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The equivalence theorem states that, at an energy E much larger than the vector-boson mass M,
the leading order of the amplitude with longitudinally polarized vector bosons on mass shell is given

by the amplitude in which these vector bosons are replaced by the corresponding Higgs ghosts. We

prove the equivalence theorem and show its validity in every order in perturbation theory. We first

derive the renormalized Ward identities by using the diagrammatic method. Only the Feynman-
't Hooft gauge is discussed. The last step of the proof includes the power-counting method evalu-

ated in the large-Higgs-boson-mass limit, needed to estimate the leading energy behavior of the am-

plitudes involved. We derive expressions for the amplitudes involving longitudinally polarized vec-

tor bosons for all orders in perturbation theory. The fermion mass has not been neglected and

everything is evaluated in the region mf =M &(E ((m H, «, .

I. INTRODUCTION

Lately the equivalence theorem' has gained some in-
terest. ' The equivalence theorem states that for a pro-
cess which takes place at a center-of-mass energy much
larger than the mass M of the vector boson the longitudi-
nally polarized vector boson behaves like the Higgs
ghost. For large energy E, the polarization vector a~i of
the longitudinally polarized vector boson Wi may be ap-
proximated as

k" Mi= +0
M E

with k" the momentum vector of 8'i. The equivalence
theorem can be expressed in diagrammatic form as

Ll' =(i)n fq
' +0—i,
n

(1.2)

where the outgoing straight lines denote physical parti-
cles other than Wi. Thus the leading energy term for a
process containing external WL 's is obtained by calculat-
ing the amplitude where these Wi's are replaced by the
corresponding Higgs ghosts. In the above equation
"O(M/F)" means that the equation is good up to order
M/E compared to the leading energy term. The
equivalence theorem is very useful since it is much easier
to calculate amplitudes involving on-mass-shell Higgs
ghosts.

The equivalence theorem was first proven at the tree
level in the renormalizable standard model by Cornwall,
Levin, and Tiktopoulos using a Stiikelberg-type gauge.
Lee, Quigg, and Thacker subsequently sketched a proof
to higher orders, using the functional method in the

Feynman —'t Hooft gauge, but with only one external lon-
gitudinal leg. Chanowitz and Gaillard, ' followed by
Gounaris et al. , claimed to extend the proof to all or-
ders in perturbation theory and with any number of
external Wi's in a general R& gauge. In Ref. l the func-
tional method was being used and started with the as-
sumption that the renormalized functional for one-
particle-irreducible Green s functions is invariant under
the (appropriately renormalized) Becchi-Rouet-Stora-
Tyutin (BRST) transformations. In Ref. 4 a simpler
proof was given using the same starting assumption. It is
this starting assumption that has been questioned in the
literature. In all cases only the renormalizable standard
model has been considered.

The object of this paper is twofold.
(i) We give a new proof of the equivalence theorem in

the renormalizable standard model in the Feynman-
't Hooft gauge by using the diagrammatic method. The
proof is given to all orders in perturbation theory and
with any numbers of external Wi's. For simplicity only
the pure SU(2) model is considered and the weak mixing
angle 0~ has been set to 0. We would like to stress the
fact that we do not intend to give a proof in the general
R gauge and we restrict ourselves to the Feynman—
't Hooft gauge. The reason is that the problem is greatly
simplified, as will be made clear later in this section.

(ii) When applied, the equivalence theorem only deter-
mines the leading energy term of the amplitude for a pro-
cess involving longitudinally polarized vector bosons. In
a renormalizable theory the amplitude of any process will
be at most a constant in the limit of large energy; unitari-
ty is not violated. However, for an effective theory this is
not the case and amplitudes will grow large for large en-
ergies. For the standard model with the o. model as the
Higgs sector this happens in the large-Higgs-boson-mass
limit and also in the large-top-quark-mass limit. In this
paper we assume the top-quark mass to be of the same or-
der of magnitude as the vector-boson mass and we extend
our proof Of the equivalence theorem in the limit
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I„=M EtOP (1.3)

by using the power-counting method. As a result we
derive the leading energy behavior for processes involv-
ing longitudinally polarized vector bosons in all orders of
perturbation theory.

The proof of the equivalence theorem can be described
as follows. In the Feynman —'t Hooft gauge the gauge-
fixing term in the Lagrangian in the SU(2) model is given
by Xs&= —

—,'C, with C, = 8"W—,"+M/„where W," is
the vector boson with isospin index a and mass M; P, is
the Higgs ghost, a =1,2, 3. The Fourier transform of C,
is ik" W,"+M/, The. direction of the momentum vector
is defined such that we get an extra minus sign in front of
k". This point will be made clear in Sec. II. The first step
is to show that an amplitude which contains external C
lines is equal to zero in any order of perturbation theory.
Consider for the moment an amplitude which has just
one external C line. We have to show that

C, A, =O

or

ik" A "(W)+MA (P) =0 . (1.4)

Here A "(W) is the amplitude with one external vector
boson for which the polarization vector e" is replaced by
its momentum vector k" and A (P) is the amplitude in
which the vector boson is replaced by the corresponding
Higgs ghost. Equation (1.4) is derived by considering
Ward identities on mass shell.

We now see the advantage of the Feynman —'t Hooft
gauge. When considering the general R& gauge where
the gauge-fixing term is given by

C.(g) = —a~ W~+ —My. ,
1

we still have to show the validity of Eq. (1.4). In the
Feynman —'t Hooft gauge the gauge-fixing term C, (1) is
precisely the C, given in Eq. (1.4).

In lowest nonzero order this has already been de-
rived. But what happens if we go to higher order in
perturbation theory? We then have to renormalize the
external lines. If —8"W," is renormalized differently
from MP, we see that the relation of Eq. (1.4) is de-
stroyed and is no longer true. The answer to this prob-
lem is to consider the renormalization procedure as de-
scribed in the Feynman —'t Hooft gauge in Refs. 7 and 8.
With this particular renorrnalization procedure the
gauge-fixing term is unchanged after renormalization. '

In other words C, = 8"Wf +M/, —remains the same be-
fore and after renormalization and therefore the relation
of Eq. (1.4) is still true.

Our renormalization procedure manifestly respects
weak SU(2) for the renormalized Lagrangian. Our result
in the Feynman —'t Hooft gauge thus provides an explicit
example of how the symmetries of the classical theory
may be preserved after renormalization and it therefore
supports the starting assumption of Refs. 1 and 4.

In Sec. II we will derive the above equation for any
process with any number of external C lines in every or-

Substituting this relation into Eq. (1.4) we arrive at

eL A(W)=iA($)+uA(W) .

If we can show that uA ( W') is indeed at most of order
M/E compared to A(P) then we have arrived at the
equivalence theorem [see Eq. (1.2)] and everything is fine.
But things are not quite that siinple if we consider multi-
ple vector-boson interaction. For instance, in the stan-
dard model in which we do not take the large-Higgs-
boson-mass limit and which is therefore renorrnalizable,
we know that the amplitude of any process cannot grow
large if the energy grows large. This means that, for ex-
ample, the amplitude for four-WL interaction and the
amplitude for six-WL interaction are both at most a con-
stant in the large-energy limit, in spite of the fact that the
polarization vectors are proportional to the correspond-
ing momentum vectors (in leading order). This implies
that somehow cancellations must occur. Because of the
structure of the Yang-Mills vertices this is indeed exactly
what happens and this was first noted in Ref. 1. This of
course is still the case after we take the large-Higgs-
boson-mass limit. Formulating the problem differently, if
the amplitude for four-8'L interaction is given by

A =EL iE'L2E'LgE'L4A"" ( W, W, W, W)

k",
+v",

M

k'
2

+V2
k 3

+V3
k~4

+Vg
I

X A~".i'(W, W, W, W),

then the above reasoning would imply that, for example,

kj", k2 k3 k~~'
A ~-)'( W W W W)MMMM (1.7)

is of the same order as

kj) k2 k3 u~A"" ~( W W W W)
M M M s

The question is, thus, how can we determine the lead-
ing order in energy of the amplitude involving longitudi-
nally polarized vector bosons? We cannot apply the
power-counting method, since this method does not give
information on the occurring cancellations and it thus

der in perturbation theory. In Ref. 5, where no con-
clusion was reached about the validity of the equivalence
theorem, this same problem of renormalization of the
gauge-fixing term is studied for any gauge. This makes
the problem much more nontrivial.

The second step in the proof of the equivalence
theorem is to somehow modify the above equation to an
equation involving the physical vector boson for which
k "0'=0 with k" the momentum vector and e" the polar-
ization vector. From Eq. (1.1) we see that at an energy
much larger than the mass M of the vector boson the
longitudinal-polarization vector is equal to the momen-
tum vector plus a vector of order M/F. :

ik" . . M=i e" —iV", V"=0L E
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overestimates the leading order in energy. One way of
solving this problem is to find an expression for the am-
plitude which is of the form (for the purpose of clarity the
various indices have not been written down)

e, a(W, W, . . . , W)

= 3 (P,g, . . . , tIt)+u . . uA (P, . . . , P, W, . . . , W)

+vu uA(W W, . . . , W), (1.9)

2

El EL A ( WI WI ~vv ) =vu A ( WL, WL, ~vv) =0 E2

and as in agreement with the equivalence theorem, the
leading energy term (the —1 term) is zero.

In an effective theory we cannot use this argument, but
with the help of Eq. (1.9) the leading energy term can be
determined as follows. Consider thus the case where we
take the large-Higgs-boson-mass limit. The advantage is
now that we can apply the power-counting method to the
amplitudes on the right-hand side of Eq. (1.9). To find
the leading order in energy for the amplitude
A (P, P, . . . , P) we do not even have to consider Yang-
Mills vertices and the problem of cancellations is not
there. Intuitively this is easy to see, since even if we did
allow for vector-boson loops and Yang-Mills vertices
could occur there, they are immediately accompanied by
vector-boson propagators. In the Feynman —'t Hooft
gauge the vector-boson propagator is of order 1/E since
it is given by

where A(P, ((), . . . , P) is the amplitude where all the
Wl 's are replaced by the unphysical Higgs ghosts,
u uA (tI), . . . , P, W, . . . , W) is the amplitude for
which a certain number of the 8'L's are replaced by the
unphysical Higgs ghosts, while for the remaining number
of WL's the longitudinal-polarization vectors are replaced
by the subleading vectors u. vv . vA ( W, W, . . . , W) is
the amplitude where all the longitudinal-polarization vec-
tors are replaced by the vectors v. In Sec. III we will
indeed arrive at this desired expression, obtained by con-
sidering the on-shell Ward identities derived in Sec. II.
The above equation was first derived in Ref. 1.

We now consider the renormalizable standard model
and we therefore do not take the large-Higgs-boson-mass
limit. This is the region considered by Chanowitz and
Gaillard' and we follow their argument. The amplitude
of any process is at most a constant in the large-
energy limit. Let us assume that the amplitude
eLCL ' ' ' eL A ( W, W, . . . , W) is given by a constant.
From Eq. (1.9) we see that this constant is given by the
amplitude A (P, P, . . . , P), since the other amplitudes on
the right-hand side of Eq. (1.9) are multiplied by the vec-
tors v, which are 0 (M/E).

If the amplitude eL eL eL A ( W, W, . . . , W) is
0(M/E) or higher, the statement of the equivalence
theorem is that the 8'L amplitude vanishes at least as
M/E at high energy. For example, for the process
8'L Rz ~vv in lowest nonzero order the corresponding
P P ~vv does not even exist. As a matter of fact,

II. THE WARD IDENTITIES

This section deals with the first step in establishing the
equivalence theorem, namely, the derivation of the renor-
malized Ward identities. We begin with the definition of
the Ward identity satisfied by the Green's functions be-
tween sources off mass shell. Consider the complete La-
grangian, in the SU(2) model it is given by

(2.1)

where —
—,'C is the gauge-fixing term and XFp the corre-

sponding Faddeev-Popov ghost Lagrangian. X;„„is in-
variant for the following infinitesimal gauge transforma-
tions of the fields:

8'," W,"+ge,b, Ab 8',"—()I"A, ,

+ ,g E,b, Abg, —
—,'gH—A, —MA, ,

H ~H + —,'gA, Q, ,
(2.2)

with 8'," the vector boson with isospin index a, a = 1,2, 3,
the Higgs ghost, and H the Higgs boson.

I —=
—,'( I+@ )I, with I+ a left-handed fermion doublet and

I a right-handed fermion singlet. In the Feynman-
't Hooft gauge we have

(2.3)

QPv

k2+M2 —i e

and contains no k "k term in the numerator.
For the amplitudes u . vA (P, . . . , P, W, . . . , W) and

uv . u A ( W, W, . . . , W), with the help of the power-
counting method, we are able to put an upper bound for
the leading order in energy, since we know that
v4=E" k "—/M is of order M/E We. only need to show
that the leading energy term is given by A (P, P, . . . , P)
and that the leading order of u uA (P, . . . , P,
W, . . . , W) and of vu uA ( W, W, . . . , W) is always
less than that of A (P, P, . . . , P). In Sec. IV this is done
by applying the power-counting method to these ampli-
tudes in the large-Higgs-boson-mass limit.

This paper is organized as follows. In Sec. II the re-
normalized on-shell Ward identities for any order in per-
turbation theory are derived using the diagrammatic ap-
proach, in Sec. III an expression for the amplitude in-
volving longitudinally polarized vector bosons is derived,
and in Sec. IV the power-counting method in the large-
Higgs-boson-mass limit is discussed through which finally
the equivalence theorem is established. Section V con-
tains the summary and discussion of the results. Appen-
dix A gives an example of the renormalization of external
lines for physical particles in any order in perturbation
theory. In Appendix B the equivalence theorem is
worked out at the tree level for two different processes,
one of them being WW scattering. The metric is such
that p = —m for a particle on mass shell with mass m
and momentum p.
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C, ~C~, + ( m, b +gl, b )Ab (2.4)

Of course C' is not gauge invariant. It transforms under
(2.2) as

m, b =&,b(B —M ')=-—P

gl, b
= —g e,b, 3"8,"—g g,b, 8,"Q~

+ ~M—g e,b, P, —~ MgH6, b,

(2.6)

The caret on both m, b and l,b indicates that derivatives
may occur. Furthermore rn, b is field independent while

l,„may depend on the fields. The Faddeev-Popov La-
grangian is then defined as

where P is the propagator of the Faddeev-Popov ghost.
Now consider any field y (indices are not explicitly writ-
ten down). Under the infinitesimal gauge transformation
the field g transforms as

Xpp f,'(m, b +gl, b )pb, (2.5) g~g+ ( r +gp )A (2.7)

with P, the Faddeev-Popov ghost. From the gauge
transformations (2.2) the expressions for m, „and l„b are
found to be

As before the carets on both r and p denote the fact that
derivatives may occur and that p may depend on the
fields. The Ward identity for the Green's functions be-
tween sources is

0 =
C

(2.8)

where

C.

and the Faddeev-Popov ghost line is denoted by
---~ . The short double line stands for ik ".

The direction of the momenta is such that they go into the sources, but instead we define them to be coming out of
the sources and into the blob and we therefore get an extra minus sign in front of k". The blobs in Eq. (2.8) contain
connected, disconnected, reducible, and irreducible graphs. For a nice derivation of the Ward identity using the di-
agrammatic method see Ref. 10.

There are no restrictions imposed on the fields g. They can be physical, unphysical, or a combination of fields. Thus
can represent, for example, the physical vector boson and the fermion, but also the unphysical field combination

C, = —8"W,"+M'I(', . In Sec. II A we consider the case where in the Ward identity of Eq. (2.8) all the external y lines
are replaced by the C lines. In doing this we arrive at an expression for the Ward identity for the Green s functions
with many external C lines. It is at this point that we go from the Green's functions to the S matrix and thus arrive at
the renormalized on-shell Ward identity. In Sec. II 8 we include physical fields as well by replacing some of the g fields
by the physical fields, while the remaining g fields are replaced by the unphysical C fields.

A. The special case y = C

In this section we derive an expression for the Ward identity of Eq. (2.8) in which all the fields y are replaced by the
unphysical fields C . Following Ref. 7, we start out with the simplest case, namely, the two-point function. This is the
Ward identity of Eq. (2.8) with only one outgoing field g:

C0 — p- (2.9)

Again the various indices have not been written down. In the case of g = C we have

r = rn = —P ', gp =gl

The Ward identity becomes

(2.10)

0 =
C ~ C + x---— (2. 1 1)

We can simplify the above equation considerably by carrying out some manipulations for the last two diagrams, which
have Faddeev-Popov ghost external lines. For the Faddeev-Popov ghost we derive from the Lagrangian
Xpp 11,*(m,b +gl, „)iljb the Feynman rules
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=P (2. 12)

Substituting the above Feynman rules explicitly in the third diagram of Eq. (2.11),

m ql m

p
N+ X

(2.13)

since m = P'.—Equation (2.11) becomes

0= C ~ C

C Q C

p
mI+ X (2.14)

The shaded blob indicates connected diagrams only. We
thus explicitly write down the connected and disconnect-
ed pieces for the blob connecting two C lines. The Ward
identity must also hold at the tree level. Thus,

P m (2.15)0=
or with m= —P

(2.16)

We see that the direct C line is equal to 1. The diagram
of Eq. (2.14), where the blob connecting the two C lines
contains interaction, is thus zero in any order in pertur-
bation theory:

consider the unrenormalized and renormalized Lagrang-
ian in the Feynman —'t Hooft gauge

——'p +XFp,

gren gren 1 p2+gren
FP

(2.19)

W,"—+ Wn"(1+5' ), P, ~P, (1+5~),
(2.20)

X"" is obtained from the Lagrangian X by shifting the
fields, coupling constants, and masses in the invariant
part of the Lagrangian by an amount 5. Thus

0= C Q C
(2.17)

~~~( I+5p)+ 5„M~M(1+5M ), etc. ,
M

The above manipulations can be carried through for
many 8 lines and we finally arrive at the equation

(2.18)

while leaving the gauge-fixing terin X &= —
—,
' C un-

changed. The renormalized Faddeev-Popov ghost La-
grangian is obtained by using the renormalized gauge
transformations and at the same time the ghost fields get
shifted by an amount 5. Detailed discussions concerning
the renormalization procedure can be found in Refs. 7
and 8. It is thus clear that Eq. (2.18) is also true on mass
shell, since the external C lines are left unchanged. Also,
disconnected-type diagrams are zero on mass shell, since
the direct 8 line contains no pole. Thus on Inass shell

This is the Ward identity for the connected Green's func-
tions containing many external C lines. Now the impor-
tant question is, what happens when the above equation
is put on mass shell? Two things have to be done. First
of all the external C lines have to be multiplied by the in-
verse of the propagator P, '=(p, +M ) after which the
external momenta are put on mass shell and p, = —M;
second, the external C lines get renormalized. For this The final result can be written as

(2.21)
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B. Inclusion of physical particles

(2.22)

The above equation with external renormalized C lines
on mass shell holds in any order of perturbation theory,
including the lowest nonzero order.

Here we derive the renorrnalized Ward identity
satisfied by the amplitude containing any number of
external C lines and physical particles. As an example,
without losing generality, consider the case of two C lines
and one physical particle, the longitudinally polarized
vector boson WL. The Ward identity of Eq. (2.8) can be
written as

0=

(2.23)

A

Since the external source J"for the vector boson is physi-
cal and J"k"=0, the last diagram of Eq. (2.23) does not
contribute. The fourth diagram can be split up into a
piece containing a pole and a piece containing no pole.
The piece containing the pole is proportional to k" (Ref.
7) and it therefore does not contribute since it is multi-
plied with the physical source J". The piece containing
no pole survives. The first three diagrams can be treated
exactly as shown in Sec. II A. We are left with

the propagator is equal to I (Ref. 7) and is thus different
in each order in perturbation theory. In lowest nonzero
order Zo = l. Appendix A shows exactly how this works
in the case of the physical vector boson. We so arrive at
the expression for the Ward identity on mass shell:

0=

A

(2.24)

(2.26)

The above equation should also hold at the tree level:

Note that the minus sign in the blob of the second dia-
gram indicates that this diagram has no po1e. When go-
ing on mass shell the external lines get multiplied by the
inverse of the propagator and the external momenta are
put on mass shell, plus the external lines get renormal-
ized. The second diagram of Eq. (2.24) contains no pole
and on mass shell it is therefore equal to zero. The same
can be said for disconnected types of diagram:

0=

At one loop we have

0=
C

+ Zj

(2.27)

(2.28)

(2.25)

The direct C line is equal to 1 and thus contains no pole.
Now consider the first diagram of Eq. (2.24). As was
shown in the previous section, the external C lines
remain fixed. Renormalization of the 8'L line amounts
to multiplication of the external source J,"by a factor ZI,
where I stands for loop order. The factor ZI is deter-
mined by the requirement that the residue of the pole of

From Eq. (2.27} we see that the second diagram in Eq.
(2.28) is zero. Equation (2.28) reduces to

(2.29)

This argument can be carried through for all higher or-
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ders in perturbation theory. Finally, we arrive at the re-
norrnalized on-shell Ward identity valid in every order in

perturbation theory

III. THE LONGITUDINALLY
POLARIZED VECTOR BOSON

0= CI' (2.30)

Cp

where the straight external lines denote any physical par-
ticle, including the longitudinally polarized vector boson.
There is the requirement that there is at least one C line;
there is no restriction for the physical particles. Thus
m~0, n «1.

From Eq. (2.30) it seems plausible that some kind of re-
lation can be derived between the longitudinally polar-
ized vector boson WL and the Higgs ghost P, since the k"
term in the C line is the polarization vector of WI up to
order M iE as can be seen from Eq. (1.1). One has to be
very careful in this, because in O'L scattering the leading
order in E often cancels; see Appendix B. Reference 1

took this possibility into account and we follow their sub-
traction scheme. Consider, for example, the process
WL Wt ~ff. From Eq. (2.30) we can write down three
Ward identities:

(3.I)

After substituting the relation

(3.2)

(remember that the short double line stands for Ik p) the diagrams of Eq. (3.1) can be written as

+ M (3.3)

(3.4)

(3.5)

Note that L stands for eL. Equations (3.4) and (3.5) have been multiplied by an overall factor iM Subtrac. t Eqs. (3.4)

and (3.5) from Eq. (3.3) and add

0= M' (3.6)

We get
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(3.7)

Now make use of Eq. (1.1); ez =k"IM+U" with U"=0(M/E). Equation (3.7) is reduced to (dividing by an overall

factor M )

(3.8)

This is still an exact equation. For example, the amplitude for the process WL WL ~vV corresponds to the very last dia-

gram of Eq. (3.8). The only thing that remains to be shown to establish the equivalence theorem is that the first dia-
gram on the right-hand side of Eq. (3.8) indeed gives the leading energy term. Appendix B gives some examples. The
generalization of Eq. (3.8) is

+ P8'fN.

n-k)

n-

+ (()k
k=I

+ Perm + (3.9)

(n-k)

In the above equation the straight lines denote any physi-
cal particle other than WL.

We are now able to prove the validity of the
equivalence theorem in the renormalizable standard mod-
el for amplitudes that are proportional to a constant in
the large-energy limit. As was argued in the Introduction
and in Ref. 1, for a renormalizable theory the amplitude
of any process is at most a constant in the large-energy
limit. We see from Eq. (3.9) that this constant term is
given by the amplitude A (P, ((), . . . , P), since the other
amplitudes on the right-hand side of Eq. (3.9) are multi-
plied by the subleading vectors U. For amplitudes that
are 0(M/E) or higher, for example, WL Wl ~vv, the
statement of the equivalence theorem is that the ampli-
tude vanishes at least as 0 (M/E) at high energy.

For the proof of the equivalence theorem in the large-

Higgs-boson-mass limit we need the power-counting
method described below.

IV. POWER COUNTING IN THE
LARGE-HIGGS-BOSON-MASS LIMIT

As was argued in the Introduction [compare Eq. (3.9)
with Eq. (1.9)], we are able to apply the power-counting
method to the amplitudes on the right-hand side of Eq.
(3.9) to determine their leading order in energy.

In Sec. IV A we establish the equivalence theorem in
the large-Higgs-boson-mass limit. We show that the
leading order of the amplitude for a process involving
WL's is given by the amplitude in which the WL's are re-
placed by the corresponding Higgs ghosts. In Sec. IV 8
we discuss WL scattering an in Sec. IVC we study the
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amplitude involving one external fermion pair for which

the fermion mass cannot be neglected. Everything is
evaluated in the region

m, =M «E «m„„„.
In order to use the power-counting method, we need the

I

explicit form of the Lagrangian. In the SU(2) model we
have

with

,'G—,"—G,"" ,'M——W ,'(—d"—H) ,'m——H ,'(—8"—P,)(D,"P)+ ,'g W&—(Hd&y, —y, g~H)

,'g W—(Q +H ) ,'gM—W—H—,'A. uH—(p +H ) ,'l(r—tl —+H ) p ,'—(H +—p )+ H Mp—,Q" W,"

—
(fy"8"f ) mf (f—f ) + [fy—"(1+y )r,fjjW," H—(ff) p—, [f ( e,b, rb s, +i r, y is, y

—
)f] . (4. 1)

In here

W = W,"W,",

G,""=8"W,
" 8"W,"+—g e,b, Wt'W,",

D,"$= d"p, +g F.,b, Wt're, ,

(4.2)

k is the Higgs self-coupling, with A, =m /u and U is the
vacuum expectation value (VEV), with M =

—,'gv. M is the
vector-boson mass, m is the Higgs-boson mass, f is a fer-
mion doublet, ~, are the Pauli spin matrices, and s is a
spurion with sl =s2=0, s3=1. I3 is a constant and is
fixed such that the total tadpole contribution is zero. In
lowest order P=O. In the Feynman —'t Hooft gauge

C, = —8"W,"+M/,
and for the Faddeev-Popov ghost Lagrangian we have

FP
=f ™ob+gl b ) Pb

with

m.„=fi.,(a' —M') = —I -'S„,
gi.b

= —g ~.b,~, "—g ~.b, ~,"~"

+ 'Mge, b, g, ,'M—gH5 b .—.—

A. The equivalence theorem

In this section, we will first derive the general expres-
sion for the amplitude containing any number of external
Higgs ghosts, vector bosons, and fermions. Then it will
be shown that the amplitude with all longitudinally po-
larized replaced by the unphysical Higgs ghost gives the
amplitude in leading order. For the moment only allow
for internal l)) and Higgs lines. The case in which also
internal vector bosons and fermions are allowed will be
discussed later. See Fig. 1. For the Feynman diagram of
Fig. 1 the amplitude will be of the form

and E~ stands for the number of external vector bosons.
For the time being we do not worry about gamma-
matrices or the wave functions u and u of the external
fermions. As can be seen from the Lagrangian,
f (A., v, g, p) is some function of the Higgs self-coupling A, ,
the VEV U, the coupling constant g and of the fermion
mass mf (p=mflv) IF is. defined as the Feynman in-

tegral for I. loops and is of the form

~ ~ ~

~ ~

~

k2 - k
d k, d k2 d kL

(k +m )(k +m ) . (k +m )

(4.5)

The momentum dependence in the numerator IF is due to
the corresponding derivative WPP and WHP coupling in
the Lagrangian.

First look at f (A, , u, g, p, ). Listing all the relevant ver-
tices with their corresponding coupling strength occur-
ring in the Lagrangian, we can construct Table I. Furth-
ermore, define

y —y 1+ V2 y Vl + V2 y VfQH+ yHHH

VPPP$+ VPPHH+ VHHHH V Vlf+ VHff
4 4 4 4 ' f f f
The V~ terms in the last column denote the number of

vertices occurring in the Feynman diagram considered, of
the type specified in the first column. The subscript d in

Vd and V„stands for the fact that one derivative occurs
for these vertices. We now easily read off the form of
f (A, , u, g, p). It is given by

E EA-e'e'. e ~A (4.3)

with

E~
A —f (A, , u, g, p)IF (4.4)

FIG. 1. Feynman diagram containing internal Higgs and P
lines only.
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Vertex Coupling strength Total number

TABLE I. Column 1: type of vertex. Column 2: corre-
sponding coupling strength. Column 3: number of times it
occurs in the considered Feynman diagram.

value of X, which gives the leading energy behavior. X is
determined from the condition that the next terms in the
expansion contribute to the amplitude of the Feynman di-

Ew
agram A -f (A., u, g, p)IF to order 1/m or higher.
Thus the Feynman diagram has the expansion

W$P

WHP

WWQQ

WWHH

WWH

PPH
HHH

PPHH
HHHH

off
Hff

g, deriv.

g, deriv.

g V

kv

A.U

mf /U

mf /U

Vl

V

Vw

Vb

V(bH

VHHH
3

VbdbrIP
4

V$gHH
4

V HHHH
4

V&ff

VHfff

2( V3+ V4)
m Ew Ef /2

3 4 f 3(V +2V —V —V )
b g mI.

'N

X a,m'+a, ~ m'+ +a„~ m

m
(4.12)

Note that the coelcients ak can in general be functions
of ln(m ). N is found by requiring that for this particular
term in the expansion of Eq. (4.12) the power of m is
zero:

Vf
v~+ v4 v3 vd+2v~+2v3 mf vqf Aug@-A, ' 'v 'g" '

v -'.
v f

D+2(V, +V4)=N .

(4 6) We now use the well-known identity

L =I —V+1,

(4.13)

(4.14)
We can already make one simple observation. Since
there are no internal vector-boson lines or fermion lines,
we derive from Table I the following expressions for the
total number of external vector bosons E~ and fermions

EI.
E~= Vd+2V~+2V3,

EI=2V~ .

(4.7)

(4.8)

Substituting Eq. (4.7), Eq. (4.8), and A, =m /v in the ex-

pression for f ( A, , v, g, p ), we find

f (A, , u, g, p)—
2( V3+ V4)

m Ew Ef /2
m

( V3+2V4+ V —V )

(4.9)

Consider now the Feynman integral IF. The mass dimen-

sion D of IF is

D =4L —2I+ Vd, (4.10)

IF= a,mD+a, ~ mD+

where L =number of loops and I =I~+I&=number of
internal Higgs bosons and P lines.

In the heavy-Higgs-boson-mass limit the scale of the
Feynrnan integral IF is set completely by the mass of the

Higgs boson. Therefore the integral must be expanded in

powers of p/m, where p is a typical external momentum

and m is the Higgs-boson mass:

where, for the total number of vertices V and internal
lines I,

V= V3+ V4+ Vd+ V~+ Vg+ Vf

I =I~+I~ .

It follows that

N =2L +2 —
Vd

—2( V~. + Vb+ VI) .

Expressed in terms of E~ and E& we find

N =2L +2 (E~+EI) .—

(4.15)

(4.16)

(4.17)

(4.18)

The only thing that is left to be done is to simplify the
( V~ +2V4+ Vf

—V3 )

term u
' ' ~ ' outside the brackets of Eq. (4.12).

For this consider E&, the number of external P lines. The
total number of internal and external P lines is

=2V~& +2V&& ++4V&&&~
3

+2Vd+ Vd+2Vw+ Vj (4.19)

Since there are no external Higgs lines, we have, for the
total number of internal Higgs lines,

—3 VBBB+V(g +2 VPPBB +4 VBBBB

+ Vd2+2VW2+ V3b+ VfHff (4.20)

There is a factor of 2 in front of I& and I~, since two lines
are needed for every loop. Adding the above two equa-
tions we get

+QN
m

m +. (4.1 1) E~+2(I~+IB)=3V,+4V +24V„+2V~+ V3+ V/ .

Depending on Vd, if D is odd we need an odd expansion
in p and if D is even we need a quadratic expansion in p.
The series expansion is always a function of the Higgs-
boson mass squared. The expansion terminates for some

Substituting I =L + V —1, we find

V3+2V4+ VI —V3 =E~+EI+2(L —1) .

(4.21)

(4.22)
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Finally, with the help of Eq. (4.3) and with 1/U-g/M,
we arrive at the equation

2(L —1)+E~+Ef
E~ Ef/2 1 2 E~

g mf EE . . E

X (a,m "+a,pm N-'+ +a~p"),
X=2L+2 (E—)1 +Ej) .

(4.23)

As was mentioned before, the coefficients ak can be func-
tions of ln(m ). For the polarization vector E' we can ei-
ther substitute U', with v'=EL —k'/M =O(M/E), or the
transverse polarization vector E'T =0 (1).

A few observations can be made. Since in the
Feynman —'t Hooft gauge the vector-boson propagator
has no k "k' term in the numerator, we see that including
vector bosons inside the blob in Fig. 1 will not give rise to
new leading terms in energy. Furthermore, vertices with
vector bosons coupled to the Higgs boson or the P have
no m dependence. Consequently, for such diagrams we

f—ij((+ m

p +m f
(4.24)

and will thus also not give rise to new leading terms in
energy. Therefore the expansion of Eq. (4.23) indeed
gives the leading terms in energy for the amplitude A.
Define

E~=(n —I)+m,
where (n —I) =number of external WL's, each with a po-
larization vector U', and m =number of external 8'T's,
each with a polarization vector e'T. Then the amplitude
of Eq. (3.9) is, in leading order,

do not have to expand up to the same order in m as for
internal (}I) lines in the considered loop order. The same
can be said when allowing fermion lines inside the blob of
Fig. 1, since this corresponds to having a propagator for
each internal fermion line which is at least proportional
to the inverse momentum,

A ( WL, WL, . . . , WL, WT, WT, . . . , WT,f ',f ',f,f, . . . ,f,f )

' 2(L —1)+I+2j
n—g (i)' g(n —I)+mE1 E2 . . . Em 1 2. . . (n —I) &

I
Iv+ ItI —1+

l=O

X =2L +2 (n ——I)—m —2j .
(4.25)

We see immediately that the series for which n = I indeed gives the leading order, since for I (n the expression between
the curly brackets is multiplied with

U1 2. . . (n = 0 M

p

This is in agreement with the equivalence theorem [see Eq. (1.2)] and in leading order we have

)n
M

'L WL L WT WT ''' WT f'f''f'f ' . f'f')
2(L —1)+n +2j

gmE)E2 . ' ' Em j( 2L+2 2j m+ „2—L+—1 2j —m+. . . +— 2L+2 —j2m]—Tmf ' aom apm a2L +2 2 p

WT f'f'f'f' . f'f') (4.26)

If there is an even number of external WT's, we need a
quadratic expansion in p. If there is an odd number of
WT's, the expansion is odd in p. The expansion is always
a function of the Higgs-boson mass squared. Note that
the expression inside the curly brackets of Eq. (4.26) is in-
dependent of the number of external P lines and with
every external vector boson (for which at most E-1) or
fermion pair the power for each term in the series expan-
sion goes down one or two units. In the next two sections
we will discuss Eq. (4.26) for the two most important
types of processes: namely, O'L scattering and the pro-
duction of one fermion pair (more fermion pairs will de-
crease the power of the expansion for the amplitude even
more).

B. $YL scattering

See Fig. 2. In the case of WL interaction, in which fer-
mions and transverse polarized vector bosons are not

I

considered, the amplitude of Eq. (3.9) in leading order is,
from Eq. (4.26),

A ( WL, WL, . . . , WL )

2(L —1)+n

-(i)"
M

am 2L+2+ap2m2L++ap2L+2 I
—(i)"A (P', $, . . . , P") . (4.27)

As was noted before, the expression inside the curly
brackets of Eq. (4.27) is independent of the number
of external P lines. This means that, for example, at
the tree level the amplitudes for Rr. WL RL~L and
8'L WL~R'L WL8'L WL are both proportional to E in
leading order, although the polarization vectors are each
proportional to E. Furthermore not all coefficients ak are
nonzero. The term ao(m )

+' actually cancels. This is a
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////
/

g/
/w

//
/

FIG. 4. P four-vertex.

~ ~

FIG. 2. Longitudinal vector-boson interaction.

consequence of the low-energy theorem. For example, at
the tree level for the process PP~PP the m term from

the diagrams of Fig. 3, is exactly canceled by the m term
from the diagram of Fig. 4, and the tree-level amplitude

E~ —2
is —(glM) asap (Ref. 1). We thus put

A(WL, WL, . . . , Wg, f,f) .

For the amplitude we can write

(4.33)

the most one internal fermion line or one internal vector-
boson line. See Fig. 5.

As we noted before, having more internal or external
fermion and vector-boson lines causes the power of the
expansion series to go down accordingly. Thus consider

ao=0 . (4.28)
A =u[fo(y)Ao+fg(y)Agr+ff(y)Af]B . (4.34)

(1 loop) (a2p m +a~p ) . (4.29)

According to the screening theorem, the a2p I term is
unobservable and we may put

a2=0, L ~1 .

At one loop we thus expect
E~

(4.30)

( I loop)
4

a4p (4.31)

Indeed this result was obtained in Ref. 6. Let us see what
happens at the two-loop level. With both ao and a, equal
to zero,

Then there is the screening theorem, which states that
the leading order in m is not observable. For an illustra-
tion consider the amplitude at one loop:

E~

In here fo(y), f~(y), and ff(y) are functions of the y
matrices. They are only written down here to remind us
that y matrices may occur. u and u are the wave func-
tions of the external fermion pair. Ao corresponds to the
amplitude for which the Feynman diagrams do not con-
tain internal fermion or vector-boson lines and Ao-mf.
Af corresponds to the case where there is one internal
fermion line and thus Af -mf, mf'. A~ corresponds to
the amplitude for which the Feynman diagram contains
one internal vector-boson line coupled to ff through the
Wff vertex and A ~ is thus independent of mf. The
form of Ao is in fact already known. Substituting Ff =2
in Eq. (4.26) we have, for the amplitude of Eq. (3.9) in
leading order,

Ao( WL, WL~, . . . , WL, f,f )

2L -", n

(2 loop)

E~+2

(a4p m'+a6p ) . (4.32)

X Iaom2L+a2p~m'L 2+ . . +a~Lp~LI

(') Ao4(0 0 f f) . (4.35)

The a4 term gives a quadratic dependence on the Higgs-
boson mass, as was obtained in Ref. 8.

C. The case of only one external fermion pair

Since the top-quark mass is assumed to be of the same
order of magnitude as the vector-boson mass, the
Yukawa-coupling cannot be neglected. Therefore in this
section we treat the role of mf in more detail and derive
an expression for the amplitude with rnf as a parameter.
Consider thus the case of just one external fermion pair
and, in addition to internal Higgs and P lines, allow for at

(i)"An(P', . . . , P",f f )
—(i)"f (X, u, g)I~,

(i )"Af (4', . . . , p",f,f ) —(i)"f (A, , u, p)If,
where

(4.36)

Note that just as in the case for O'L scattering, only the
I = n series has to be kept. For A ~ and Af it can be
shown, using the method described in Sec. IV A, that the
leading-order expression for the amplitude is also given
by the amplitude for which all the external WL's are re-
placed by the corresponding P's, as in agreement with the
equivalence theorem. Thus consider

I
I

I
I

I

I
I

I
I

2' V)+- V )

v„+ v ~f~
f(A. , g)u——,. „„, g

"

2( V) ~ V4)
rn
v+2v+v f4 f

(4.37)

FIG. 3. Higgs propagator diagrams for P bscattering. -
We first derive the series expansion for A ~. For
f(A, , u, g) the extra vertex is the Wff vertex, with
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FG. 5. Ao: Feynman diagrams without internal vector-boson or fermion lines. A . Feynman diagrams containing one internal
vector-boson line. Af. Feynman diagrams containing one internal fermion line.

V =1 it raises g to the first power and since Vf =0
there is no mf dependence. The expression for I~ is that
of Eq. (4.9), but now with I =IH+I&+ItN. With Vd

= 1

the mass dimension of I~ is

Dw =4L —2I + 1

It then follows that

For Af -Iff (A., u, p) the situation is a bit more compli-
cated. This is due to the form of the fermion propagator
Pf..

fiaaf+—m

p +m f

and

3

Ia - b, ~ m ~+b, ~ m
D D

N~
Dw+ . +b~ ~ m +

m
e

(4.38)

There are thus two different expansions needed for If.
They are defined as follows. If& corresponds to the case
where the momentum in the numerator of the propagator
Pf survives,

iI) — 1
p

p+m p

2( V3+ V4)

f (A, u,g)-.
V +2V (4.39)

The expansion terminates for the value N~, such that the
next term in the expansion for A ~-f (A., ug)I~ is of or-
der 1/m or higher. Thus

and the mass dimension of If, is D, =4L 2(IH+I&—)
—1. If2 corresponds to the case where the momentum in
the numerator of the propagator Pf cancels,

mf ]
p

p'+mf p' '

Ng =D„+2(V3+V4) .

Using the identity

(4.40) and the mass dimension of If& is D~=4L 2(IH+I&)—
—2. We arrive at

L =I —V+1,
but now with

(4.14) r

I„- c,
'~

m '+c, ~
m m

'3
D)

m + e ~ ~

V=V, +V, +V, +V», V»=1, V, =1,
I —IH +I~+I~, I@,—1,

(4.41) +CN
m

Nl
Dl + ~ ~ ~

we find, for X@,

Xw =2L —1

and with

(4.42)

E~+ 2(IH + I~ ) = 3 V3+4V4+ 2 V„, Vd = 1, (4.43)

D~
m + ~ ~ ~If2 mf dom ' +d2 P

m

P D,+dN m + e ~

m

(4.46)

it follows that

V3+2vq =E~+2L —2 . (4.44)

The expression for the amplitude is

Af —(i)"f (A., u, p)(If, +If~) . (4.47)

The amplitudes A ~ can now be written down in known
quantities:

E +2L —2

(;)n
M

XIbIm" '+b I'm" -4+ . . +b, ,j" 'I

We need to find N, and N2 for which each of the series
expansions for the amplitude A terminates. We find

N, =D, +2( V3+ V4), 2Nq =Dq+2( V3+ V4), (4.48)

with

L =I~+IH+lf —V+1, V= V3+ V4+ Vf . (4.49)

+0
m

(4.45) For the total number of Higgs bosons, P, and fermion
lines we have
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E~+2(It, +IH )=3V3+4V4+ V~,

(4.50)
)n g

E~+ 2L

Ef +2If —2Vf y Ef 2y If 1 .

It then follows that

X& =2L 1 2%2 =2L 2

V3 +2V4+ Vf =2L +E~

The expression for the amplitude 3f becomes

(4.51)

X[(c pm '+c p'm + . +czL,p ')

+m (d m' '+d,p'm'L 4

p2L —2)] (4.52)

The atnplitude A =u[fo(y)Ao+fu, (y)Au,
+fI(y ) AJ ]u is thus, with E& =n,

(
~ )n g

M

n +2L

u[fo(y)mI(aom +azp m + +azLp )

+f~(y)M (b,pm' +b3p'm + +b - ')

+f, (y)mI(c, pm +c3p m + +czL ')

+fz(y)m&(dom +dzp m + +dzL )]u (4.53)

The coeScients a„b„c;,and d, can in general be func-
tions of ln(m ). Adding diagrams with more internal fer-
mion lines results in decreasing the power in the series ex-
pansion and raising mf to that same power. As an exam-
ple consider the process PP~tt at the tree level and at
one loop. According to Eq. (4.53),

2

A (/gott)0„, —(i)' uf (0y)(m~ ao)u,
M

(4.54)
A (PP tt)) )„

4

—(i) u Ifo(y)mt(aom'+azp )
M

+fw(y )M bip+f i(y )m fclp

+f (2y)m dIIOu .

From the screening theorem we expect ao for the one-

loop amplitude to be zero. Thus
2

A (/gott)0 ~„—(i) ufo(y)(mIao)u,
M

(4.55)
A(PP tt), ~...

'4
—(i)' u [fo(y )m&azP +fu.(y )~ b,P

+f, (y)mjc, p+fz(y)mtdo]u .

V. SUMMARY AND DISCUSSION

In Sec. II we derived the renormalized Ward identities
in all orders of perturbation theory, with external C lines
on mass shell. Only the Feynman —'t Hooft gauge has
been considered.

From the renormalized Ward identities, through the
relation eL =k/M+U and the subtraction scheme, we
derived in Sec. III a relation between amplitudes contain-
ing vector bosons multiplied by the vectors eL or U and
the Higgs ghosts [see Eqs. (1.9) and (3.9)].

In the Introduction and at the end of Sec. III we ar-
gued that in the renormalizable standard model the
equivalence theorem is satisfied for processes for which
the amplitude is a constant in the large energy limit.

We then considered the standard model in the large-
Higgs-boson-mass limit. In Sec. IV we used the power-

counting method to prove the equivalence theorem in the
large-Higgs-boson-mass limit. As a result expressions
have been derived for amplitudes containing longitudinal-

ly polarized vector bosons in all orders of perturbation
theory. It is maybe interesting to consider the tree and

one-loop amplitudes of a few processes. Define

as the ratio of the one loop 3' and the tree-level ampli-
tude A . For WL scattering we derive from Eqs. (4.27),
(4.28), and (4.31),

2

Indeed this result has been obtained in Ref. 11 for the
process WL WL ~tt.

ap (5.1)

FIG. 6. W source-source transition T in lowest nonzero or-
der. FIG. 7. Irreducible 8 self-energy diagrams.
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+ e ~ ~

FIG. 8. 8'dressed propagator.

where p is a typical momentum and a may depend on
1n(mH;ss, ). For the production of one fermion pair,
where the fermion mass has not been neglected, we derive
from Eq. (4.55) in leading order also the expression of Eq.
(5.1). For the production of one fermion pair, where the
fermion is considered massless (for example, WL WL

~vv), we derive from Eq. (4.53) again Eq. (5.1)
We see that for all of these type of processes involving

8'L's the expression for R is proportional to the momen-
tum squared in the large-Higgs-boson-mass limit.

Note added. After completion of this work we received
a paper on the same subject by J. Bagger and C. Schmidt
[Phys. Rev. D 41, 264 (1989)].

p pv ab p1'5 5

k~+M2 (A 1)

sources to the S matrix, the external momenta are put on
mass shell plus the external lines get renormalized, which
amounts to multiplying the external sources by a factor
Z. The factor Z is found by considering self-energy dia-
grams. Take for instance the physical vector boson and
let us first look at its source J,'. In lowest nonzero order
the source-source transition T is shown in Fig. 6, where
the wiggly line represents the bare propagator and is
given by
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APPENDIX A: RENORMALIZATION
OF THE EXTERNAL LINE

FOR THE PHYSICAL VECTOR BOSON

The discussion following below can be found in Ref. 7.
It is written down here for the purpose of clarity and
completeness concerning the discussion of Sec. II B.

When going from the Green's functions between
I

For J' we have J„'k„=0, since we consider physical
P

sources only. The expression for T is thus

(J' )P

k +M —ie
(A2)

The pole of the propagator is for k = —M . Going to
the S matrix we thus multiply with (k +M ) and subse-
quently put k = —M . Furthermore we require that the
residue of the pole be equal to 1. Thus J„'=e„' with
(e„') =1 and e„'k„=O. e„' is the well-known polarization
vector of the physical vector boson.

In higher order in perturbation theory, we start out
with the irreducible 8 self-energy diagram. See Fig. 7.
The corresponding expression is

5,b[A (k')5„,, +B(k )k„k,] . (A3)

We need the expression for the dressed propagator P ofPVFig. 8. It is given by

pah gab
PV

5„, k„k B(k )

k~+M2 —g(k2) [k2+M A(k )][k +m——A(k ) B(k )k ]— (A4)

and the source-source transition is shown in Fig. 9. This
time the sources are multiplied by a factor Z. Z is of the
form Z„=5„+&+k„k„Z2.Since we consider physical
sources only and J„'k„=O, we see that Zz and B (k ) do
not contribute. We may write

Z (J')T= P

k +M —A(k )
(A6)

I

and the expression for the source-source transition T is
now

Z„v =Z6„,, (A5)

(JZC (JZPy

FIG. 9. 8'source-source transition T in higher order. FIG. 10. The process 8'
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FIG. 11. Feynman diagrams contributing to the amplitude for W+ W ~tt in lowest nonzero order.

A(k2)=A +(k'+M' —Ao)
dA(k )

k2= —M +A 0

The pole of the propagator is for k = —M + A o. Devel-
op A (k ) in a Taylor-series expansion around the pole as
follows:

APPENDIX B

Here we will give two examples of the equivalence
theorem. First 8 L+ WL ~ tt then 8'L 8'L ~ WL O'L will
be discussed. Both are considered only at the tree level
and everything is evaluated in the region m$ p

M «E
((m H.

d A k'
+(k +M —A )

d k k2= —M +30 The process WL WL ~tt
+ ~ ~ ~

= Ao+(k +M —Ao)A i+(k +M —Ao) A„,,
(A7)

T can now be written as

The process is defined in Fig. 10. All momenta are tak-
en to be ingoing, with p]+p2+q, +q2=0. In lowest
nonzero order in perturbation theory there is no cancella-
tion in leading order in energy and we may write

Z (J' )

(k +M2 —Ao)[1 —A, —(k +M —Ao)A„„]

(A8j

A(WL WL ~tt)=eL et A„,,

] & 2 g 1 +0 M
M M E2 (B1)

When going on mass shell we first multiply T with
(k +M —Ao) and then put k +M —Ao=O. The re-
quirement is that the residue equals 1. Thus

There are three Feynman diagrams shown in Fig. 11.
In the large-Higgs-boson-mass limit the third diagram

does not contribute. For the first diagram we have

We already know that (J„' ) = 1. Thus for Z we find

Z=+1 —A, .

(A9)

(A 10)

lg 1
M, =e~+e"—

4 (p, +p2) +M

X [u( q2)y' ( I+@')u—(q, )]

At one loop we have A, = A ~(g ) and the expression for
Z is, in this case,

A, (g )
Z, =+1—A, (g )=1— +O(g ) .

X [5,,(
—2p

&

—
p2 )„+5„,(p &

—
p2 )

+&„„(2p2+pi ),.] .

The expression for the second diagram is

(B2)

rI
I

I
/

FIO. 12. Feynman diagrams contributing to the amplitude for 1 P ~tt in lowest nonzero order.
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Ml= [u( q )y (1+y )u(q, )]
&(p,p, )M'

X[p) (
—2plp2)+(P& P—2) (p&p2)+p2 (2p, p2)]

2

, [u( —q»(i/i —i/2)(1+r')u (q, )] (B4)

FIG. 13. The process P"g ~P"P'".

M2 =6+6- '
2

lg
4 (pi+qi)

X [u ( —qz )y"( —P, —g, )y "(1+y )u (q, )] . (83)

and

2

[u( —q2)P2( —P 1
—4i )P t(1+r'» (q 1 )]gM' p, q,

[u( —qz)P2(2piqi —
P&4~ )(1+r')u (q~ )]SM p, q&

2

2 [u( —qz)ip'2(1 +y )u (q, )]

Consider the process in the center-of-mass frame of the
two vector bosons, which move along the z axis. We get
the four-vectors

2
g m,

2 [u( —q2)(1 —y')u(q, )] .

The amplitude A =M, +M2 is given by

(B5)

g m,
A ( WL+ WL ~ tt ) = —

2 [u ( —
q 2 )u (q &

) ] . (B6)

p&=
p

P2=

iE

—
q sin8

0
—

q cos8
—iE

p
iE

q sin8

0

q cos8
—iE

g mt
A(P+P ~tt)= [u( —q2)u(q, )] . (B7)

In the above manipulations the Dirac equation

(iaaf+ rn, )u (p) =0 has been used. The Feynman diagrams
for the process P P ~tt are given in Fig. 12.

Here we see immediately that in the large-Higgs-
boson-mass limit the first diagram gives the leading term
in energy since the P+P H coupling is proportional to
m H;, . The amplitude A of the first diagram is given by

Substituting

0 P& M+0

As in agreement with the equivalence theorem we have,
in leading order,

A(WL+WL rT)+A(p+p ~rr)=0.

gP = 1
+

lP

P2
—E
lP

Tile pFocess SL IFg ~ I'LL $VL

For 8'L WL scattering the leading energy term cancels
due to the structure of the Yang-Mills vertices. Thus we
cannot simply replace the longitudinally polarization vec-
tor by the corresponding momentum vector:

1 2 1 2 2

MMMM E2
we find, in leading order [the O(M/F. ) term is not writ-
ten down], (B9)

+ perm

FIG. 14. Feynman diagrams contributing to the amplitude for 8'L 81 scattering in lowest nonzero order.
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/
/

/

/ 'III

/
/

+ perm.

I
I

W

I
I

I

+ perm .

FIG. 15. Feynman diagrams contributing to the amplitude for PP scattering in lowest nonzero order.

P2

iE

0

The process is defined in Fig. 13.
A11 the momenta are taken to be ingoing, thus

p, +p2+q, +q2=0. In the center-of-mass frame define

the four-vectors as

with

= —(P, +P, )', t = —(P, +tl, )',

Now consider 3 (p'pb~p'p"). See Ftg. Ip.
We see immediately that the diagrams with the Higgs

propagator and the four-vertex give the leading order in
energy, since the PPH and PPPP couplings are propor-
tional to the Higgs-boson mass squared. The amplitude
for the diagrams with the Higgs propagator is

—p sin8

0
—p cosO

—iE
'I

0
0

~1

lP

p sin8

0

p cosO
—iE

0
0

pP =

M (H —prop) = 5,b5,d +5„5bd

1+5,„5b,

and for the four-vertex diagram we have

g m
M(4 vertex)=——

z (5,b5,d+5«5bd+5, d5b ) .
4M

a 1
3

Esin8—
0

—E cosO

lP

E sinO

01

E cosO

lP

In 1owest nonzero order we have Fig. I4.
In the large-Higgs-boson-mass limit the diagrams with

the Higgs boson as propagator do not contribute. The
amplitude in leading order is found to be

(812)

The amplitudes M(H —prop) and M(4 —vertex) are
each proportional to the Higgs-boson mass squared.
Added up, the m term cancels and we have, for the am-

plitude in 1eading order,
2

3 (p'p ~p'p )=
2 (5,s5,~s+5„5sdt+5,d5b, u) .

4M

A (WL WL —+WL WL)

( 5,s 5,d s +5„5bd t +5,d 5b, u ),
4M

(810)

(813)

Comparing the amplitudes of Eq. (810) and (813) we see
that the equivalence theorem is satisfied.
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