD
calculation of the distribution function, the resonance-to-
background ratio will be independent of Q . We can also
note that if the background is made from the tails of many
resonances, then the above argument a fortiori gives an
(m' —1) dependence for the background. We shall re-
turn below to examine how constant the resonance-to-
background ratio actually is empirically for each reso-
nance; the h(1232) and other I —', resonances will gen-
erally merit some special discussion.

Next we discuss the longitudinal inelastic distribution
function, which is harder to access experimentally. The
longitudinal structure function is

(b) {c)

FIG. 2. Leading tree-level diagrams for the background
mechanisms in the pseudoscalar effective Lagrangian theory to
electroproduce pions (broken line). Wavy lines are virtual pho-
tons and solid lines are nucleons. Large solid circles represent
photon-hadron interaction vertices. The three contributions
shown here are (a) t-channel pion exchange, (b) s-channel nu-
cleon exchange, and (c) u-channel nucleon exchange.

M, — F, t(vQN),c 4 Ã

where MJ are the amplitudes corresponding to diagrams
2(a)-2(c) [the normalization is such that y N rrN
would have drr/dt (I/s ) )M; ( (I/II ) (Mt ( ].
Thus for high Q, the t-channel pion exchange, Fig. 2(a),
dominates. However for any falling F,tvtv, this single dia-
gram falls faster than the I/Q3 expected from the QCD
background calculation. But at high Q one can expect
that other mesons including pion recurrences will be ex-
changed. What this will do depends very much on the
density of states and the couplings of the higher states.
With only pion recurrences and a Regge-like behavior, the
nth recurrence has a mass squared M„=n in (GeV)
units. Putting in a dipole falloff also with a mass M„ for
the x„&N vertex, and including the mass in the propaga-
tor, gives

. Q (Q'+M„')'
1 1

Q (Q'+n)'
1

Q3
(12)

curve, and the signal-to-background ratio does not change
with Q . This is a distinct manifestation of Bloom-
Gilman duality. There are currently insufficient data to
test this prediction. The resonance peak and resonance-
to-background ratio aspects of this can be tested by data
to be available from the Continuous Electron Beam Ac-
celerator Facility (CEBAF), now under construction, and
the higher-Q2 scaling curve must be measured at a
higher-energy facility.

The background may also be considered from a meson-
baryon point of view. s Considering electroproduction of
pions, with a pseudoscalar pion-nucleon coupling, some
leading tree diagrams are shown in Fig. 2. Assuming the
pion to have a monopole electromagnetic form factor and
the nucleon a dipole electromagnetic form factor, and giv-
ing the form factors the same behavior even when one of
the hadron legs is off shell, leads to

M -QF r(Q') F tvtv(Q')- F.tvtv(Q'),

Ms-QFJv&, (Q ) Fgtvtv (Q )——4 F,tvtv(Q ), (11)
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Including an M„dependence at the photon vertex does not
change the power of this result, and the power is in ac-
cord with QCD. We should note that a Hagedorn-type
density of states, p(m)-e ', leads to a divergent re-
sult unless some couplings to higher states are cut off. %'e
may believe that meson-baryon theory must lead to the
same scaling results as QCD, but the foregoing discussion
indicates that this result does not emerge trivially.

Two comments need to be made about the I 2 reso-
nances, i.e., the d's. The first is that, experimentally, the
h(1232) bump falls noticeably with Q relative to its
background. This is in great contrast to the second reso-
nance bump, at about 1520 MeV, which is very steady in

Q relative to its background. ' Our earlier analysis of
course assumed that there was no accident from the had-
ron structure that made the leading helicity amplitude
anomalously small. This need not be true. If, in our ear-
lier notation, go =0, then the data over the whole mea-
sured Q range would be dominated by next-to-leading
amplitudes which fall more quickly than the background.
This leads to the second comment, that at least for one nu-
cleon wave function (or more properly, "distribution am-
plitude"), that of Chernyak and Zhitnitsky, " there is a
seemingly accidental cancellation that makes g+ for the
h(1232) quite small. ' The cancellation is not strongly
dependent on the 5 wave function except for the 6 being
I 2 gives characteristic weight to contributions from
different parts of the nucleon wave function that cancel
each other.

The second resonance region, at about 1520 MeV, is
dominated by an I & resonance. Let us then turn our
attention to the third resonance region, at about 1670
MeV, where the resonance-to-background ratio falls
somewhat' with Q, but not as dramatically as the
h(1232) does. This bump contains a number of reso-
nances, some I 2 and some I 2. We may speculate
that the bump is falling because the I —', resonances are
falling with respect to the background, while the I
resonances are not. New data separating the various con-
tributions to the third resonance region would be very
valuable and can be expected from CEBAF.

We have focused on the power-law scaling behavior of
the resonances form factors and of vR 2. There are also
scaling violations involving ln(Q /A ). Including these
logarithmic terms in the resonance form factors gives for
G+,

G (Q ) ~ ga (lnQ /A ) tm Ts
2(Q 2)

m, n

where y; are anomalous dimensions. The a „ involve the
wave functions of the nucleon and the produced reso-

nance,

a „b b„[dx]Idy jp (y)TH(x, y)p„(x),

where TH is the hard-scattering amplitude (Fig. 1), the
P; are Appel polynomials, x and y represent the momen-
tum fractions of uarks in the incoming and outgoing
baryons, and the b;

") are coefficients in the expansion of
the resonance distribution amplitude:

It is not entirely clear that the logarithmic corrections are
the same for the background as for the resonance peaks.
If we view the background as a sum of other resonances's
tails, then the relative weighting of the different powers of
lnQ2/A may change. Hence there can be some change in
resonance/background ratio due to the logarithmic scale
breaking (as well as due to still incomplete suppression of
terms falling with higher powers of 1/Q ). For the nu-
cleon elastic form-factor case, most of the scale breaking
seems to be due to the logarithms in a, (Q ); if the same is
true in general for the transition form factor, then the
resonance/background ratio would be insensitive to the
scale breaking. While the power law is the dominant Q
dependence in the high-Q behavior of the form factors,
seeking the logarithmic scaling violations would be in-
teresting if the data become precise enough. With or
without scaling violations, the resonances must still aver-
age to the scaling curve by the arguments of De Rujula,
Georgi, and Politzer. 2

In summary, we have examined the quantum-chro-
modynamic explanation of the Bloom-Gilman duality,
focusing particularly on the constancy of the resonance/
background ratio; we have shown how the corresponding
arguments work for the longitudinal case; we have shown
that meson-baryon theory will not trivially give the same
results as QCD at high Q; we also have commented on
the possibly contrasting behavior of I —,

' and I —', reso-
nances at high Q . Finally, we have suggested new exper-
imental opportunities. More theoretical work still needs
to be done; particularly on the question of the Q regime
of validity for Bloom-Gilman duality and questions of ab-
solute normalization.
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