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The Hamiltonian analysis of the beam-beam interaction is extended, for round beams, by includ-

ing its finite longitudinal extent. For small synchrotron amplitudes resonance strengths are derived

that are smaller than those obtained in the impulse approximation. This is a consequence of averag-

ing over the betatron phase during the collision. Results of simulations that reproduce this feature

are also presented. More complete simulations, relevant to storage-ring colliders, argue for bunch

lengths comparable to the value of the amplitude function (P) at the interaction point.

I. INTRODUCTION density in the transverse dimension x of rms size o „.The
beam-beam potential function is then

The luminosity I. and total current I of an e+e
storage-ring collider are related as

0 'g
(2)

L= (1+R ),
2erePp

where Pc is the vertical amplitude function, R is the ra-
tio of the minor and major axes of the collision spot, and

g is the beam-beam strength parameter. (The strength
parameter g has conventionally been used as a measure of
the influence of the beam-beam interaction. ) The beam
current is utilized effectively by having a "low-P inser-
tion" at the collision point. The bunch length cr, gives
one lower limit to Po. When they become comparable,
luminosity is lost due to an increase in the effective col-
lision area (a geometric effect) and a reduction in g from
modulation of the betatron phase advance between col-
lisions. '

The beam-beam interaction has generally been treated
as an impulsive "kick" in calculations and simulations
studying the latter effect. This does not reflect the fact
that a particle experiences the force spread over a range
of betatron phase, of order 2mo, /Pc. Buon does consid-
er the extended nature of the force, but in the linear ap-
proximation. However, tune-shift-limiting resonance
phenomena appear only if nonlinearities are considered.

In this paper we extend the usual analysis by treating
the full, nonlinear, interaction as arising from a longitudi-
nally distributed charge. We restrict ourselves to the
weak-strong limit, and use the round-beam model,
defined by the potential of Eq. (2) below and correspond-
ing to R =1 in Eq. (1) above. The calculation of Sec. II
provides a framework for interpreting the simulation re-
sults of Sec. III. Results of more complete simulations,
presented in Sec. IV, offer evidence of an optimal bunch
length in the actual operation of a collider.

II. THEORY

This section presents a generalization of the work of
Izrailev and Vasserman (Ref. 1). Resonance strengths are
calculated in a one-dimensional model in which the
strong beam is assumed round, with a Gaussian charge

The beam size is related to the P function by o„=ecP„
where Fp is the equilibrium emittance and P, the ampli-
tude function of the strong beam. The longitudinal distri-
bution is also Gaussian, with rms length cr, . In the ul-

trarelativistic limit the electromagnetic field lines are
Lorentz contracted into a thin disc, so the longitudinal
distribution only serves to reduce the amount of charge
producing that potential; the longitudinal forces are
negligible.

If the unperturbed betatron motion of a single particle
can be described by a Hamiltonian Hc(x,p„), and it en-
counters the beam-beam interaction once every turn,
then the total Hamiltonian for the particle can be written
as

The perturbation parameter is e=Nr, ly, where N is the
number of particles in the strong beam, r, the classical
radius of the electron, c the speed of light, and y the usu-
al relativistic factor. T0 is the revolution period. The
sum is over all turns, and synchrotron oscillations are in-
troduced parametrically via ~, given by

r= —cos(2n.nQ ),
2 s (4)

where r and Q, are the synchrotron amplitude and tune,
respectively. The synchrotron frequency co, is related to
the tune by to, =2m Q, /To. Note that both r and o, have
a factor of one-half associated with them that arises from
the relative motion of the particle and the strong beam.

Transform the Hamiltonian to action-angle coordi-
nates (I,P), defined through

H(x, p„,t) =Ho(x, p„)

+e Q Va(x)
2c

JI = 00 v'2 2

XexpI 2e [t (n—T&+r)]—lo', I .

(3)
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x =(2Ip)' cos[g+y(t)],
where

figuration, where the two betas (p and p, ) are identical,
x /2cr„always equals I/eo times the cosine factor, and
the transformed Hamiltonian can then be written as

fcd ty(t)= f co—og„t .
o p(t)

Q„ is the betatron tune, p is the ainplitude function of the
particle, and coo= 2~/To. For a single ring con-

H(I, g, t)=Ho(I)+e g f dco C (I,co)e ' 'e'i'~,

(7)

where

C~(I, co)=
z f

deaf

f" dt 1 —exp — cos [P+y(t)] e
(2~) o o rl —~ eo

X g expI 2c [t—(nT—o+r}] /cr, Ie'"'.=-- +2~cr,'

Performing a change of variables the g and t integrals can be factored. If, further, the betatron phase is approximated
as varying linearly near the interaction point, so that y(t ) =ct /po coog—„t (modulo nTo }, then the Hamiltonian can be
written as

H(I, g, t) =Ho(I)+ecoo g Tz(I) g exp
k, m = —oo

2

m coo
—k co, —pg„coo+ pc

Sc 0
I

'2

Xi Jk
pc 7 i(pg —me@at+ ken, t )

m coo —kco, —pg„coo+ —e
0

where

T (I)= f d8f 1 —exp — cos 8 e
1 &~ ~ di) Irj

(2ir) 0 0 rl eo
(10)

For motion near a single isolated resonance the phase
must be stationary, giving the resonance condition

pg„+kg, =m

and the motion can then be represented by a reduced
Hamiltonian

H«z =Ho+ ecooFoo+ eco+~z,

where

g cr 1 Pcrs
F~t, = T~(I)J& exp

0 2 0

2

(12)

(13}

FkEI=2
Aoo

' 1/2

(14a)

bco=2ecoo+ ~F qAoo~, (14b)

where ADO=A Foo/BI, evaluated at the fixed point.
In the limit cr, ~O, Eq. (13) reduces to the result of

In Eq. (12) Foo is the average part of the perturbation,
and in Eq. (13) phase factors have been dropped. After
transforming to resonance coordinates, resonance
strengths for small oscillations about the fixed point can
be characterized by half-widths in action and frequency
spaces, given by

Izrailev and Vasserman for an impulsive beam-bean in-
teraction. If the distributed nature of the interaction is
taken into account, resonance strengths are less than
those for an impulse. Physically this reduction results
from averaging over the betatron phase during the col-
lision.

For small synchrotron amplitudes, the Fourier
coeScients are reduced by a Gaussian form factor,
exP( —P cr, /8Po ). Higher-order betatron resonances
have a larger reduction in resonance strength. The form
factor is independent of the synchrotron sideband k. The
Fourier coeScients for difFerent sidebands vary as
J„(pcr"/2po). Both the betatron resonance order p and
the sideband number k influence the dependence on ~, the
particle's synchrotron oscillation amplitude.

Several approximations have been made in arriving at
Eq. (13). First, the amplitude function was assumed con-
stant near the interaction point; the next term is quadra-
tic near t =nTo Then y(t ) =a.rct (catn/P ) ocoog„t, a—nd
an analytic calculation is not possible. The rapid varia-
tion in phase which led to the averaging is reduced, and
the Gaussian form factor therefore overestimates the
effect of a finite bunch length.

Second, the result is first order in g'. The strong beam
acts as a lens with focal length f -po/g for small x/o„.
Terms of higher order in g are necessary when f is com-
parable to the bunch length. The simulation discussed in
the next section does not make these approximations.
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III. SIMULATION
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The results of Sec. II motivated a multiparticle track-
ing program to check the main predictions. The simula-
tion had the following features.

(1) It had three spatial dimensions (two transverse and
one longitudinal), was weak-strong, and used the round-
beam potential of Eq. (2).

(2) The weak beam comprised of 1000 independent test
particles that initially had Gaussian distributions in the
transverse dimensions, but a fixed longitudinal amplitude.

(3) The amplitude function varied quadratically around
the interaction point (IP) for both the strong beam and
the test particles.

(4) Chromaticity and dispersion at the interaction point
were assumed zero.

(5) The arc transporting particles between collisions
was linear. Radiation damping and fluctuations for the
whole arc were put in once a turn, and only in the trans-
verse coordinates.

To simulate the distributed nature of the beam-beam
interaction, the strong beam was divided longitudinally
into several equicharge chunks, and a kick due to each
chunk was delivered at its center of charge. Particles
were propagated freely between kicks, thus allowing their
betatron phase to change. The sensitivity to the number
of kicks was investigated (see Fig. 1, cases 1 and 2), and it
was found that the number of kicks did not matter pro-
vided it was greater than three. Nine kicks were used for
the distributed model, while simulations done with one
kick are the impulse model.

Tunes were chosen close to various resonance lines
(Table I) so that the single isolated resonance approxima-
tion would be valid. The resonances chosen for this study
were the fourth- and sixth-order betatron resonances and

TABLE I ~ Operating tunes for the different resonances.

Q, =0.11.

Resonance line

4Q„=3

4Q —Q, =3
4Q„—2Q, =3
6Q„=2
6Q„—Q, =2
6Q„—2Q, =2

Betatron tune (Q„=Q )

0.745
0.7725
0.800
0.328
0.347
0.365

their first two synchrotron sidebands.
The product of the rms sizes in position and angle,

o„o... calculated at the IP and averaged over the last
1000 turns, was used as a measure of resonance strengths.
This measure is related to, but not identical with, the for-
mal definition of the previous section [Eqs. (14)]. It does
not equal the emittance when there is resonance structure
in phase space; nonetheless in the following discussion it
is loosely referred to as the emittance. Results are
presented only for the horizontal dimension; the vertical
emittance behaved the same. In particular, there was no
evidence of any breaking of the symmetry imposed by the
potential and the equal tunes. Typical parameters used in
the simulations are shown in Table II. The value of 0.035
for the strength parameter, )=Nr, /417) Ep is chosen as

fairly typical of those actually achieved in operating
storage rings.

Figure 2 shows plots of emittance against synchrotron
amplitude for the six different resonances, in the impulse
model. From Eq. (13) the form factor is unity, and the
resonance strengths just reflect the Bessel-function struc-
ture.

For example, in Fig. 2(a) the 4Q„=3 curve starts off
with a maximum strength at zero, and reaches a
minimum at cr/Pp=1. 33; Jp(Pcr/2Pp) has its first zero
at 2cr/Pp=2 4 The 4Q. ,.—Q, =3 and 4Q„—2Q, =3
lines have the initial linear and quadratic behavior ex-
pected of J& and J2, respectively. At larger amplitudes
the arctan(x ) =x approximation made in the calculation
breaks down, and the behavior will deviate from that pre-
dicted by Eq. (13). This is seen in the simulation as a sys-
tematic rise in the emittance and a dilution of the expect-
ed maxima and minima.

The same general features are seen in Fig. 2(b). How-

I.OO

0
g=l s Ig .—I s g' —4=m ——-I

3 6 9
NUMBER QF KICKS

l2

FIG. 1. Emittance against the number of kicks used in the
distributed force treatment. Cases 1 and 2 are for the simula-
tion of Sec. III, with no longitudinal radiation, while cases 3 and
4 are for Sec. IV, with longitudinal radiation and a longitudinal-
ly distributed weak beam. The cases correspond to (1)
4Q„—Q, =3 line, er/Pa=3, o, /PO=0. 33, (2) 6Q =2 line,
er/Po= 1, o, /Pa= 1, (3) 4Q„=3 line, o

&
/Pa=0. 33, (4)

6Q —Q, =2 line, oI/Po= l.

Energy (Eo )

Revolution period {To)
Damping decrement (6)
Nominal emittance {eo)
Beta at the IP (P, )

RF freq. (f„)
Synchrotron tune (Q, )

Number of particles (N)
Nominal beam-beam parameter (g)
Number of turns per run

5.3 GeV
2.56 ps
1X10 '
1X10 ' m
3.0 cm
500 MHz
0.11
1.6X10"
0.035
7000

TABLE II. Typical parameters used in the simulations.
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FIG. 3. Emittance as a function of synchrotron amplitude for
the 4Q„—Q, =3 resonance, for three different strong-beam
bunch lengths, in the distributed model. The impulse-model
curve is also shown for comparison.

I t I ' I

~ 6Qx= 2
6Qx- Qs= 2

O 6Qx-2Qs=2

4.50

b

5.00 I ' I ' t ' I I ' t ' i ' I ' l

a)
~ 4Qx
& 4Qx-Qs=
0 40x-2Qs=3

~O—o-

-p~
t I i I t I t I t I i I

0
~~

I.OO
8~

0.00
3.00

bI.75
cr /Pz

3.50

FIG. 2. Emittance as a function of synchrotron amplitude in

the impulse model for (a) the fourth-order and (b) the sixth-
order betatron resonance, and their first two synchrotron side-
bands.
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ever, the minima and maxima are shifted to smaller
er/pp (relative to the previous figure), reflecting the
larger betatron resonance number p. It should be pointed
out that a quantitative comparison of the absolute
strengths of the resonances is not to be made from these
figures, because the ernittance blowup depends quite sen-
sitively on the distance of the particles, in tune space,
from the resonance.

Figure 3 shows results for the 4Q„—Q, =3 resonance,
in the distributed model, for different o., /pp (correspond-
ing to different magnitudes of the form factor). As ex-
pected, the emittance increases as o, /pp decreases, be-
cause of a larger form factor. In the limit o.,~O one
smoothly approaches the curve due to the impulse model.

Figure 4 shows, e5'ectively, the form-factor variation as
a function of o, /pp for the different resonances. As pre-
dicted, the emittance falls with increasing cr, /pp, and the
fall is swifter for the sixth-order resonances than for the
fourth. A slight rise is noticed in the 4Q„=3 curve for
larger synchrotron amplitudes. At these amplitudes, as
mentioned earlier, the analytic calculation no longer

2.50

b)

~ I ~ ) I

~ 6Qx= 2
o 6Qx-Qs*2
O 6Qx 2Qs =2

bx 1.75
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CTg
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FIG. 4. Emittance as a function of strong beam bunch length

in the distributed model for (a) the fourth-order and (b) the

sixth-order betatron resonance, and their first two synchrotron
sidebands. er/Po= l.

BUNCH-LENGTH EFFECTS IN THE BEAM-BEAM INTERACTION
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holds. Numerical integration must be taken recourse to,
and this does reproduce the observed rise.

IV. DISCUSSION

The results of the previous sections show that there are
two different length scales of importance; one set by the
strong bunch length 0., and the other by the test
particle's amplitude ~. Further, these have opposite
effects on the resonance strength. Larger o., leads to
greater phase averaging which decreases the emittance
blowup, while larger ~ leads to greater depth of modula-
tion, which increases the emittance blowup. In a real col-
lider the test particles have a (nominally Gaussian) longi-
tudinal distribution and, for a single ring configuration,
the bunch lengths of the two beams are necessarily equal.
This implies that the resonance strength dependence on
the bunch length should have a minimum in it.

To test this hypothesis, more complete simulations
were performed, in which the weak beam was started
with a longitudinal Gaussian distribution of rms length
equal to that of the strong beam ( =o, , say). Radiation
fluctuations and damping were included longitudinally
too. Figure 5 shows the emittance as a function of cri for
two different resonances. The impulse and distributed
models are seen to give substantially different bunch
length dependence. The latter shows that it is feasible to
run colliders with bunch lengths comparable to Po,
without encountering the dynamical degradation in lumi-
nosity predicted by the impulse model. (There will, how-
ever, still be a reduction in luminosity due to geometric
eff'ects. )

Rice has reported experimental results from the Cor-
nell Electron Storage Ring (CESR) that show the lumi-
nosity to be maximum at ot/Po= l. l. This contradicts
simulations using the impulse model that predict a de-
crease in luminosity for crt/Po&0. 7. The measurements
were made with flat beams (o „»cr ) and with nonzero
horizontal dispersion at the interaction point; they thus
represent dynamics different from that considered here.
However, the basic phenomenon of betatron phase
averaging still occurs, and this could help explain the
CESR results.

10.00 ' ' ' ' ' ' I ' ' ' ' ' ' ~»
0

0 4Q&-Os=3 impulse
0 4Q„-Q =3 Distributed
+ 6Q„=2 Impulse
+ 6Q„=2 Distributed

bx 550
b"

0.00

o—c~ Q~0
~a~/

t.25 2.50

FIG. 5. Emittance as a function of bunch length for the
4Q„—Q, =3 and 6Q„=2 resonances, in the distributed and im-

pulse models. Here the two beams have equal bunch lengths

(O, =o =oI), and radiation has been incorporated longitudi-
nally.

We have been working in the approximation of single
isolated resonance and find that the distributed nature of
the force reduces resonance strengths. This implies that
resonance widths are also smaller than previously calcu-
lated. As a result resonance overlap and the consequent
stochastic behavior will set in at higher currents than
previously estimated.

CONCLUSION
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The finite longitudinal extent of the beam-beam in-
teraction results in averaging of the betatron phase over
the collision, which mitigates the destructive effects of
resonances. As a result, bunch lengths of the order of Po
are viable in the operation of storage ring colliders.
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