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I analyze the Ansatz of Stech for the quark mass matrices, showing that it is equivalent to a sys-

tem of three linear equations among the squared moduli of the Cabibbo-Kobayashi-Maskawa ma-

trix elements. I show that in the Ansatz of Stech the roles of MU and MD may be exchanged, and

suggest a generalization of the Ansatz of Stech in which the top-quark mass may be higher than 100
GeV.

INTRODUCTION

In 1983 Stech suggested' an Ansatz for the quark mass
matrices which was inspired by the symmetry properties
of the Yukawa coupling matrices in some grand unified
theories. The Ansatz of Stech (AS) became rather popu-
lar. Unified with the other major Ansatz for the mass ma-
trices, the one of Fritzsch, it gave rise to the Gronau-
Johnson-Schechter scheme. However, by now the
finding that the top quark is certainly heavier than 50
GeV has eliminated the AS from consideration.

The AS is interesting because its main idea is di8'erent
from the one behind the Ansatz of Fritzsch. Fritzsch
viewed the quark mass matrices as arising from a step-
by-step chiral-symmetry breaking; each new step of the
breaking gives mass to the quarks of one further genera-
tion, and makes those quarks participate in the weak
mixing, which is expressed by the Cabibbo-Kobayashi-
Maskawa (CKM) matrix V. From this point of view, the
smallness of that mixing (the smallness of the off-diagonal
matrix elements of V) is related to the strong hierarchy of
the masses. This is also the idea behind the "democratic
family mixing" scheme. The idea which inspires the AS
is quite different. In that Ansatz the smallness of the mix-
ing is due to an approximate proportionality between the
up-type (charge —', ) and down-type (charge —

—,') quark
mass matrices, MU and MD. Though this approximate
proportionality will in general lead to a low-mass top
quark, following the approximate equation
m, =mbm, /m„ this is indeed an interesting idea, which
deserves further investigation.

In this paper I first analyze the AS. I show that, for
three generations, it is equivalent to a set of three equa-
tions among the physical quantities —quark masses and
CKM matrix parameters —alone, equations which are
linear in the squared moduli U, =~ V, ~

. As a conse-
quence of this fact, in the AS we can easily calculate all
the U;. from one of them, which is taken as an input
quantity, and from the quark masses. In that calculation
we do not have to deal with any quantity which is not
directly measurable. This is an advantage of the AS over
the Ansatz of Fritzsch, where in the calculation of the
CKM matrix one uses, in addition to the quark masses,

two arbitrary phases, which are parameters not directly
measurable and without a clear physical meaning. I also
emphasize that the Ansatz of Stech contains discrete am-
biguities in the signs of the quark masses. These ambigui-
ties were usually overlooked in the existing literature, but
are quite important, for they destroy most of the predic-
tive power of the AS.

Second I note that in the Ansatz of Stech the roles
played by MU and MD may be exchanged between these
two matrices. The resulting Ansatz does not fit the data
as easily as the AS, but still works, and it may be con-
sidered to be as natural, from the technical point of view,
as the AS. Unfortunately this variation of the AS shares
with it the need for a light top quark, and is thus also ex-
cluded by our present experimental knowledge.

Third, I suggest and discuss a generalization of the AS
which bridges the gap between it and its counterpart with
MU~MD. This generalization, though technically quite
amusing, is at first sight uninteresting for, just as its two
limiting cases, it yields a light top quark. However, con-
trary to the two limiting cases, that extension may be suc-
cessfully implemented as an Ansatz for the Hermitian
mass matrices HU D

=MU DMU D instead of for the mass
matrices MU D. This is very interesting, for in the con-
text of the standard model the matrices HUD do not
contain some of the spurious information contained in
the matrices MU D and in particular they do not have the
quark-mass-sign ambiguity. Furthermore, as an Ansatz
for the Imatrices this generalization of the AS easily fits
the data on the

~ V, ~
with a high top-quark mass, and

indeed we find that in this scheme the top-quark mass
may be as high as 160 GeV, and thus much higher than
in the existing Ansiitze for the mass matrices.

THE Ansatz OF STECH

Stech postulated that there exists a weak basis in which
MU is a real symmetric matrix and

MD =pMU+ A,
where p is a real number and A is a Hermitian and an-
tisymrnetric matrix. Because of the presence of the ma-
trix A in MD, the up-type and down-type quark masses
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are not proportional, and there is weak mixing.
In this paper I will use the method of the mass-matrix

invariants, " which when applied to the AS affords in-

teresting insights and is very straightforward. First, from
the antisymmetry of A and the symmetry of MU it fol-
lows that

It is easy to show that Eqs. (2) and (4) are not only
necessary, but also suScient, for the Ansatz of Stech to
hold.

Equations (2) and (5) are important because they are
equations among the physical quantities alone. ' As MU
and MD are both Hermitian,

trMD
tr(MUMD )= trMU,

trMU
(2a)

3

tr(MUMD ) = g u,'d, U, .

trMD
tr(MUMD)= trMU .

trMU
(2b)

C —C trC+ C csiC —detC =0 . (3)

Here, "csi C' is my notation for the second-degree invari-
ant of C, i.e., the coefficient of ( —

A, ) in the characteristic
equation det( C —A. ) =0.

The matrix A besides being antisymmetric is also pure
imaginary. Therefore, '

trMD
det A =det M — M =0 .

trMU
(4)

We might proceed to higher powers of MU, and consider

tr(MUMD ), etc; however, the resulting equations would
not be independent from Eqs. (2), because of the identity,
obeyed by any 3X3 matrix C,

where the u; and d denote the (real) eigenvalues of MU
and MD, respectively, i.e., the quark masses, taken how-
ever with a pnari arbitrary signs. The exponents a and b
are arbitrary. Therefore, Eqs. (2) and (5) are constraints
that the Ansatz of Stech enforces on the quark masses and
mixing parameters alone, and no quantities which are not
directly measurable are present in those equations, except
for the arbitrary, and physically meaningless, signs of the
eigenvalues of MU and MD. Those signs constitute an
ambiguity that we may, or may not, be able to eliminate
in the confrontation with experiment.

As a consequence of the normalization of the rows and
columns of V, only four out of the nine U; are indepen-
dent. Moreover, we may take U, 2, U», Uz, , and U23
as the parameters of V. Then, Eqs. (2) yield

(u, +u2+u3)[(d2 —d, )U,~+(d3 dl)U13]

Contrary to Eqs. (2), which explicitly display the
difference of the roles of MU and MD in the Ansatz of
Stech, Eq. (4) remains unchanged under MU~MD. Us-

ing Eq. (3) and the tracelessness of A, Eq. (4) may be
rewritten as

=u )d2+u )d3 —u2di —u3d ),
2+ 3)[(d, —d2)U2&+(d3 —d2)U~3]

—Qpl)+Q283 Q )l2 Q362 (7b)

I (tr'MD )( trMU )tr(MUMD ) (tr MD )[de—tMU

(trMU )(c—siMU }]) (MU~—MD ) =0 . (5}

It was first noticed in Ref. 10 that Eq. (4) is a common
feature of the Fritzsch and the Stech Ansatze. The
Ansatze that I sha11 suggest in this paper also share this
feature. In a recent paper' I suggested an Ansatz which
has det A %0.

Equation (5) too is a linear equation on these four U, ,
and its coefficients are functions of the u; and d . We

may solve the resulting system of three linear equations
to determine three of the U; as functions of the fourth
one and of the quark masses. For instance, taking
U, z

=
~ V„, ~

as an input quantity, together with the quark
masses and their signs, we obtain for the other U;~ the
fo11owing exact equations:

d3 lp Q]82+Q )0) Q3d3 Q283

d3 —d, ' (d i
—13 )trMU

u&~3+Q]~2 Q3~& Q2&)

d3 —d '
(d3 —d, )trMU

1 trMUdetM~

(8a)

(8b)

+ [ ~ )d2 u 2d 1 u 3dzdl+uju2dl(d} +2d3)
(d, —d, )tr MU

+ 0 3tl fdp(d2+2d3 ) +u3u qd, (d2 +2d3 )

+Q3u, d2(d, +2d3 )+u 2u, (
—d, +d2d, +csiMD )

+urdu )( —d, +dgd)+cslMD )

—(d f +d z+2d 3+d31z+d3d, )detMU] (9a)
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u3 u) 1 trMU
detMD

u3 —u2
' (u3 —u2)(d3 —12)(12—1, ) trMD

—u, {d3dq+dqd, —d3d] )

+u 3(u2+u, )(d2 +2d3d, )

+u2u, (u2+u, )d2( —d2+2d3+21, )

+ u 3 ( u 2 + u ) )cslMD

—2(d, +d, +d3d, )detMU] (9b)

1 trM UdetMD

+
2 [—u, d2 —u2d3 —u3d3d2+u3u2d, (d3+21, )

(13 d2 )tr MU

+u3u, d2(d2+2d, )+u3u2d3(d2+2d, )

+u3u, d2(d3+2d, )+u2u, { —d3+d312+cslMD )

+u2u f( —12+d3d2+cstMD)

—(d', +d 2+2d', +d, d, +d, d, )detMU] (9c)

and finally

U3;=U2;(u2~u3) for i =1,2, 3 . (10)

Thus, the confrontation of the Ansatz of Stech with ex-
periment is quite straightforward. We use as input the
values of the quark masses' and of

~ V„, ~
(Ref. 14), to-

gether with the assumed signs for the u; and dj, and then
use Eqs. (8)—(10) to derive all the other moduli from that
input. We try to fit those moduli into their experimental
ranges. We should moreover beware that the output
moduli be consistent with the unitarity of V. If they are
not, that simply means that the Ansatz of Stech is unable
to sustain the particular input values taken for the quark
masses, and their signs, and

~ V&2 ~. Thus, we have first of
all to check that all the output U;J are non-negative and
moreover that

d2 U, 2+d3 U» = —d ),
u3{ 12 U2] +13U23 }=u213 u312

(12a)

(12b)

Take Eq. (12a). If U&3 is small enough to agree with
experiment, then d 2 U &2 » d 3 U», and therefore
U&2 d ] /d2 will hold. Thus we learn that, first, the
ratio d

& /d2 must be negative if the Ansatz of Stech is to

+ U12 U23 + U13 U22 )

Let us now consider Eqs. (7) more carefully. Because
of the strong mass hierarchy in both the up and down
sectors, we may write u, &0, d, &0, u, &0, d& &0,

u, &0, d, &0, u, &0, d, &0,
u &0, d &0, u &0, d, &0,

u, «0, d, &0 u& &0 d&&0 ~

(13a)

(13b)

(13c)

(13d)

The possibility {13c)coincides with the quark-mass signs
in the Ansatz of Fritzsch and is, for some mysterious

work, and second, the A nsatz of Stech yields
~V„,~=+mdlm, provided Cabibbo mixing holds ap-
proximately. ' We might try to reverse this argument
and argue that, given the known values of

~ V„, ~

and of
mdlm„ the Ansatz of Stech predicts

~ V„b~ to be very
small. This is true, but we easily find that the Ansatz of
Stech cannot predict that U» takes such a small value as
indeed it does. The bound of the AS on V„b~ is weaker
than the experimental bound U» &0.0001. This is to be
contrasted with the Ansatz of Fritzsch, which gives a
bound on U» stronger than the experimental one.

Now for Eq. (12b}. Experiment tells us that both terms
in its left-hand side (LHS) are much smaller than the
second term of the RHS. Therefore, the two terms in the
RHS must approximately cancel. Two conclusions may
be drawn from that fact. First, if u3 and d3 are, without
loss of generality, taken to be both positive, then the signs
of u2 and of dz must be equal; second, the top-quark
mass should satisfy m, =m, rnb/m, .

Thus, if we take u3=m, &0 and d3=m& &0, the AS
can only work if we make one of the following four
choices for the signs of the other quark masses:
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= 19.6+1.6,
d2

1

= 1.76+0. 13, (14)

Id, I
=0.0089+0.0026 GeV,

together with the information on U; (Ref. 14):

U12 0.0484+0.0009, U23 =0.0024+0.0005
(15)

U]3 0.0001 ~

Using the exact equations (8)—(10), I find that the Ansatz
of Stech requires m, to be less than 85 GeV. This value
for the current top-quark mass at p=1 GeV corresponds
to a physical top-quark mass of about 50 GeV. Such a
low value for m, is by now experimentally excluded. "
Moreover, in the AS a high m, is strongly correlated with
a low m, . As I emphasized before, I V„b I is not predicted.
There are, indeed, no further predictions of the AS:
though its output depends strongly on the input ratio
Id2/d, I, this dependence works differently for different
signs of the quark masses. It is, therefore, fair to say that
the only prediction of the AS is the low mass of the top
quark. Because that very clear-cut prediction failed, the
AS is now eliminated.

The relation m, =mbm, /m, also holds in the Ansatz of
Fritzsch, though in that case the freedom in the choice
of m, is much larger (m, may be as high as 115 GeV in
that Ansatz). The final reason for that relation is that in
both A nsiitze the natural prediction for

I V,b I is

I V,bI =Qm, /mb (Ref. 16). The fact that
I V,bI is much

smaller than Qm, /mb requires that in both Ansiitze
there be an approximate cancellation u3d2 =uzd3. If m,
turns out to be larger than 115 GeV, we should also dis-
card the Ansatz of Fritzsch and look for Ansatze where
I V,b I

is naturally very small.
I want to emphasize the important role played by Eq.

(4), which is another common feature of the Ansiitze of
Fritzsch and Stech. ' This relation was first studied in
Ref. 17, where it was shown that, for the usual signs of
the quark masses (13c), it leads to "maximal CP viola-
tion. " Here, maximal CP violation has the following
well-defined sense for fixed values of IV„, I, I V,bl, and
IV„bI, the value of IV„I is such that the rephasing-
invariant source of CP violation, '

I5KMI, is maximized.
Thus, it is because Eq. (4) holds in both the Ansatze of
Fritzsch and Stech that both of them present an approxi-
mate maximal CP violation. However, as was also no-
ticed in Ref. 17, Eq. (4) may also apply for other choices
of the signs of the quark masses, and then it will not lead
to maximal CP violation. This will be the case, in partic-
ular, if all the quark masses are taken with the same sign

reason, the only one that is considered in most of the
literature (the notable exception being the original paper
of Stech). Indeed, it is easily checked that the Ansatz of
Stech works perfectly well with any other of the choices
in (13).

What are the predictions of the AS? I use the current
quark mass values'

d3=5. 3+0. 1 GeV, Iu I
=1.35+0.05 GeV,

(see below). Thus, Eq. (4) has no interesting predictive
power unless it is supplemented with some particular as-
signment for the signs of the eigenvalues of MD and Mz.

ONE VARIATION OF THE Ansatz OF STECH

di(u2U2]+u3Ui] )=u~d],

d3(u2U]2+u3U32)=u3d2 —u2d3

(16a)

(16b)

In Eq. (16b), the smallness of U, 2 and the fact that

U3z && Id2/d3I are such that the two terms in the RHS
should cancel almost completely. Then, inserting
u 3d2 u 2d g into Eq. (16a), we find U21 d 1/d 2' We
thus conclude that if, without lack of generality, we set
u~ and di positive, this Ansatz may work if the signs of
u2, dz, and d] are all the same. Moreover, the top-quark
mass will, just as in the AS, obey m, =mb m, /m, .

To go beyond these guidelines, we must take the exact
equations, which are found from Eqs. (8)-(10) by apply-
ing the transformations u;~d; and U; ~UJ, %'e then
readily find out that this Ansatz usually yields a value for
I V„bI too high. However, this problem can be solved in
the case in which all the quark masses have the same
sign, say, they are all positive, by choosing a small
enough I V,b I. Thus, the "inverted AS" works perfectly
well when all the quark masses are taken positive, and it
predicts a value for

I V,bI near the experimental lower
bound 0.0019, a high value for

I V„bI/I V,bI, and also a
very low value for

I V,dI, which in this Ansatz is lower
than

I V„b I. However, this Ansatz, just as the AS, is elim-
inated because of its prediction m, =mbm, /m, . Also no-
tice that this Ansatz does not exhibit "maximal CP viola-
tion, " though Eq. (4) still applies.

A GENERALIZATION OF THE AS

We saw that the inuerted Ansatz of Steeh works almost
as we11 as the AS itself. On the other hand, both the AS
and its inverted counterpart have a disagreeable asym-

As I emphasized before, the main ingredient of the An-
satz of Stech is the approximate proportionality of M~
and MD. Another important ingredient is the interplay
between a symmetric and an antisymmetric matrix in M&
and MD; that interplay is the reason why the AS has less

parameters than the number of physical quantities which
it tries to fit, and therefore the reason why it has some
predictive power. Now, we may try to use these two in-
gredients in a different way from the one in which Stech
did it. That is what I will do next, in one straightforward
variation of the AS.

In that variation I exchange the roles of Mz and MD in
the AS. I postulate that in some weak basis MD is real
and symmetric, while M~=pMD+A, p being a real
number and A a Herrnitian and antisymmetric matrix.
Let us investigate whether this Ansatz has any chances of
being able to fit the data. To obtain the relevant equa-
tions we take the equations for the Ansatz of Stech, and
make the changes u;~d; and U;J ~U~;. We find that the
analogues of Eqs. (12) are
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metry in their treatment of MU and MD. It is therefore
natural to try to write down an Ansatz which, on the one
hand, bridges the gap between the AS and its counterpart
with MU and MD interchanged, and, on the other hand,
is symmetric under MU~MD. That is what I will do
next. Of course, we should not expect the new Ansatz to
give much better results than the AS itself in what con-
cerns the crucial matter of the low mass of the top quark;
this is because the other limiting case of the new Ansatz,
the inverted AS, also has problems with that point.
However, it turns out that the Ansatz that I mill now sug-
gest may be applied in a slightly different context, then
yielding quite interesting results.

I postulate that in some weak basis

MU=S+qA,

MD =pS+ A,
(17a)

(17b)

where S is a real symmetric matrix, A is a Hermitian and
antisymmetric matrix, and the numbers p and q are real.
It is clear that when q =0 this Ansatz is identical to the
AS, and when q ~ ~ this Ansatz becomes identical to the
inverted AS. The roles of MU and MD in Eqs. (17) are
clearly symmetric; indeed,

1 1
MU+ MD ~p~ —,q~—

p
(18)

The price to be paid for this symmetry between MU and

MD is the extra parameter q, and the ensuing smaller
predictive power of the Ansatz.

I use the method of the mass-matrix invariants to work
out the predictions of this Ansatz. I first calculate the
traces of MU, MU, MU, MD, MD, MD, and (MUMD ).
The resulting equations are easily inverted to give

trMD

trMU
(19a)

trMUtr(MUMD ) trMUtrM—Dq=—
«MD«(MUMD ) trMD«MU—

(19b)

tr(MUMD ) = trMU+ tr(MUMD )+LU, (20a)
trMD

F
tr(MUMD ) = trMD+ tr(MUMD ) +LD,

trMU
(20b)

where F,LU, and LD are functions of the quark masses
and their signs only:

together with other equations which give the traces of
S, S, S, A, and (SA ) as functions of the physical
quantities. Notice that Eqs. (19) satisfy the condition
(18). If we now calculate the trace of (MUMD ), then we

will also be able to write down the trace of A as a func-
tion of the physical quantities. Up to this point, we have
found no predictions.

However, in this Ansatz, the traces of (MUMD) and of
(MUMD ) are not independent from the other ones.
Indeed, we easily find that

tr MUdetMD —tr MDdetMU

trMD csiMU —trMUcsiMD

detMU
LU =trMD —csiMU+3 M.

LD=LU(M(, ~MD) .

(21)

trMUF— , (22a)
trMU

(22b)

AN Ansatz FOR THE MATRICES H

I have emphasized the existence of ambiguities in the
AS related to the signs of the eigenvalues of MU and MD.
It is well known that in the standard model not all the in-
formation contained in MU and MD is physically mean-
ingful. Indeed, at the classical level of the theory (and
thus forgetting about quantum effects such as strong CP
violation '), all the physically relevant information in MU
and MD is also present in the "Hermitian mass matrices"
KU D =MU DMU D. Contrary to the matrices MU D
which in general are not Hermitian, the matrices HUD
are, by definition, Herrnitian. Moreover, in a weak basis
in which MU and MD are Hermitian, the signs of their ei-
genvalues are in general arbitrary; on the other hand, the
eigenvalues of HU and HD, which are the squared quark
masses, do not contain any sign ambiguity. This is only
an instance of the fact that the matrices MU and MD con-
tain some unphysical information which is no longer
present in the matrices HU and HD, which, on the other
hand, contain all the physical information in MU and

Notice that Eqs. (20), which are the constraints that this
Ansatz enforces on the physical quantities, are symmetric
under MU~MD, as they should. Moreover, we can easily
verify that they are also satisfied in the AS. Finally, as a
consequence of Eqs. (20), Eq. (5) also holds in this An
satz.

The crucial point is the fact that Eqs. (20) are linear
equations among the "mixed traces" tr(MUMD) with a
and b different from zero; this implies, via Eq. (6), that
this Ansatz enforces equations among the physical quanti-
ties which are linear in the U, , and therefore can easily
be solved with respect to those quantities. Thus, just as
in the AS all the U, can be written as linear functions of
one of them, the coefficients of those functions being
functions of the quark masses; similarly in this Ansatz we
may write down all the U, as linear functions of, e.g. ,

U, 3 and U», the coefficients being functions of the quark
masses (and their assumed signs).

If we feed those exact equations to a computer and use
it to find out the predictions of this Ansatz, we get what
we expected: this Ansatz yields a low value for the top-
quark mass. It does not fare better than the AS in that
respect. Moreover, the quark-mass sign ambiguity is
worse in this Ansatz than in the AS: when

d z /d, (0 this
Ansatz approaches the AS, and works well for low values
of q; when d2/d

~
)0 the parameter q will be large and we

will have similar results to the ones of the inverted AS.
From these points of view, the new Ansatz is worth being
discarded. However, we will see nest that this Ansatz,
when applied in a different way, takes us far beyond the
AS.
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MD, about the quark masses and the CKM matrix.
Though the matrices MU and MD are more fundamental,
the matrices HU D are closer to the physical information.

Surprisingly enough, it turns out that the Ansatz of
Eqs. (17) is successful; i.e., it fits well the experimental
data, if it is taken as an Ansatz not for the matrices MU
and MD, but for the matrices HU and HD. The Ansatz
then reads in the following way: there is a weak basis in
which the symmetric and antisymmetric parts of the ma-
trices HU and HD are separately proportional to each
other. This double proportionality implies equations
among the physical quantities which are the analogous of
Eqs. (20)—(22}, with the matrices MU and Mn substituted

by the matrices HU and HD. Those equations, contrary
to the original Eqs. (20)-(22), do not contain any ambi-
guity in the signs of the quark masses. Indeed, to develop
those equations into sum rules for the U; we should now
use, instead of Eq. (6),

3

tr(HaHb ) g &2ad2bU

i,j —1

(23)

in which there are no unphysical quantities or signs
present. This is a very important advantage of this An-
satz over the AS.

The fact that we have an Ansatz for the matrices H
which works well is quite remarkable. Remember that
the idea of the Ansatze for the mass matrices followed
from the observation, due to Weinberg, that

md

S

(24)

Indeed, the approximate equality (24) holds in both the
Ansatze of Fritzsch and of Stech. The idea following
from (24) was that maybe all the U; are some functions
of the quark mass ratios alone, i.e., without the presence
of any nonphysical parameters. However, if we work
with the matrices H instead of with the matrices M, the
quark mass ratios are substituted by the squared quark
mass ratios. And, because of the strong mass hierarchy,
these squared ratios are much smaller than the ratios
themselves, in such a way that it becomes difficult to un-
derstand how a quantity as large as U, 2 might be related
to the squared quark mass ratios. This apparent paradox
disappears if we take into account that we are now work-
ing with three generations, and not two, as in Weinberg's
original work; and that our Ansatze, insofar as they
parametrize the mass matrices (M or H) by more than six
parameters, will in general not really determine the U,
completely (i.e., without the presence of any nonphysical
quantities in the corresponding equations) as functions of
the quark mass ratios, rather they will only yield some
sum rules relating the different U; among themselves and
with the quark masses. Thus, there is no reason why a
simple Ansatz for HU and HD should not work.

At present, the idea of an Ansatz for the matrices HU
and HD is difficult to justify. This is because it is the ma-
trices M which follow directly from the fundamental
theory, i.e., from the Yukawa coupling matrices. More-
over, an Ansatz which is not enforced by means of some

symmetries of the underlying theory will as a conse-
quence be unstable under the radiative corrections, and
therefore meaningless. Clearly, it is difficult to find sym-
metries which give rise to Ansatze which are simpler
when written in terms of H„and HD than when written
in terms of MU and MD. Anyway, the fact that the
weak-basis arbitrariness problem is milder in the Ansatze
for the matrices H renders those Ansatze rather appeal-
ing, and this offsets, in my opinion, the fact that the natu-
ralness problem is more difficult to solve in those Ansatze.
An Ansatz for the matrices H should at present be con-
sidered to have a more phenomenological character than
an Ansatz for the matrices M, just as the matrices H are
closer to the experimentally measurable quantities, while
the matrices M are closer to the underlying theory.

Because of Eq. (12a) the AS does not work if d„d2,
and d3 are all positive. Thus, the AS could never be
transformed into an Ansatz for the matrices H. The same
cannot be said of the inverted AS which, as I have point-
ed out, works well if all the eigenvalues of MU and MD
are taken to be positive. However, it turns out that the
inverted AS too is unable to fit the data if it is taken as an
Ansatz for the matrices HU D. The generalization of the
AS which I worked out in the previous section has just
enough flexibility to do the job. On the other hand, it is
easily found that, whenever that Ansatz for HU and HD
fits well the data, the q value of Eq. (19b) (with

MUD~HUD) is of order 10, i.e., quite high, showing
that we are not far from the inverted AS.

The Ansatz for the matrices HU D that I am suggesting
has one further attractive feature: it easily allows the
top-quark mass to be very high. This is very different
from what happened in the corresponding Ansatz for the
matrices MU D. Feeding the exact equations to the com-
puter one easily finds that, if U» and U23 are taken, to-
gether with the quark masses, as input quantities, then
there are two ranges of values of u 3 for which the output
U, 2 agrees with the experimentally measured value. In
one of these ranges we have, just as in the AS,
m, =mbm, /m, . In the other range, m, is very high.
From now on, I will only consider the Ansatz with m,
taken in that interesting range of high values.

We easily find that, provided we allow U23 to be near
to its experimental lower bound 0.0019, and U» to be
near to its upper bound 0.0001, then the top-quark mass
(renormalized at the scale @=1 GeV} is about 175 GeV,
which corresponds to a physical m, about 105 GeV. This
value is obtained for the central values' of the masses of
all the other quarks; if we stretch the values of the quark
masses to the one-standard deviation limits given in Ref.
13, then we easily obtain a top-quark mass as high as 160
GeV. Such a high value for m, is beyond the reach of all
the previous Ansatze for the mass matrices; for instance,
the Ansatz of Fritzsch yields, for the same one-standard
deviation quark masses, m, & 115 GeV.

This high top-quark mass also suggests that this Ansatz
may suffer important corrections if it is postulated to
hold at some high-energy scale, say, the grand-unified-
theory (GUT) scale, and then the mass matrices are al-
lowed to evolve to the Fermi scale following the
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renormalization-group equations for the Yukawa cou-
plings.

Let me finally state brieAy the predictions of this An-
satz for the matrices HU and HD. As I said before, I only
take into account the branch of the Ansatz which fits U, 2

by means of a high top-quark mass. The predictions are
then the following: (1) the top-quark mass may be as high
as 160 GeV, and its "central value" is of about 110 GeV;
(2)

~ V,b ~
is rather low: Uz3 =—

~ V,b ~
(0.0022; (3)

~ V„b ~
is

rather high: U» —=
~ V„b ~

)0.00008; (4)
~ V,d ( is extremely

close to zero.
As a consequence of the last prediction, though m, is

very high, in this Ansatz the high Bd-Bd mixing cannot
be explained by the top-quark box diagrams alone; we
must assume the presence of some extra virtual particles
in the Bd-Bd transition diagrams. This should not, how-
ever, be considered as a great handicap for this Ansatz,
nor for any other one. Indeed, the Ansatze are unstable
under quantum corrections if they are not protected by
some symmetry of the underlying theory (if they are, they
are not Ansatze anymore, but models). Any such more
complete theory will most likely contain extra particles
and couplings, and for that reason it is not, in general, a
sound procedure to use the results of the calculation of
the standard-model loop diagrams alone to derive con-
straints on the Ansi'tze.

the mass-matrix invariants. These predictions can be
written down in the form of three linear equations on the
squared moduli of the CKM matrix elements, the
coefficients of those equations being well-defined func-
tions of the quark masses and their signs. I emphasized
the existence of ambiguities in the AS, and that those am-
biguities are responsible for the fact that that Ansatz is
only able to predict a low mass for the top quark.

I showed that the two main features of the AS, the in-
terplay of a symmetric and an antisymmetric matrix, and
the approximate proportionality of MU and MD, can be
implemented in other equally successful Ansatze. The
simplest of these consists simply in interchanging the
roles played by MU and MD in the AS.

I built and analyzed an extension of the AS which is

symmetric when MU and MD are interchanged. That An-
satz does not have any advantage over the AS when it is
taken to be an Ansatz for MU and MD. However, it may
be successfully taken as an Ansatz for HU and HD. It is
indeed the first Ansatz suggested directly for those ma-
trices. That Ansatz for HU and HD allows the top-quark
mass to be very high, m, & 160 GeV, and predicts

~ V,d ~
to

be almost vanishing,
~ V,b ~

to be close to its experimental
lower bound, and a rather high ratio

~ V„b ~ /~ V,„~.
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