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The mass sum rules involving Higgs bosons that arise in supersymmetric extensions to the stan-
dard model are renormalized. The general procedure for calculating radiative corrections to these
relations is presented. The radiative corrections from loop contributions of quarks, leptons, and
their supersymmetric partners to the mass relation MI', +MH =M„'+Mz of the minimal supersym-
metric extension to the standard model are derived. The results indicate that large corrections to
the sum rules may arise from heavy matter fields. Squarks significantly heavier than their fermionic
partners contribute large contributions when mixing occurs in the squark sector. These large
corrections result from squark-Higgs-boson couplings that become large in this limit. Contribu-
tions to individual Higgs-boson masses that are quadratic in the squark masses cancel in the sum

rule. Thus the naturalness constraint on Higgs-boson masses is hidden in the sum rule.

I. INTRODUCTION

Supersymmetry has been studied extensively in recent
years as a way to solve the naturalness problem. At the
moment it is the only known way to reconcile the vast
difference between the electroweak and grand-unified-
theory (GUT} scales while still retaining scalars as funda-
mental fields. Quadratic divergences that would other-
wise appear in scalar mass corrections do not arise be-
cause of the chiral invariance of their fermionic super-
partners. In this paper we calculate radiative corrections
from quark and squark loops to Higgs-boson-mass rela-
tions that arise in the minimal supersymmetric extension
to the standard model. The radiative corrections arising
from loops containing neutralinos and charginos have
been considered in Ref. 1. No large corrections to the
mass relations were found. We find that large corrections
can occur for quark and squark loops, but only if
significant mixing occurs between the left- and right-
handed squarks. In addition we develop a formalism for
calculating radiative corrections to Higgs-boson mass re-
lations in a supersymmetric extension with an arbitrary
number of Higgs doublets.

In this paper we are primarily concerned with exten-
sions of the standard model that have two Higgs doublets
only. The two-Higgs-doublet model has eight degrees of
freedom in the Higgs sector which become three neutral
Higgs bosons (H, h, A), two charged Higgs boson
(H+, H ), and the usual three Goldstone bosons
(G, G+, 6 ) that are absorbed by the W and the Z. H
and h are CP-even eigenstates while A is CP odd. We fol-
low the usual practice of calling these scalars and pseu-
doscalars, respectively. We consider the supersymmetric
version of the two-Higgs-doublet extension to the stan-
dard model. The restrictions imposed by supersym-
metry tightly constrain the couplings in the Higgs sector.
This leads to mass relations for the physical Higgs boson.

and

MH+Mp Mq +Mz

M +=Mq+M~ (1.2)

We explicitly calculate the O(a) corrections to the rela-
tion (1.1}arising from the quark and lepton sectors. The
corrections to (1.1) and (1.2) will all be 0 (a) for the one-
loop calculation since in supersymmetric models the cu-
bic and quartic couplings in the Higgs potential are relat-
ed to the gauge couplings g and g'. There is no arbitrary
coupling in supersymmetric extensions of the standard
model such as the quartic coupling k in the standard
model. The philosophy is, therefore, slightly different in
the renormalization of the mass relation in (1.1) of the
MSE. The sum rule in (1.1) involves physically measur-
able masses, without any reference to couplings. So we
can take these masses as the parameters that define the
Higgs sector, and find radiative corrections to (1.1) in
terms of these parameters. We find that large corrections
to the mass relation in (1.1) can arise from matter loops
but only if the significant mixing occurs between the
squark fields.

Large corrections [tO(am /Mn ) where m is a quark
massj to the Higgs-boson masses arise as they do in the

In addition, at the tree level the lightest neutral Higgs bo-
son h must be lighter than the Z, and the heaviest neutral
Higgs boson H must be heavier than the Z. In fact this
conclusion remains true for supersymmetric extensions of
the standard model containing an arbitrary number of
Higgs doublets (containing no Higgs singlets or other rep-
resentations).

We shall refer to the two-Higgs-doublet supersym-
metric extension of the standard model as the minimal
supersymmetry extension (MSE}. In this model, there ex-
ist the tree-level mass relations
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standard model. The squark q corrections to Higgs-
boson masses that are 0 (am ) are quadratic in the
supersymmetry-breaking scale. If they become large,
they destroy the stability of the electroweak scale to radi-
ative corrections, necessitating large subtractions that re-
quire unnatural fine-tuning order by order in perturba-
tion theory. These contributions cancel. exactly in the re-
normalization of the sum rule. Therefore, the naturalness
constraint is "hidden" in the sum rule. Mixing between
left- and right-handed squarks occurs in general. If the
off-diagonal entries in the left-right squark-quark mass
matrix are large, then large squark-Higgs-boson cou-
plings can arise and result in large corrections to the
mass relation.

In Sec. II we review the aspects of the model that are
needed for this work In .Sec. III we explain in detail the
formalism for renormalizing the Higgs sector of the
MSE. We discuss the results of actual calculations we
have performed in the MSE in Sec. IV. Since the physi-
cal masses of the Higgs bosons (H, h, A} and the Z are
measurable, the 0(a) correction to the mass relation in
(1.1) is a physically measurable quantity. In Appendix A
we display some Feynman vertices that are needed to cal-
culate the Higgs self-energy diagrams in the MSE. In
Appendix B we display the full result for the correction
to (1.1) arising from the up-quark and up-squark loops.
This result is easily generalized to all contributions from
other loops involving quarks, leptons, and their super-
symmetric partners. In Appendix C we show that the
tadpole contributions cancel in the MSE. Finally in Ap-
pendix D we discuss how the formalism developed in Sec.
III can be generalized to models with more than two
Higgs doublets.

After this work was completed we became aware of the
work of Gunion and Turski in which they calculate sfer-
mion corrections to the Higgs-boson mass relation in
(1.2). They also find that large corrections arise when the
squark-Higgs-boson coupling becomes large. They dis-
cuss radiative corrections in general in Ref. 5. Their gen-
eral analysis concludes that large corrections to mass sum
rules arise when large Yukawa couplings are present.
Our results agree with the conclusions of this general
analysis.

II. THE MINIMAL SUPERSYMMETRIC EXrLNSION
OF THE STANDARD MODEL

We shall foBow the notation of Gunion and Haber
with the one exception that they refer to the neutral
Higgs boson H, h, A, and G as H „H2,H3, and G, re-
spectively. Throughout this paper any mass without a
subscript will be a physica/ mass (e.g., Mff, M„,etc.).
Any subscript on a mass parameter [e g , (Mff )h,. {M. ff)„
etc.] indicates that this parameter is in general different
from the physical mass. The definitions of these mass pa-
rameters will be given when they arise. Our review will
be brief, and the interested rqader is urged to consult
Refs. 2, 3, and 6 for more details on the MSE.

Call the two-complex-doublet scalar fields P, and {{)2.
The Higgs potential develops an asymmetric minimum,
giving rise to spontaneous symmetry breaking. Then P,

where Q and L are the weak SU(2)-doublet quark and lep-
ton superfields, U and D are the weak SU(2)-singlet quark
superfields, and R is the SU(2)-singlet lepton superfield.
The scalar potential receives contributions from the so-
called D terms and F terms. These are

V= '[D'D'—+(D') )+F,'F;,
where

(2.2}

D 2gA' vAJ

D'=
—,'g'y, A A;+g,

(2.3a)

(2.3b)

(2.3c)

Here A; denotes a generic scalar field appearing in the
superpotential. g is the Fayet-Iliopoulos term that may
arise for U(1) gauge groups. The hypercharge assign-
ments of the two Higgs doublets are y, = —1 and yz =1,
ensuring anomaly cancellation.

In general we add all possible soft supersymmetry-
breaking terms. The Higgs potential is then given by
[we assume that the Fayet-Iliopoulos term associated
with U(1)

„

is small and neglect it]
3 &2

V &gz y lyt ay ytaay l2+ g
(pter pter )2

+ lvl'(4i4i+0z4z)+ v f) (2.4a)

which can be written

V= 'g'[4lH" H' l' -—2(H"H')(H" H' )

+(H"H' ) +(H"H' ) ]

+ 'g' (H"H' —H' H—' )8

+ lul'(H i'K'i+H2 H2)+ Vsoft

where

(2.4b)

Vsoft m, H 'i H i +m zK 'z'K 'z —( m i2 e I'H 'iHJ +H. c. )

{2.4c)

We are using the notation

P P =H' H', ,

/~$2 =H q'H2,

(2.4d)

(2.4e)

p, pi=a;JH', H2 . (2.4f}

In this notation H,' and H2 are the neutral components of

gives mass to the d-type quarks and squarks, and Pz gives
mass to the u-type quarks and squarks.

Supersymmetry constrains the otherwise independent
quartic couplings to be combinations of the gauge cou-
plings g and g'. The superpotential contains the follow-
ing pieces:

W=e, (pHIH2+fHIL R+f,H', Q D+f2HgQ'U),

(2.1)
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U1

&H, &= 0, &H, )=
0

(2.5)
U2

To obtain the correct tree-level mass M~= —,'g U, we re-

qu&re U
1
+ U

22U 2

The masses of the Higgs bosons can be obtained from
(2.4) using the vacuum expectation values in (2.5). The
mass matrices must be diagonalized to obtain MH, Mh,
and MA. In the MSE there is the tree-level mass relation
given in (1.1) where Mb (Mz and Mir )Mz. Beyond the
tree level this relation is no longer exact but receives
O(a) corrections. To implement the renormalization
procedure, we fix MH, MA, and Mz to be the physical
masses. Then the physical mass of the other neutral
Higgs boson h is given by a relation

Mh =MA +Mz MH+ (2.6)

H, and H2, respectively, while H, and H2 are the
charged components. The quantities m1, m2, and m12
are arbitrary mass parameters. This Higgs potential has
a minimum away from H, =H2 =0 so spontaneous sym-
metry breaking occurs. It is possible through a choice of
phase to choose the vacuum expectation values to be real
and non-negative. We define U1 and U2 to be the vacuum
expectation values of H, and H2, respectively, so that

1H2=U2+ —(S2+iPz) .
2

(3.1b)

H and h are linear combinations of S1 and S2 while A

and G are linear combinations of P, and P2. The factor
of &2 is included so the kinetic energy terms for the
physical-Higgs-boson fields will have the canonical form.

%'ave-function renormalization now takes a matrix
form. Define the matrices

and

1/2 1/2 '

ZHH ZHh
1/2
S Z1/2 Z1/2

hH hh

66 GA
1/2 1/2

~ 1/2~P Z1/2 Z1/2
AG AA

(3.2a)

(3.2b)

H
Z 1/2

h b
S (3.3a)

In the bare Lagrangian we denote all parameters and
fields with the subscript b. In particular the Higgs poten-
tial in (2.4) is rewritten in terms of bare fields and masses
by attaching a subscript b to all quantities. Then the
wave-function renormalization of the Higgs fields can be
expressed as

where 5 is a correction that is O(a). There are two free
parameters that characterize the three-level masses in the
Higgs sector if Mz is fixed at its experimentally measured
value. We shall take MH and MA to be the two free pa-
rameters.

and

G
1/2

G
Zp

b
(3.3b}

III. FORMALISM FOR RADIATIVE CORRECTIONS

1H', =U, + —(S, +iP, ),v'2 (3.1a)

We use an on-shell scheme for renormalization. Exter-
nal lines are evaluated with momenta on shell. The phys-
ical mass is defined as the position of the pole in the prop-
agator. The ultimate results of this section are the rela-
tions (3.27) and (3.32) below. These equations indicate
that at the one-loop level the wave-function-
renormalization factors do not enter, and the corrections
to the mass sum rules are given entirely by combinations
of Higgs-boson and vector-boson self-energies.

In this section, we denote all bare fields and parameters
by the subscript b. The absence of this subscript indi-
cates a renormalized field or a renormalized parameter.
For example, Hb denotes the bare heavy Higgs field,
while H denotes the renormalized field.

In the multi-Higgs-doublet models, renormalization is
complicated by mixing of the physical Higgs bosons
necessitating rediagonalization at each order. This is
analogous to the mixing of the Z and the photon in the
renormalization of the standard model. Here we follow
the method of Aoki et al. ' for on-shell renormalization
of fields when mixing is present.

First define the scalar and pseudoscalar parts of the
charge-neutral Higgs-boson fields by

The matrices in (3.2) are not in general symmetric. There
are four independent parameters for each matrix. We
have that Zs~ =I+0(a) so that Z&&=1+0(a),
Zb =1+0(a), Z' =O(a), and Zb =O(a). The ki-
netic energy terms for the charge neutral pieces are

H
2
'(F(H h)(Z' —) Z' 8S S p

G
+,'a (G a)(z,'")'z,'"a„„(3.4)

Now we proceed to investigate the mass terms. We
shift the parameters that occurs in the Higgs-boson-mass
terms as follows:

(m') =m'+5m'

(m2)b=m~+5m~,

(m, z)b =m, 2+5m, 2,2 = 2 2

(Mz'}b =Mz'+5Mz2

(Ui )b —Ui +5Ui

~ U2 ~b U2+ ~U2

(3.5a)

(3.5b)

(3.5c)

(3.5d)

(3.5e)

(3.5f)

The &iggs potential in (2.4} depends on five parameters,
so we can choose five parameters in (3.5) to determine the
potential. The parameters we use to define the theory are
the physical masses MH, Mh, M„,and Mz as well as the
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coupling g. The quantities in (3.5) are related to these five
in a complicated way determined by the Higgs potential
in (2.4). Other parameters such as ~p~ and its associated
counterterm are determined in terms of the five parame-
ters and counterterms in (3.5). The dependence of p on
the other parameters is given in Eq. (3.25) of Ref. 6. The
shifts in v, and V2 reAect the fact that the location of the
minimum of the Higgs potential receives 0(a) correc-
tions. Our goal then is to formulate renormalization con-
ditions for the physical masses without any references to
the unmeasurable parameters that occur in (3.5).

The Higgs-boson-mass terms arise in the potential
given by (2 4). The parameters m „m2,and m, 2 are un-
determined due to the arbitrariness of the soft
supersymmetry-breaking terms. The mass constraints
arise because the quartic couplings in (24) are deter-
mined in terms of the gauge couplings by supersymmetric
and gauge invariants. Then the mass terms that arise are
of the form

(3.11)

Then we have

(p2)=(Zi/&)rZi/2p2 (Zi/2)&(M2) Zi/2

(3.12a)

shifts in the parameters Ab, Bb, and Cb that appear in
the unrenormalized mass matrix through the definitions
in (3.7). We define the renormalized values of these
parameters and the associated counterterms as
A&=A+5A, B&=B+5B,and Cb=C+5C where A, B,
and C are defined just as the bare quantities are defined in
(3.7) but in terms of the renormalized quantities. It is un-
necessary to retain terms second order in the counter-
terms because these are higher order in the perturbation
theory. The inverse propagator is a matrix due to the
mixing of the Higgs bosons, and we denote it by

i rHH(P ) i rHII (P
2 = 'r„(p') 'r„„(p)

A B
—,'(Si S2)b

b 2 b

where

(3.6)
where

(Ms')D —=
(MH )„

(3.12b)

V1 V2
2 2

Ab =(m, )b+ —,'(Mz)b
U2+V2

b

(3 7a) and

U)U2

V )+V2 b
2 2

3v2 v2

Cb =(m 2 }b+—,'(Mz )b
V)+V2 b

Bb = —(m iz)b+ g~(Mz) (3.7b)

(3.7c)

where

This mass matrix is diagonalized by the real orthogonal
matrix characterized by the angle a:

T

cosa —sina
0 =

sin a cosa

5MH 5M'
'= 5M' 5M'

hH h

(3.12c)

5MH =5A cos a+5B sin2a+5C sin a,
5M' =5 A sin a —5B sin2a+5C cos a,

(3.13a)

(3.13b)

5MH2& =5M&~H =(5C —5A )sina cosa+5B cos2a .

(3.13c)

The subscript D in (3.12b) indicated that the renormal-
ized mass matrix (with subscripts r) is diagonal. In ob-
taining (3.12) we have dropped terms that are second or-
der in perturbation theory, used (3.10a), and defined

2Bb
(3.8b) The inverse propagator matrix in (3.11) is symmetric as it

should be. We have also defined the quantities

S2 b

0
=Oa

b

With a redefinition of fields given by

(3.9)

(M ) =—'[(A+C)+V(A C) +4B J, —

(M ) =—'[( A +C) —+( A —C) +4B J .

(3.14a)

(3.14b)

the mass matrix is diagonalized to give

MH 0
0 B C 0 (3.10a)

where

(MH)i, =
—,'((Ab+Cb)+[(Ai, —Cb) +4Bb)'

(3.10b)

(M„)b=—,'t(Ab+Cb) —[(Ab —Cb) +4Bb)' j

(3.10c)

The shifts in the parameters introduced in (3.5) generate

At this point the renormalized parameters (MH)„and
(Mi, ), are not the physical masses MH and Mi, . The con-
nection between these quantities must be specified by re-
normalization conditions.

We have expressed the inverse propagator iI s(p ) in
terms of wave-function-renormalization parameters
defined in (3.2) and the counterterms defined in (3.5}. The
actual expression is rather complicated, but fortunately
we will only need to know the linear combination
6A+6C to calculate the radiative corrections to the
mass relation (1.1). Notice that 5MH+5Mf, =5A+5C,
i.e., the trace of the mass matrix is invariant under the
orthogonal transformation. We have that 6 A +6C
=5m, +5m 2+ 5Mz so that we arrive at the conclusion
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5MH2+5Mh2 =5m 2i+5m 22+ 5MZZ (3.15)

5MG+5M4 =5in i+5irip,

so that

(3.16)

By repeating the analysis in the pseudoscalar sector in
the same way, we also have (in the Landau gauge)

I

I
I
I
'H
I
I
I
I
I

8 i'

I

I

I

~ h
I

5MH+5Mi, =5MG+5M„+5Mz . (3.17)

We define the self-energies of the scalars and the vector
bosons as shown in Fig. 1 with external legs amputated.
The vacuum expectation values U& and v2 are in general
renormalized, and tadpole diagrams must be taken into
account (Fig. 2). We will argue below that the tadpole
contributions to the final result 5 are zero with the renor-
malization conditions we choose. This will be shown ex-
plicitly in Appendix C. The renormalized inverse propa-
gator

irHH{p'} &rHi{p'}
ir, (p') =

r„H(p') r„i,(p') (3.18)

—5MH+IIH~(p ), (3.19a)

includes the expression in {3.12} and the self-energy con-
tributions shown in Fig. 1. The inverse propagator ma-
trix in (3.18) is symmetric. We have

i r„H(p')=(Z„„+Z„„)p'(M„')„—Z„„(M„')„Z—
„„

FIG. 2. The two kinds of tadpoles.

ir„„(M')=0,
ri, i, (Mi', )=0,

iI' „(M )=i I „(M„)=0,
ir HH{MH }=1

i r '„„(M„')=1,

{3.20a)

(3.20b)

(3.20c)

(3.20d}

(3.20e)

where i I '(p ) is the derivative of i I (p )

We choose as an additional renormalization condition
that (MH )„beset equal to the physical mass MH of the H
(Ref. 11). Then from (3.19) and (3.20) we conclude that

In the on-shell scheme we adopt the renormalization
conditions

i r„„(p')=(Z„„+Z„„)p'—(M„')„Z„'„—(M' )„Z„„ 5MH ~HH™H). (3.21)

—5M„+II„„(p), (3.19b)

—(MH }„ZHHZHi,

(M 2
) Z i /2 Z i /2

5MHi +IIHi {p'}

irHh(p } irhH(p } (ZHHZHh +Zhh ZAH )p

5M„=11q „(M„),
5MG =IIGG(0) .

(3.22)

(3.23)

The remaining condition is obtained from (2.6) and
(3.20b). This is

The pseudoscalar sector can be treated in the same way.
In this case we define (M„)„to be the physical mass M„
of the A and require that the Goldstone boson G have
zero mass at the one-loop level in the Landau gauge, i.e.,
(MG)„=MG=0. The masslessness of the Goldstone bo-
son at one-loop follows from the Ward identities. Then
we obtain

5M„=11„„(M2)+a, (3.24)

where we have used the fact that (MH)„+(Mi,)„
=(Mz )„+(Mz)„.Similarly it can be shown that

)IIzz= 5Mz = —~zz(Mz» (3.25)

where Azz(p } is defined as the real part of the
coefficient of g" in the vacuum-polarization tensor

W W

II""(p') =A {p')g""+X (p')p "p",

Azz ReA zz

(3.26a)

(3.26b)

defined as in Fig. 1. Then using (3.17) and Eqs.
(3.21)—(3.25) we find that

FIG. 1. The self-energy diagrams are de6ned as shown with
the external legs amputated. X, Y =H, h, A, G.

a= —11 „(M')—11„„(M„')+11„„(M'„)
+ IIGG(0) —Azz(Mz } . (3.27)
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So the calculation of 6 involves the determination of the
Higgs-boson and Z self-energies in (3.27). The final result
for 6 must be finite even though the individual self-
energies will not be.

The condition that the Goldstone-boson mass be zero
at one loop ensures that the tadpole contributions will be
zero. This is a consequence of a Ward identity. A dis-
cussion of this result in the context of the standard model
is given in Refs. 12 and 13. The Goldstone self-energy at
zero momentum is related to the tadpole diagrams of the
H and h fields as

—1
IIGG(0) = — [cos(P—a) TH +sin(P —a) Tl, ] .

2v

The counterterm Lagrangian contains the terms

(5MG
—G +AH+ r~ h )

in which the coefFicients satisfy

1
fiMG cos(P cl )rH+ sill P cx

2v

(3.28)

(3.29)

(3.30)

So we conclude that (3.23) is equivalent to taking
(TH+AH )cos(p a)+—( Ti, +rI, )sin(p —a) =0. The ad-
vantage in calculating IIGG(0) rather than the tadpole di-

agrams TH and TI, is that the cancellation of divergences
is much more obvious in the former case. In terms of the
Feynman rules, calculating the Goldstone-boson self-
energy is on an equal footing with calculating the Higgs-
boson self-energies in the Landau gauge. We have shown
explicitly in Appendix C that in the context of the
minimal supersymmetry extension (MSE) the tadpole
contributions to b, in (3.27) vanish identically. This result
can be proven generally.

Another mass relation that holds at the tree level in the
MSE was given in (1.2). It can be shown [in a method
analogous to the preceding treatment of the mass relation
in (1.1)] that the radiative corrections defined by

V= VF+ VD+ V„f,,
where

VF =(p'H l'+ fig "U ')(AH', +fzg 'U)

+ (p'H2'+ f,Q "D ')(pH2+ f,g 'D )

(4.1a)

+f ie H'QJI +f ie Hzg'i

+(f,H", D" flHl'U')(—f,H', D f2H2D), —

(4.1b)

to know the Feynman rules for Higgs bosons in the MSE
to calculate the self-energy diagrams for the Higgs fields.
Many of these have been derived previously in the litera-
ture. ' ' We have derived some others that appear in

Appendix A.
The calculations involved are somewhat lengthy. Each

individual diagram is divergent, and these divergences
cancel only when loops involving the fermions and loops
involving their superpartners are included. The diver-
gent integrals are evaluated using dimensional regulariza-
tion with the prescription for y5 given by Chanowitz
et al. ' Since the ys's always occur in pairs in the ampli-
tudes considered, this prescription guarantees the correct
Ward identities. The calculation is straightforward, so
we display only the final result in Appendix B. The dia-
grams evaluated are shown in Fig. 3.

We have ignored the mixing between generations for
simplicity. There is a contribution from each generation,
and the contribution to 6 from the top quark is the same
as that for the up quark with the appropriate mass substi-
tutions. The calculation of the diagrams involving
squark loops is complicated by the mixing in the square
sector.

We add soft supersymmetry-breaking terms to the sca-
lar potential. The terms in the scalar potential involving
squarks are

M +=Mq+M~+5 (3.31)

are given by

b = —II + +(M +)—II y +(0)+II'„(M„)
+IIGG(0) —

All ll (Mll ) . (3.32)

oooeooeoey )eo ~ o ~ ~ oo
'~ r

(b)

Again the tadpole contributions are exactly zero (see Ap-
pendix C).

We note that the result in (3.27) continues to hold
when a Higgs singlet X is present in certain important
cases. The criterion is that X not mix with the other
Higgs bosons (H, h, A, G). See Ref. 6 for a discussion of
these cases. If the singlet mixes with the Higgs doublet
then the mass relation (1.1) is destroyed even at the
tree level, and the tree-level constraints Mh &Mz and
MH )Mz also disappear. The mass relation (1.2) may be
destroyed even if the singlet does not mix with other
fields.

'~

a a a a a a a a a e C a o a a a a a ~

(c)

oa a
1

oooor
r

r

IV. RADIATIVE CORRECTIONS

In this section we will discuss the contribution to 5
from quark and squark loops in the MSE. It is necessary

FIG. 3. The diagrams calculated in the MSE. There are the
following number of nonvanishing diagrams of each type: (a) 4,
(b} 12, (c) 8, (d) 1, (e) 3, (f) 2.
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+ 'g '—(H'*H' H—', *H', +y Q "Q '

+y„U*U+ydD *D)2,

V =M Q "Q '+M U *V+M D *D

(4.1c)

+m 6e' (f, A d H I Q D f2 A—„H2Q U+ H. c. ) .

(4.1d)

V —1g2[4~HisQ i ~2+4~Hi sa i ~2
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Q
I
)( Hl sHI +Hl 0Hi )+ ( Q

iver
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x xra ace eaeeaeetr+Ceae sea aces

FIG. 4. Contributions to Higgs-boson masses that are qua-
dratic in a scalar mass arise from these diagrams.

The conventional squark notation for the fields appearing
in (2.1) and (4.1) is

QL
Q'= —,U"=ua,

dL
D '=dz . (4.2)

The mass terms for the up squarks, for example, are

A„S„uL
(uL up) cg (p

Q Q

(4.3a)

where

A„=M&+Mzcos2P( —,
' —e„sin 8II )+m„,

8„=m„(A „m6+iu cotP),

C„=MU+Mzcos2p(e„sin 8II )+m„.

(4.3b)

(4.3c)

(4.3d)

A„m6,M&, and MU are additional soft supersymmetric-
breaking parameters that enter into the part of the scalar
potential that involves squarks. The mass eigenstates can
be defined as a mixture of these fields as

=Og
02

(4.4)

where 0& are defined as in (3.8a). The mixing angles 8

appear in the Feynman rules involving the squarks.
The coupling of the squarks to the Higgs bosons come

from three places in the scalar potential. First the D
terms contain contributions to the squark masses and to
the squark —Higgs-boson coupling that are of O(gMz).
The F terms contain the Yukawa pieces that contribute a
mass to the squarks equal to the quark mass (m ), and
terms of O(gm ) to the squark —Higgs-boson couplings.
The F terms also contain the parameter p which contrib-
utes to the off-diagonal entries in the mass matrix [see Eq.
(4.3c)] as well as to the couplings. Finally the soft
supersymmetry-breaking terms contribute the parameters
A

q
Ill 6 that contribute to the off-diagonal terms in the

mass matrix and in the coupling s. The soft-
supersyrnrnetry-breaking parameters M & and M U above
in (4.3) do not contribute to the couplings.

The soft supersymmetry-breaking parameters M &,
M U, and A„m6 are adjusted so that the squarks are
sufFiciently massive to have escaped detection while not
so massive to destroy the stability of the electroweak
scale to radiative corrections (i.e., the naturalness motiva-
tion for supersymmetry). The parameters M & and M U

show up in radiative corrections to Higgs-boson masses

sr s
J II

I II I
I

H 4 H
s e s s r e r r s e 4&0J e r r e e r e r e ~

ess ~

I I
I I

h J hrr e s r s r r a r s r IrJ s s e s e a r s r o

oeo ~r

I II I

A C A
e e r e r e r e e r IteJ'r s s r s s r s e o

r
I
I
I I

I

G G
s e e e e e e s e e Pr J's r s s e e r e e s

FIG. 5. The corrections to the mass sum rule that are qua-
dratic in the squark mass cancel in the above diagrams. The re-
striction on naturalness from corrections to the Higgs-boson
masses is, therefore, hidden in the sum rule.

in diagrams such as that shown in Fig. 4. In the renor-
malization of the mass sum rule, the combination of these
diagrams that arises is shown in Fig. 5. These diagrams
sum exactly to zero. So while there are large corrections
arising from M & and M U to the mass of each Higgs bo-
son, these contributions cancel in the sum rule. The sum
rule is, therefore, insensitive to these parameters when
they become large.

On the other hand, the supersymmetry-breaking pa-
rameter A„m6 as well as the parameter p contributes to
the couplings of the squark to the Higgs bosons. If this
parameter becomes large, substantial corrections can
arise to the sum rule. These corrections occur only when
there is substantial left-right mixing between the squarks.

The expression for 6 in Appendix B is composed of
three parts: b, =BI+62+ho. b,„-O(a(m"/MII )}
where m represents a mass parameter such as the up-
quark mass or a parameter involving the squark sector
such as A„m6, p, , m, or m . We leave 6 in terms of

9( Mp

the mixing angles a, P, and 8 for convenience. The ex-
pressions for these angles in terms of physical masses are
lengthy and not very illuminating. Expressions for a and
P are given in Appendix A of Ref. 16.

The terms in h4 give the largest contribution to 5 for
large quark and squark masses. The terms involving the
oF-diagonal entries in the squark mass matrix (A„m6
and iLI) give large contributions provided the squark mix-
ing angle 0 is not small. 52 contains terms that are
O(am }, but these terms go to zero as the squark mass

becomes large. This is a manifestation of the cancellation
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These contributions have the same sign. This differs from
the renormalization of the p parameter in that the p pa-
rameter is protected by a custodial symmetry which is
not broken by equal-mass fermion doublets. The effects
of a mass-degenerate heavy doublet has been discussed
before in the context of the standard model. '

V. CONCLUSIONS

We have formulated the procedure for computing
corrections to the Higgs-boson-mass relations in super-
symmetric extensions to the standard model containing
doublets. An explicit calculation in the case with just
two doublets [the minimal supersymmetry extension
(MSE)] was given. It was necessary to calculate self-
energies of Higgs bosons and vacuum-polarization ten-
sors as shown in (3.27) and (3.32). Coupling constant and
wave-function renormalizations are not necessary. Tad-
pole contributions cancel exactly. The results in (3.27)
and (3.32) are not destroyed in the presence of other
Higgs representations (singlets, triplets, etc.) provided
that no mixing between these fields and the Higgs dou-
blets takes place. If mixing occurs, the tree-level mass re-
lations (1.1) and (1.2) themselves will be destroyed. These
results were generalized to the supersymmetric extensions
to the standard model with more than two Higgs dou-
blets (Appendix D).

We have performed an explicit computation of the ra-
diative corrections to (1.1) from matter loops. We have
found large corrections to the mass relation provided that
the two complex squark fields mix. This results from
large squark —Higgs-boson couplings. The potentially
large contributions of O(am ) or O(am&) to Higgs-
particle masses from a heavy squark and slepton sector in
supersymmetric theories is hidden in the sum rule, i.e.,
cancels between the terms appearing in the sum rule.
Provided that squark mixing is negligible, it is possible to
imagine extremely large squark masses without inducing
large radiative corrections to the sum rule.

FIG. 8. Feynman rules involving Goldstone bosons and
squarks. We have written these in the uL —u& basis for simpli-

city.
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APPENDIX A: FKYNMAN RULES

In this appendix we display some Feynman rules that
are needed in the calculation of Higgs-boson self-energies
in the MSE. The Feynman rules we have used that are
not included in the literature (to the best of our
knowledge) are shown in Figs. 8 and 9. CP conservation
demands that only an even number of pseudoscalars can
emanate from a vertex.

APPENDIX 8: THK CORRECTION
TO THE MASS RELATION

The 0 (a) corrections 6 can be divided into pieces:

5=54+ A2+ 50, (B1)

where 6„is the part of 6 where the Xth power of the
up-quark mass or parameters in the up-squark mass ma-
trix (such as A „m6, p, or the up-squark masses them-
selves) occur. The results of the calculation are as fol-
lows:

h4=
z 2

Isin a[F(m„,m, MH }+F(m„,m, MH) 3F—(m„,m„,MH)]
16 Myosin P 1 1 2

+cos a[F(m„,m„,M& )+F(m~, m„,M& ) —3F(m„,m„,MI, )]

+cos2PF(m„,m„,M„)+sinPF(m„,m„,0))

g m„N,( A„m6sina+}u cosa)sin28„+ Isina[F(m„,m„,MH ) —F(m, m„,MH)])
16 Myosin P

g m„N,(A„m6cosa—psina)sin28„+ Icosa[F(m, m„,MI, ) F(m—„,m„,M& )])
16m 2M2~sin2P

2 2g m„X, ([2F(m, m„,M„)(A„m6cosp psi—np) +2F(m, m„,0)( A„m6sinp+ycosp, ) ]2 2

64m. Myosin P 1 2 1 2

—sin 28„t [F(m~, m, MH )+F(m„,m, MH ) ]( A „m6sina+ p, cosa)
1 1 "2 2

+[F(m„,m„,MI, )+F(m„,m„,Mr, )](A„m6cosa psina) —
)

—cos 28„[2F(m, m, MH )( A „m6sina+ p cosa)
Q) Qp

+2F(m„,m„,Mr, )( A„m6cosa —p sina) ]),
2 2+

2=
z I[cos 8„(T3—e„sin 8+ )+sin 8„(e„sin8~)]

8 cos 8g slnP

X [sina cos(a+P)F(m, m„,MH ) —cosa sin(a+P)F(m„,m„,M& )]

+[sin 8„(T3—e„sin8~)+cos 8„(e„sin8+ )]

X [sina cos(a+P)F(m, m, MH ) —cosa sin(a+P)F(m, m, M& )]J
2 2 Q&' Q2'

3 m N+
2 z z [sin aMHG(m„,m„,MH)+cos aMr, G(m„,m„,M„) cos PM—„G(m„,m„,M„)]

16m Myosin P

(B2a)

32% cos Hgr 96% cos Her

g m„N,cos(a+P)+
2 z sin28„(A„m6sina+p cosa)

1677 cos 8g slnP

X I[cos 8„(T3—e„sin8~}+sin 8„(e„sin8~)]F(m„,m„,MH )

—[sin 8„(T3—e„sin8~)+cos 8„(e„sin8~))F(m, m, MH)
2 2

—cos28„(T3—2e„sin 8+ }F(m„,m„,M&)}

g m„N,sin(a+P)
sin28„(A „m6cosa psina )—

1677 cos 8@slnP
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X I[cos~0„(T3—e„sin8~)+sin 8„(e„sin8~)]F(m„,m„,M~ )

—[sin 8„(T3 —e„sin 0~)+cos 0„(e„sin8~)]F(m, m, Mq)

—cos20„(T3—2e„sin 8~)F(m„,m„,Mq ) j

g m

2 z I [cos 8„(—T3+e„sin0~) +sin 0„{e„sin8~) ]F{m,m, O)
8% cos 8~ 1

—[cos 8„(—T3+e„sin8~)+sin 8„(e„sin8~)] F(m, m, Mz)
Q1 Q1

—
—,'sin 0„cos8„H(m„,m, Mz)j

[[sin 8„(—T3+e„sin8~) +cos 8„(e„sin8~) ]F(m,m, O)

—[sin 8„(—T3+e„sin8~)+cos 8„(e„sin8~)] F(m, m, Mz)
Qp Q2

—
—,
' sin 0„cos8„H(m,m, Mz ) j, (B2b)

M N
[[cos 8„(T3—e„sin 8~}+sin 8, (e„sin8~)]16' cos Op

X [cos (a+p)F(m, m, MH )+sin (a+p)F(m„,m„,MI, )]

+[sin 8„(T3—e„sin8~)+cos 8„(e„sin8~)]
X[cos {a+p)F(m,m„,MH)+sin ( a+p)F(m„, m, Mq)]

+ —,'sin 28„(T3—2e„sin 8~) [cos (a+P)F(m, m„,MH)+sin (a+P)F(m„,m~, M&)]j

g MzN
I[cos 8„(—T3+e„sin0s, )+sin 8„(e„sin0z )] 26(m„,m„,Mz)

1677 cos Ogr 1

+[sin28„(—T3+e„sin8~)+cos 8„(e„sin8~)] 26(m, m, Mz)
Q2 Q2

+sin 0„cos8„G(m,m, Mz)
Q) Q2

+4[(—T3+e„sin8~) +(e„sin8~) ]G(m„,m„,Mz)j, (B2c)

where N, =3 colors and

xm f+(1—x)m2 —x(1—x)m3
F(m &, mz, m, ) = f dx ln

0 p
(B3)

xm, +{1—x)m2 —x(1—x)m3
6(m &, mz, m3) = f dx x(1—x)ln

0 p

xm, +(1—x)m2 —x(1—x}m3
H(m, , mz, m3)= f dxx ln

0 P

T3 is the weak isospin (which is + —, for up-type quarks).

(B4)

(B5)

The expression for b, in (B2) should be independent of the renormalization point p. We have checked that this is
indeed the case in both the analytic expression and in our computer program for calculating 5, which provides a partia1
check of our answer (equivalent to the cancellation of divergences). We have also verified that (3.28) is satisfied which is
a check on the value of the Goldstone self-energy that enters in (3.27).

The contribution for down squarks and down quarks is easily obtained from this result. The substitutions are shown
below:
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0„~0d,
m„~md,
m„~m&

1,2 1,2

e„~ed,
T3=Y 2

—1 1

sinp~cosp,

cosp~ sinp,

cosa ~sina,
sina~cosa .

(86a)

(86b)

(86c)

(86d)

(86e)

(86f)

(86g)

(86h)

(86i)

The last four equations imply sin(a+p)~sin(a+p) and cos(a+p}~—cos(a+p). To obtain the proper result re-
quires the further substitutions

sin(a+p) ~—sin(a+p),

cos(a+p)~ —cos(a+p) .

For example, the first two terms in 62 for the down quark and squarks should be

2 2
g mdN, 2 ' 2 2 ' 2[cos Og( T3 —edsin ~w)+sin ~d(edsin 6I+

8m cos Hacosp

X [cosa cos(a+P)F(m&, m&, MH )+sina sin(a+P)F(m&, m&, M„}]
1 1 1 1

+[sin Hg(T3 edsi—n ea )+cos eg(egsin ea )]

X [cosa cos(a+p)F(m&, m&, MH }+sina sin(a+p}F(m&, m&, MI, )] .2' 2 2 2

(86j)

(86k)

(87)

The contributions for the lepton and slepton loops are
given in terms of the contributions for the up- and down-
quark loops. The electron and selectron contribution is
obtained from the expression for the down quarks with
the appropriate mass and SU(2) XU(1) quantum-number
replacements. Similarly the contributions from the neu-
trino and the sneutrino are given by an expression similar
to that for the up quark with the appropriate mass and
SU(2) X U(1) quantum-number substitutions.

H
H

)eeeoaseeo
r

h
H

r

-~ s' cos 2acos(P+ a)

[2scn 2asin(P t a) —cos 2acos(g + a)]

A H, h

APPENDIX C: TADPOLE CONTRIBUTIONS

)amaaaaama
r
A

z' ', s cos 2$(cos(I9+ a), -stn(p+ a))

In this appendix we demonstrate explicitly that the
tadpole contribution to b, in (3.27) and to b, in (3.32) van-
ish in the minimal supersymmetry extension (MSE). The
result can be seen by examining the Feynman rules that
are present in the MSE. We display the vertices that are
needed for the calculation of the tadpole diagrams in Fig.
10. The contribution to the sum in (3.27) from the tad-
pole diagrams in Fig. 11 is now easily seen to vanish us-
ing the couplings in Fig. 10.

We also display the vertices needed for the tadpole dia-
grams contributing to (3.32) in Fig. 12. The combination
of tadpole diagrams in Fig. 13 vanishes.

These results generalize to the 2N Higgs-doublet mod-
els discussed in Appendix D. The H's in (D16) and
(D18), therefore, include all contributions to Higgs-boson
self-energies besides tadpole diagrams. Similarly, tad-

H, h
)a~waamaaer

G
-q', s cos 2I3 (cos(p + a), -stn(p + a) )

h
h)eaaeaaaaar

h

-~'
~

s* cos 2asin(P+ a)

~~~mwmmmw~
[2sin 2acos(P + a) + cos 2astn(P + a))

M, h
'~' s' y"" (cos(P —a), st n(P —a) )

FIG. 10. Trilinear couplings relevant to tadpole contribu-
tions to (3.27).
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FIG. 11. These diagrams contribute to the sum in (3.27). The
couplings in Fig. 10 show that this contribution is zero.

FIG. 13. These diagrams contribute to the sum in (3.32). The
couplings in Fig. 12 show that this contribution is zero.

poles are not to be included in the contributions from the
vacuum-polarization tensor either.

APPENDIX D: GENERALIZATION
TO 2N HIGGS DOUBLETS

Models with more than two Higgs doublets have mass
relations analogous to (1.1) and (1.2). In an extension of

the standard model with 2N Higgs doublets, there are 8N
Higgs degrees of freedom. After spontaneous symmetry
breaking three of these are Goldstone bosons, leaving
4N —2 charged Higgs bosons H;* and 4N —1 neutral
Higgs bosons. We shall denote the neutral Higgs scalar
by H; and the neutral Higgs pseudoscalar by A, . In the
supersymmetric version of the 2N doublet model, the
couplings and masses in the Higgs sector are again con-
strained. The mass relations that arise are

~ rQ

Hjeeaaeeeea -ig [Mwcoo(P —a) —c,*c coo 2Pcoo(P + a)] 2N 2N —1

MH, g Mw+Mz ~

i=1 i=1
(D 1)

$aaaaaaaaa
r

G

—~', ~ co@ 2Pces(P+ a)

2N —1 2N —1

M += g M„+M)I
i=1 ' i=1

(D2)

h
$aaaaaaaaa

r r
~ G

&', z co@ 2Pdin()9+ a)

which generalize (1.1) and (1.2).
The Higgs potential for the model in the extension

with 2N doublets is

2N 2N
v= g m;(t;(r), —gm, , (p, p, +p, p, )

$aaaaaaaaa
r

-ig [Mo oia(p —a) + &
'c coo 2poia(p+ a)]

w+

H
aaa\a\aaa tgM~coz(P —a)g""

3 2N

+ lg2 y y ( 1)&+)y ay
a=1 i =1

(D3)

tg M~~I n(P —a)g~

FIG. 12. Trilinear couplings relevant to tadpole contribu-
tions to (3.32).

This equation is the 2X doublet analog of (2.4) where ar-
bitrary soft supersymmetry-breaking terms have been in-
cluded.

There is now a vacuum-expectation value U, for each of
the 2N doublets P, . We can eliminate the m; in favor of
the VEV's U;. The neutral scalar and neutral pseudosca-
lar mass matrices are 2N X2N matrices. The neutral sca-
lar mass matrix M is given by
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VjM~=+ m, —"+—,'(g +g' )U; (no sum on i ),
j wi

(D4a) Tr5Ms =Tr5M

Tr5M&2 =rr5M'2 .

(D10)

(D 1 1)
M2(i&j ) = —m;. +( —1)J '

—,'(g2+g'2)U, U (D4b)

while the neutral pseudoscalar mass matrix M' is given
by

Vj
(D5a)

jAi

M,', (i' )=m,, (D5b)

M' has a zero eigenvalue corresponding to a neutral
Goldstone boson. Since both M and M' are real
and symmetric, they can be diagonalized by orthogonal
transformations that preserve their traces, i.e.,
g;M& =g;M;; and g;M„=g;M;. Using (D4) and

(D5), one can obtain (D 1) and (D2).
The renormalization of the mass relations in (Dl) and

(D2) is a generalization of the arguments in Sec. III. The
wave-function renormalization matrices Zz and Zp
become 2N X2N matrices. The mass matrices (D4) and
(D5) are symmetric and are diagonalized by

From the expressions for the mass relations in (D4) and
(D5}we have

Tr5M =Tr5M' +5Mz (D12}

so that

Tr5M&2= Tr5M +5M (D13)

i I H It (MH )=0 (no sum),
I I I

(D14a)

iI'H H (MH )=iI HH (MH )=0 (no sum), (D14b)
I j I j j

t'I
H H (MH )=1 (no sum) . (D14c)

If we define the radiative corrections to (D 1) as

2N 2N —1

XMH = X M~ +Mz+~
i=1 i=1

(D15)

The renormalization conditions analogous to those in
(3.20) are'

(Ms )D =Os M Os~ (Mp)D =Op M Op (D6) we obtain the result

where Os and Op are orthogonal matrices. (Ms)D and

(Mp}n are diagonal matrices whose nonzero entries are
the masses MH and M„,respectively. We shift parame-

I I

ters as in (3.5):

2N 2N

X II„H(M„' )+ y II„„(M„') —azz(Mz'),
i =1 j=1

(D16}

(m,, )b=m;, +5m,, (tAj },
(Ut )b =U;+5Vt

(Mz)t =Mz+5Mz

(D7a)

(D7b)

(D7c)

where the sum over the pseudoscalar Higgs-boson A.
self-energies includes the neutral Goldstone-boson self-
energy IIGG(0). It can be shown that the tadpoles cancel
just as in the MSE. Similarly it can be shown that the
correction b, to (D2) defined as

The unrenormalized propagators are given by formulas
analogous to (3.12):

iI (p )=(Z' ) Z' p —(Z' ) (M ) Z

2N —1 2N —1

MH+ = Q M„+Mid +5

is given by

(D17)

(p 2) (Z I/2) TZ l/2p 2 (Z i/2)T(M2 ) Z 1/2 5M

(D8)

(D9)

2N 2N
E= —+II ~ g(M y)+ + II„q(Mq ) Au. ii(Mii —),j J j

(D18)

where 5Ms =Os 5M Os and 5Mp =Op 5M Op ~ 5M
and 5M' are analogous to the matrices constructed in
the two-Higgs-doublet case. Since the trace of the ma-
trices is invariant under orthogonal transformations we
have

where the sum over the pseudoscalar Higgs-boson A.
1

self-energies includes the neutral Goldstone-boson energy
IIGG(0), and the sum over the charged Higgs-bosons H;+
self-energies includes the charged Goldstone-boson self-
energy II + +(0).

'S. P. Li and M. Sher, Phys. Lett. 140B, 339 (1984); J. Gunion
and A. Turski, Phys. Rev. D 39, 2701 (1989).

2H. Haber and G. Kane, Phys. Rep. 117, 75 (1985).
3R. Flores and M. Sher, Ann. Phys. (N.Y.) 148, 95 (1983}.
4J. Gunion and A. Turski, Phys. Rev. D 40, 2333 {1989).
5J. Gunion and A. Turski, Phys. Rev. D 40, 2325 (1989).
J. Gunion and H. Haber, Nucl. Phys. B272, 1 (1986).

7P. Fayet and J. Iliopoulos, Phys. Lett. 51B,461 (1974).

L. Girardello and M. Grisaru, Nucl. Phys. B194,65 (1982).
See, e.g., W. Marciano and A. Sirlin, Phys. Rev. D 22, 2695

(1980}.
' K. I. Aoki et al. , Prog. Theor. Phys. Suppl. 73, 1 (1982).
"A. Sirlin and R. Zucchini, Nucl. Phys. B266, 389 (1986).
'2J. C. Taylor, Gauge Theories of Weak Interactions (Cambridge

Monographs on Mathematical Physics: No. 3) (Cambridge
University Press, Cambridge, England, 1976).



41 RADIATIVE CORRECTIONS TO HIGGS-BOSON-MASS SUM. . . 239

W. Marciano and S. Willenbrock, Phys. Rev. D 37, 2509
(1988); S. Dawson and S. Willenbrock, Phys. Lett. B 211, 200
(1988).
S. Bertolini, Nucl. Phys. B272, 77 (1986).

M. Chanowitz et al. , Nucl. Phys. 8159, 225 (1979).
J. Gunion and H. Haber, Nucl. Phys. B278, 77 (1986).
M. Chanowitz et al. , Nucl. Phys. B153,403 (1979).

'SJ. Fleisher and F. Jegerlehner, Nucl. Phys. B228, 1 (1983).










