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We have extended and improved our previous studies of the qqq q system, paying special attention

to the KK channels. The new results clarify and reinforce the KK molecule interpretation of the S*
and 5. Effective meson-meson potentials extracted from the qqq q system and couplings to qq scalar
mesons lead to coupled-channel amplitudes which closely resemble those observed in both the S*
and 5 channels. We also show that the KK molecules have properties consisent with experimental

results on the production of the S* and 5 and of low-mass KK pairs.

I. INTRODUCTION

It now seems unlikely that the S"(975) and 5(980) reso-
nances [the fo(975) and the ao(980)] are simple qq
mesons. In view of this, and considering the importance
of the scalar-meson channel in the search for glueballs,
we have continued our studies of the KK molecule inter-
pretation of the S* and 5. In this paper we report new
findings which expand, clarify, and reinforce our original
results' based on a more rudimentary model of the qqq q
system.

These two lightest scalar mesons, with IJ =00++
and 10++, respectively, have a long history of being
diScult to accommodate as members of the 1 Po qq no-
net expected in the 1 to 1.5-GeV mass range. We will
discuss extensively the properties of the S" and 5 in Sec.
IV, but here we recall some of the diSculties they present
to a qq interpretation.

(1) Their near degeneracy suggests that they are an al-
most ideally mixed (co,p)-like doublet. However, if this
were the case, then I (S'~vrtr)/r(5~rltr) would be
about 4 in contrast with the observed value of about —,

'

(Refs. 3 and 4}.
(2) Both the S* and 5 seem to be very strongly coupled

to the KK channel: the mm and ga mass distributions as-
sociated with these states display an otherwise normal
Breit-Wigner shape which is dramatically cut off at KE
threshold. For an (co,p)-like doublet this behavior is
unexpected; for example, one would predict that
I (S' EK)/I (S* neer)=p /3p .

(3) The observed narrow total widths of the S* and 5
do not fit into otherwise successful models for the decays
of the qq states. In the pointlike pseudoscalar emission
model, the quark-pair-creation model, ' and the Aux-
tube-breaking model for meson decays, the amplitudes
for the decays of the Po qq scalars differ from the well-
known S-wave part of b, (1235)~ cour(b, is the I= 1,
1 'P, state) only by some spin and fiavor coupling factors.
For example, assuming the S* is a pure ~-like state, these
models all predict

r(S*-~~) =—', X phase-space-dependent factor,
I (b~ ~(con')S}

where the "phase-space-dependent factor" would be uni-

ty were it not for the different decay momenta of 467
MeV/c and 350 MeV/c, respectively, and which in the
models varies between 0.7 and 1.5. Since
I (b, ~(con. )s)=150 MeV, these models thus predict
r(S'~m. ~) to be between 500 and 1000 MeV, so far
from the observed partial width of about 30 MeV that
something seems to be seriously wrong. [There is a
significant but smaller discrepancy for I'(5 —+gn) which
has almost exactly the same phase space as b, ~tour. ]

(4) If the S' and 5 are qq 1 Po states, then their cou-

plings to yy can be computed in terms of the measured
couplings of their SU(6)XO(3} counterparts, the 1 P2
states f2(1270) and a2(1320). These predictions fail.

(5) Recent studies ' of the reactions /~VX where
V=p, co, g is a "fiavor-tagging" vector meson and X is a
scalar or tensor meson, show once again that the S* and
5 do not behave as analogs of the fz(1270) and the
az(1320). For example, I (g~coS*)/r(g~cof2) ~ 10
while the S' is the dominant state seen in t)'r~Pa vr

Equally anomalous behavior is observed for the 5.
A possible solution to the puzzle presented by these

states was suggested by Jaffe on the basis of calculations
of the properties of qqq q in the spherical-cavity approxi-
mation to the bag model. In these calculations color-
magnetic forces stabilized families of qqq q mesons with
Aavor quantum numbers identical to those of ordinary
meson nonets (hence the name "cryptoexotic"). Jaffe
pointed out that some of the peculiar properties of the S*
and 6 were suggestive of their being two members of the
scalar cryptoexotic nonet.

In Refs. 1 we studied the qqq q system in a potential
model. One of the biggest advantages of such a calcula-
tion over the bag-model calculations is that in the latter
approach total confinement is imposed by the boundary
condition, while in a potential model the possible binding
of the qqq q system is entirely a dynamical question. Our
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calculation suggested, as did Jaffe's, that the S* and 6
were qqq q states, but of a very different sort: we found
that they corresponded to very weakly bound EK systems
in both the isoscalar and isovector channels. Thus, in-
stead of having four quarks in a single hadron symmetri-
cally arranged about their center of mass, we have two
loosely bound mesons. Moreover, instead of finding a
complete nonet of scalars, our calculation indicated that
only these two bound states should exist. The KE mole-
cule interpretation also explained the observed narrow-
ness of the two objects (the bag model predicts a broad
5), and of course it automatically leads to an explanation
of why they are both found just below EE threshold.
The model also provides an understanding of the absence
of a rich spectrum of qqq q states, suggesting that such
sectors are most appropriately viewed as interacting
meson-meson systems.

We will see, in what follows, that the EE molecule pic-
ture indeed provides a natural interpretation for the ob-
served properties of the S* and 5. We will also argue
that the potential models are a more appropriate method
for approaching qqq q dynamics than the naive bag mod-

10

II. THE NEW, IMPROVED CALCULATION

A. The improvements

B. The Hamiltonian

As our basic Hamiltonian we take

H= g
t =1

Pr
m, +

2m;
J

+Hsi+HsD

where the spin-independent potential is

The calculations of Refs. 1 were exploratory, and as
such were based on the simplest model which bore some
semblance to reality. Many features of that calculation
have now been improved.

(1) References 1 assumed SU(3) symmetry, and in par-
ticular that all four quarks have the same mass. This
meant that the qqq q system was very symmetric, which
enormously simplified the calculations. Unfortunately,
this symmetry is not always realistic. We now make no
such assumption and so avoid the ad hoc prescriptions of
Refs. 1 in which this common mass was taken to be the
average mass of the four quarks and by which various
SU(3)-breaking effects were built in by hand.

(2) References 1 are based on a Hamiltonian in which
the only interactions were harmonic confinement and
hyperfine interactions. Here the unrealistic but con-
venient harmonic potential is replaced by a central in-
teraction which is of the standard Coulomb-plus-linear
type. The parameters of this Hamiltonian are determined
by the spectroscopy of S-, P-, and D-wave mesons,
guaranteeing that the basic interquark interactions are
accurate in those sectors where they are known.

(3) A corollary of improvement (1) above is that we can
now split the qqq q problem up into distinct (qq)+(qq)
channels with separate thresholds.

Hsi= —g ( a—,r,"'+ ,'—c+,'b—r, )"F;.F
l (j

and the spin-dependent potential is

(2)

8m'
5 (r )S S F 'F +Ht +Hso

S

SD
i (j &™J

(3)

where

F='
for a quark,

2
for an antiquark,

(4)

is the color matrix, and m;, r;, p, , and S; are the mass,
position, momentum, and spin of the ith particle, and
5 (r) and r ' are smeared versions of the operators 5 (r)
and r '. (These modified operators partially account for
relativistic corrections; they are described in Appendix
A. ) We do not specify the tensor and spin-orbit interac-
tions H«„and Hso in (3) because we ignore them in what
follows; they are small and for the dominantly S-wave
ground states which are the objects of this study, they
would have little effect in any event. As already men-
tioned, the parameters of the Hamiltonian are deter-
mined by a fit to the 1S, 1P, and 1D states of ordinary
meson spectroscopy. This fit gives m„=md =0.375 GeV,
m, =0.600 GeV, c = —1.036 GeV, b=0.178 GeV, and
a, =0.748.

While this Hamiltonian is now a much more realistic
representation of the physics of the qqq q system than
that of Refs. 1, it is not without many of the same prob-
lems. Among these are the following.

(1) F; F confinement. In our model for Hsi, H/i is
proportional to F; FJ (Ref. 11). This model is known to
be flawed phenomenologically because it leads to power-
law van der Waals' forces between color-singlet had-
rons. '" It is also flawed theoretically in that it is very
implausible that the long-range static qqq q potential is
just a sum of the two-body potentials. (This problem is
related to the fact that this model does not respect local
color gauge invariance. ") Despite these defects we be-
lieve that the use of the model is justifiable. It was al-
ready argued in Refs. 1 that the F; F model has many
desirable characteristics. For example, if any physical
(i.e., color-singlet) multiquark system is divided into two
color clusters C and C, the model automatically confines
them with a string tension proportional to the appropri-
ate SU(3)c Casimir constant. The model also allows the
asymptotic separation of a multiquark system into nonin-
teracting color-singlet clusters, and it leads to potentials
in mesonlike qq and baryonlike qqq subsystems in accord
with the empirically known potentials. Despite all of
these satisfactory properties, it was not possible in Refs. 1

to justify (or check empirically) other properties of the
model, in particular its crucial predictions for matrix ele-
ments which involve color transitions (such as
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1»12~~8»8&~, see below} within clusters. Since the publi-
cation of Refs. 1, the status of the F;.F - model as a legiti-
mate representation of confinement has become much
clearer through the work of Ref. 12 on the flux-tube mod-
el of confinement. This latter model, which has explicit
local color gauge invariance, is based on the strong-
coupling limit of Hamiltonian lattice QCD. In this mod-
el one can see that the two-dimensional color basis of the
F, F, model (see Sec. III below for details) is a truncation
of the complete flux-tube basis. However, one can also
see that the truncation is a good one in the sense that it
closely reproduces the two lowest-lying adiabatic poten-
tials of the flux-tube model. In particular, the F;.F.
model qualitatively reproduces the expected color mixing
effects. It fails quantitatively in predicting the rapid de-
crease of color mixing for increasing meson-meson sepa-
ration (which leads to the rapid decrease of van der
Waals' forces) because it is a truncation, but we view this
as a minor flaw with effects that can for the most part be
readily compensated. This will be particularly true for
the system at hand: as emphasized in Refs. 13, its struc-
ture is dominated by the better understood short-range
forces.

(2) Nonrelativistic dynamics. A persistent problem of
the quark potential model is the assessment of the impor-
tance of relativistic effects. In the cases of mesons and
baryons there is now considerable evidence to support the
view that the hadrons are relativistic (as opposed to ul-
trarelativistic) systems which can be studied by extrapola-
tion from the nonrelativistic limit. [That is, for the light
quarks both m and p are of the order of AQCD Thus p/m
is of order unity (not infinity) so that the basic structure
of such systems is similar to that of the nonrelativistic
limit. ] Nevertheless, in each particular case one must
carefully analyze the reliability of results based on the
nonrelativistic framework. In a very large number of sit-
uations one can argue that the main effects of relativistic
corrections have been absorbed into the effective nonrela-
tivistic parameters [e.g. , the quark masses and the string
tension hide the difference between the energies
(p +m )'~ and (m+p /2m)]. In the case at hand,
there is, however, one particularly severe problem with
the nonrelativistic framework that has strongly
influenced our approach. Consider a configuration of
q & q2q3q4 corresponding to two interacting color-singlet
mesons (q, q3), and (q2q4), . The nonrelativistic frame-
work will produce kinetic energy operators for these two
clusters in which their masses are ( m, +m 3 ) and

(m 2+ m~), independent of their internal interactions (i.e.,
nonrelativistically the mass of a system is always the sum
of its constituent masses). We will address this defect by
adopting methods designed to freeze out the cluster ki-
netic energies, extract effective meson-meson potentials,
and then solve the (coupled channel) Schrodinger equa-
tion with the correct physical masses of the qq clusters
using these effective potentials.

(3) The treatment of qq annihilation. Our potential
model is suited to studying the effects of ordinary poten-
tials on the qqq q system. However, there are additional
annihilation reactions that can occur when a quark and
antiquark of the same flavor appear in the qqq q system.

The three types of annihilation which can occur are
shown in Fig. 1. The effects of Fig. 1(a), annihilation into
an ordinary meson, are easily added to the potential mod-
el and are discussed below. The effects of Fig. 1(b), an-
nihilation into a hybrid meson' ' ' (i.e., a qq state with
excited glue) could also easily be included. There are,
however, both experimental and theoretical grounds for
believing that the lightest such states will have masses of
about 2 GeV, well above the EEC threshold region which
we are investigating. We therefore simply ignore the
effects of these states. Unlike the first two cases, annihila-
tion via Fig. 1(c), in which the intermediate state consists
of an ordinary qq meson remnant of the original qqq q
state along with a (virtual} glueball, ' turns out to be
problematical since qq annihilation is very strong in the
pseudoscalar-meson sector which will play a central role
in what follows. Without this process we would have an

rl with quark content (1/W2)(uu+dd ) and the mass of
the pion and a pure ss rl' (Ref. 17). As we will find that
the qqq q system is well approximated as a system of in-

teracting mesons, it is probable that the main effect of
this interaction in qqq q is to nearly recreate within its qq
clusters the free meson eigenstates. We will accordingly
assume that the annihilation of Fig. 1(c) simply produces
rl and r}' clusters identical to the free eigenstates (which
we approximate by the "perfect mixing" pattern

g=(1/&2)[(1/&2)(uu+dd ) —ss]

= ( I /&2)(7}„,—r},—,),

(a)

FIG. 1. The three types of qq annihilation which can aftect
the qqq q system: C, a) annihilation without gluonic excitation
into an ordinary qq meson, (b) annihilation with gluonic excita-
tion into a hybrid meson, (c) annihilation in a color singlet qq
subsystem to produce a (virtual) glueball and an ordinary
meson; in these diagrams an asterisk represents excited glue.
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1 1= n —(g„,—g„-I V w —( q„, —n„-)) (8)

and

=-,'( V.q + V.„) (9)

+2V„„-+V„-g- )

C. Methods

We now describe in some detail the methods we used
to extract physics from this model. The first step is to
find the four-quark wave function. The most general case
of interest here is the one shown in Fig. 2 in which 1 and
2 are quarks and 3 and 4 are antiquarks with masses

m, =m4=m and m2=m3=m'. [Thus (1,3) and (2,4)
will be associated with the E and K, respectively. ] ln this
case an obvious set of coordinates is

r13 = r1 r3

r24= r2 r4

mr, +m'r3
m+m'

m r2+mr4
m+m'

(12)

m (r, —r~)+m'(r3 —r2)

m+m'
m (r, +r4)+m'(rz+r3)

2(m +m')

(13)

(14)

in terms of which the four-quark kinetic energy is simply

P P13+P24 P ~

HO=
c™+

2M 2p 2p,
(15)

with M =2(m +m'), p=mm'/(m +m'), and
p„=—,'(m +m'). However, much of this calculation in-

volves the evaluation of matrix elements of functions of
the interquark distances, and for these purposes it is con-

X

X
fpg

1I

gp' ll ~

FIG. 2. The qqq q system, showing the labeling of the parti-
cles and their relative coordinates.

g'=(1/&2)[(1/&2)( uu +dd )+ss]
= (1/&2)(r)„,+g„),

of Ref. 17), and that the effective meson-meson potentials
(to be defined precisely below) involving q and rl' are the
averages over their compositions. Thus, for example,

V.„=(~q~ V~~q & (7)

venient to use the symmetric relative coordinates

x =
—,
'

(r&
—r2+ r3 —r4)

a= —,'(r, +rz —r3 —r4),

y= —,'(r, —rz —r, +r4),

(17)

(18)

used in Refs. 1. With this choice the kinetic energy
operator becomes

2M 4p m'+m 2p
(19)

note that for S waves the matrix elements of the last term
vanish.

With its three relative coordinates and nontrivial color,
spin, and space couplings, the qqq q system is a very com-
plicated one that poses formidable obstacles to a
comprehensive solution. (We note that even the toy prob-
lem' in which the only interaction is —g, &~ ,'kr;~F—; FJ
remains unsolved. A solution would be very interesting
for the light it might shed on the problem of high angular
momentum baryonium. '

) Here, however, our goals are
much more modest and allow us to adopt a calculational-
ly tractable (though convoluted) strategy.

(a) We solve variationally for the ground state of the

qqq q system. We do this calculation in a large "box" (by
methods to be described below) so that even if the ground
state of the system naturally corresponds to two free
mesons, their interactions can still be studied.

(b) Out of the full ground-state qqq q wave function we

project amplitudes P„(r) to find a system A of mesons
(e.g. , A =ICI7) at relative separation r. This is done us-

ing our calculated qq wave functions for the mesons in A

as detailed below. This decomposition is most useful
when the full qqq q wave function corresponds to two
weakly bound or unbound mesons, which is always the
case for the systems we study here.

(c) Having (partially) decomposed the complicated

qqq q wave function into a set of wave functions P„(r),
P~(r), . . . , we then map our problem onto the mul-

tichannel scattering problem

HJ&J=
2

M, + + V; 5;)+W„P =Eg;
2p,

(20)

in which i =A, B, . . . , M, is the sum of the meson
masses in the ith channel, p, is the [nonrelativistically
determined: see Eq. (15)] reduced mass of the two
mesons of the ith channel, V; is their effective potential,
and 8'- = 8' = 8', is the transition potential from chan-
nel i to j. Since the X channel problem is characterized
by —,'X(%+1) potentials, it is clear (since N) 1) that the

X extracted ground-state wave functions are insufficient
to determine them. However, we could obtain a set of
such wave functions for every size "box" we choose, and
hence in principle sufficient information to make this
mapping. In practice it turns out to be difficult to deter-
mine the wave functions with sufficient accuracy to use
this method, and so we use instead (approximate) excited
states of the qqq q system in a fixed box. We will give the
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details of this procedure below.
(d) The off-diagonal potentials W; obtained in this way

all correspond to possible quark exchange {i.e., rearrange-
ment) reactions in the qqq q system, e.g., KE~gm. In
some cases, however, there are important channel cou-
plings which cannot proceed in this way. The most
significant for us is the coupling KK~m~ which requires
quark annihilation, and so is not present in this
potential-model calculation. Such couplings arise via the
processes of Fig. 1, either in higher order through, e.g. ,
EE~riri +n.n.—using Fig. 1(c) or directly through the
broad 1 Po qq scalar mesons as shown in Fig. 1(a). As
explained in Appendix 8, the coupling between the qqq q
and qq sectors [to take into account Fig. 1(a)] is built into
our system by adding (closed) qq channels to the
coupled-channel equations (20). The coupling potentials
0; between meson-meson and qq channels are chosen to
reproduce the predicted couplings of the Aux-tube-
breaking (or Po, Refs. 4 and 5) model.

(e) With the very complex qqq q system now modeled
by a "simple" coupled-channel problem with effective po-
tentials, we solve, with the correct physical masses of the
mesons, for the appropriate transition matrix elements
and compare with experiment. The advantage of these
procedures, aside from their sidestepping some of the
inadequacies of our nonrelativistic model, is that they
have allowed us to convert our knowledge of the ground-
state wave functions of the qqq q and qq systems into in-
formation about the behavior of meson-meson scattering
as a function of energy.

III. THE CALCULATIONS

A. Variational solution

Our calculation is based on solving variationally for
the ground state of the qqq q system with the Hamiltoni-
an (1) and so requires an adequate variational wave func-
tion. The general qqqq wave function is very rich in
structure even in our simplified model. There is, first
of all, a two-dimensional color space. One could use
any of the orthonormal pairs ( ~3,z334) ~6]$634) ),

(II)3124~ 18,38~4) ), «(II,41~3~, l8,48») ) as a b~si~ «r
this space. (Here ~C,JC&1 ) indicates that cluster ij is in

the color state C, kl is in C, and that the whole system is
coupled to a color singlet. These bases, and the relations
between them, are given in Appendix C.) Alternatively
(and this is the choice we made) one could use a complete
but nonorthogonal basis such as ( ~1,3124) ~1]41/3) )

which corresponds more directly to the allowed asymp-
totic color states of the Hamiltonian. The system also
has a multidimensional spin space: —,'(8) —,

' g —,
' @—,

'

=2@1+ 1 1@0@0.Since we are interested in the ground
state of the J =0+ sector of this system, we naturally
focus on the two-dimensional subspace of spin zero (vari-
ous spin bases and their relationships are given in Appen-
dix D). In fact, with our previously mentioned neglect of
tensor and spin-orbit forces, the Hamiltonian separately
conserves L and S, so we can restrict our considerations
to this S=O sector, which in turn means we will be deal-
ing only with 2 =0 spatial wave functions.

~q& = g g (x, a, y)~a), (22)

where the four-dimensional color-spin basis a may be

We have not yet discussed the qqq q Aavor wave func-
tion. If the two quarks (or the two antiquarks) have the
same Aavor then only color-spin-space wave functions
which are antisymmetric under their interchange will be
allowed. In our case, we are only peripherally interested
in this possibility: the KK systems on which we focus
have quark contents us u s, usd s, dsd s, and ds u s so
that the Pauli exclusion principle never applies. On the
other hand we will consider systems such as mm. and gg
where it does apply. In addition, we will find it very im-
portant to be able to refer to the SU(3) limit where
m„=md =m, . In that case the Hamiltonian is separately
1~2 and 3=:4 symmetric which means that its eigenfunc-
tions can be classified as being either Fermi or Bose under
these separate interchanges in the color-spin-space wave
functions. Since the SU(3)-symmetric Hamiltonian is also
invariant under the simultaneous interchange P»P24 ofaC„++
quarks and antiquarks, one can show that the J "=0++
wave functions are in fact either "doubly Bose" or "dou-
bly Fermi" giving an SU(3)-flavor structure that is

~ 3)2324) and 6,~634) respectively. The former nine
Aavor states comprise a cryptoexotic nonet; the latter
states can produce systems with exotic Aavor quantum
numbers.

This brings us finally to the spatial wave functions

P (x,a, y) multiplying a given color-spin wave function
associated with the index a. As shown in Refs. 1, this
function must be an eigenstate of each of L„,L„and L
in the harmonic limit with m =m' so that the ground-
state wave function with lz lp ly 0 will depend only
on x, a, and y . In the case at hand the anharmonici-
ties in the true potential and SU(3) breaking will induce
dependence on x a, x y, and a y. However, one can show
that, in a perturbative expansion, such terms will first
enter the wave function as fourth-order polynomials of
the form (x y) and —,'[(x a) +(y a) ]. Since such

fourth-order excitations of the harmonic system are very
high in mass, we expect their contribution to be small.
Indeed, our explicit attempts to include such terms led to
negligible effects. We accordingly performed almost all
of our calculations in the relatively simple variational
space spanned by the wave function (used already in Ref.
1)

Jmax 3 max

g (x, a, y)= g g g C;,„exp( —
—,'P,~„g, ), (21)

j=l i =1 k=1

where (g, , g $ 2)=3( a,xy) and the C's and P's are our
variational parameters. The largest wave function we
considered had j,„=2 and k,„=4, corresponding to a
44-parameter wave function for each index a. Of course
this wave function is still incomplete but, as will be made
clear below, the fact that we thereby underestimate the
binding of the KK system will strength our main con-
clusions.

Given the assumptions we have already made, the state
vector of the qqq q system is restricted to be of the form
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taken to be either the basis with explicit 1~2 and 3= =

symmetry, namely (see Appendixes C and D for
definitions), 13~2324 & Is ~2s34 & 13~2334 & I A, 2. A34 &,

16,2634& ls, 2s34 & and 16»634&1A]2 A34&, the "phy»cal
basis" which we use,

I
1 & =11)3124&IP]3P24 &,

12 &
—11,4123 & IP,4P23 &,

1» =1113124&1&i3 &24&

14& =11,4123& IV, 4 V23

(23a)

(23b)

(24a)

(24b)

From the full qqq q wave function of Eq. (22) we next
project a set of (ground-state) meson-meson scattering
channels corresponding to the effective Hamiltonian of
Eq. (20). Thus we define

P, (r) =2 ~ f f d a d y P;3(a+y)1t24(a —y)

XP, (r, a, y),
$2(r)=2 f f d a d y $,*4(a+x)tlt2*3(a —x)

(25a)

X ttj2(x, a, r), (25b)

etc. , where g; (r,") is the ground-state wave function of
the appropriate isolated q;q- meson. We find that the

qqq q ground state is totally dominated by the

or any other complete set. Our use of the "physical
basis" is motivated by the fact that if the qqq q system is
unbound, its ground states will be proportional to the
states (23} and (24) which have the correct color-spin
structure to represent two free pseudoscalar or two free
vector mesons.

With the form of the variational wave function decid-
ed, the real work begins: computing the matrix elements
of the Hamiltonian with the state (22). These calcula-
tions are tedious, but straightforward, so we do not dis-
cuss them here. Some useful matrix elements for the cal-
culation are given in Appendixes C and D.

The search for the ground-state wave function in the
very large space spanned by (22) is, in many cases, only
feasible when we add a weak color-independent harmonic
confinement potential H, = g; &

—2'er;J to the Hamiltoni-
an (1). This "harmonic box" localizes the qqq q system so
that the variational wave function can respond to an at-
tractive (but nonbinding) or repulsive potential. The
effect of H, can then be subtracted from the deduced
effective potential corresponding to the channel a. H,
also removes an inevitable but spurious effective potential
found at large r when one uses harmonic variational wave
functions. We have checked that this procedure works in
a simple two-body problem by starting with a known po-
tential, adding H„ finding the variational wave function,
and then extracting from it the input potential by the
analog of the technique of the next subsection. Inciden-
tally, we find that the low-energy phase shifts deduced
from these effective potentials converges under expansion
of our variational space much more quickly than the po-
tentials themselves.

B. Effective potentials

pseudoscalar-pseudoscalar ground states of Eqs. (23).
This basic conclusion concerning the particle content

of the 0++
qqq q sector is different from that of the bag

model, but not as different as it might appear. After
correcting for a sign error' ' in the [1]—[405] mixing am-
plitude of Ref. 9, the states of the lowest-lying qqq q sca-
lar nonet have the composition (see Appendixes C and D
for notation)

19,0+
& =0.81216,2634&1A, 2 A34&

+0.58313)2334& lS]2S34 & (26)

which can be written in terms of the nonorthogonal basis
of Eqs. (23) and (24) as

19,0+
& =1.0431PP &, +0.2441vv&, ,

where

1PP &, =3/3/7(11&+12&),

1
vv &,

=~3/5(1»+ 14&),

(27)

(28a)

(28b)

( M +K + V+ W)f+ =EQ+, (29)

where K =—7 /2p and 1(+=/, +$2. The cryptoexotic
solutions (denoted P') of these coupled equations then
have g+WO and g' =0. In the exotic sector (denoted g')
it is P'+ that is trivial, and g' WO. We then have, solving
Eq. (29) for V+ W,

V'—= V+ W =(f'+ ) '(E' M K)g'+, — —

V'—:V —W =(Q' ) '(E' M K)P'— —
(30)

(31)

which yield V= —,'( V'+ V') and W= —,'(V' —V'). Here
F. ' and F. ' are the cryptoexotic and exotic energy eigen-
values. In terms of this V and W and Table I one can
then construct any required potential by using the fact
that the scattering will be diagonal in the R, I,I3,x quan-
tum numbers of Table I, with potentials V" that depend
only on the fiavor structure (exoticity} x. One finds

are the normalized cryptoexotic color-spin combinations
of two pseudoscalars and two vectors. This shows that
even in the bag model, where PP&, and 1VV&, are being
forced to interact by the boundary condition, the lowest-

lying scalar nonet is tending toward the pseudoscalar-
pseudoscalar composition we find.

In view of the PP dominance of our wave function, it
suffices to map our problem onto the multichannel prob-
lem of S-wave pseudoscalar-meson —pseudoscalar-meson
scattering with a Hamiltonian of the form of Eq. (20) and
with the five I=O channels 1:—m.~, 2=KK, 3:—gg,
4—:gg', and 5—:g'g', the three I=1 channels 1—:n.g,
2=KK, and 3=—mg', and the single I =2 mm channel. To
carry out this mapping we first consider the SU(3) limit in
which the qqq q system's solutions are segregated by sym-
metry into noncommunicating cryptoexotic and exotic
sectors, corresponding in the two-channel approximation
to Eq. (20) to the solution spaces 1(2=/& and $2= —

g&

which occur when V&
= V2

—= V. In this case (with
W= W, 2) the equations for a= 1,2 [see Eq. (23)] separate
into



2242 JOHN WEENSTEIN AND NATHAN ISGUR 41

TABLE I. The SU(3) decomposition of various two-pseudoscalar-meson states with I =0++; ~R,I,I, , x ) specifies the SU(3) rep-
resentation R =1,8, 27, isospin I,I3, and exoticity x =c (cryptoexotic) or e (exotic), and [ A, B]+——v'1/2( AB +BA).

Cryptoexotics Exotics
Meson-meson ~1,0,0,c) ~8, 1,I„c) ~8, 0,0,c) ~1,0, 0,e) ~8, 1,I3,e) (8,0,0,e) ~27, 2,I 3e) (27, 1,I 3e) ~27, 0, 0,e)

(m.m )' ='

(m~)
=

Ins tn~

1$5' I $5

[n. n;, ]-.

[ 1IIS ]+
[mg, , ]~
[KK'-']+
[KK'=']~

0
1/2

&1/12
0

&1/3
0
0

&1/3
0

0
0
0
0
0
0

—&1/2
0

—&1/2

0
—&1/2

0
&1/6

0
0

&1/6
0

0
—&1/8
&3/8
v'1/6
v'1/6

0
0

0

0
0
0
0
0

—&4/5
—&1/10

0
&1/10

0
—&1/10
&3/10

—&8/15
—&1/30

0
0

&1/30
0

0
0
0
0
0

—&1/5
+ &2/5

0
—&2/5

0
—&1/4o
&3/40
&3/10

—&3/10
0
0

&3/10
0

+3/16 W„&3/16 W„&3/16 W„

0

( V+ W)sU(g'= &3/16 W„—&1/2 Wi

&3/16 W„O
&3/16 W„&1/2 Wk

—&1/2 Wi, &I/2 W„

91& I I
(32)

where

( V+ W)sU(3) =
—,'( V„+Vi,

—W„) —&I/2 Wk

—&1/2 W„

—,'( V„—VI,
—W„)

&1/2 Wi, (33)

—,
'

( V„—Vq
—W„) &1/2 Wk —,'( V„+Vk

—W„)

and

( V+ W)sU(3) = V W (34)

8')2

M2+K2+ V2
(35)

W)2

We now assume that W'&2= 8 which leads to

In Eqs. (32)—(34) the direct and exchange potentials V
and 8' carry a subscript which denotes the average
mass of the participating quarks: u for systems with all
light (up and down) quarks, k for systems with two light
quarks and two strange quarks, and s for systems of four
strange quarks. The six extracted potentials are shown in
Fig. 3. The use of three "SU(3) limits" with three
different values for the average quark mass would, of
course, already take into account the most elementary
fortn of SU(3) breaking. As we will now discuss, this sim-
ple SU(3)-breaking effect seems to be the dominant one.

With the "SU(3)" potentials V and W in hand, we
return to the qqq q problem with unequal masses in the
a=1,2 basis, and rewrite Eq. (20):

M, +K)+ V)

I.O

r(fm)

(E —M, —K, )P, —W
(36)

FIG, 3. The six "elementary'* extracted potentials V, x =c
for cryptoexotic or e for exotic, m = u, k, or s; from these poten-
tials one can deduce V =——,'{V'+ V') and 8' —= 2( V' —V").
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and

(37)

A remark about this approximation is in order. This
technique for extracting the SU(3)-broken potentials uses
the average mass transition potential 8' rather than

Wi2 and forces the residual SU(3) breaking into V, and
V2. The validity of this procedure can be questioned.
However, we find that the two extracted potentials

f; '(E —M, —K;)g; are very nearly equal to their aver
age mass potentials, so that the procedure seems entirely
self-consistent. We would conjecture that the use of the
average mass leads to additional SU(3)-breaking effects of
order ( m ' —m /m '+ m ) —0.05.

It has been previously noted' ' that the main source
of these quark-exchange-generated potentials is the color
hyperfine interaction. We have confirmed this by study-
ing the extracted potentials as a function of the hyperfine
strength. The conclusion that color electric effects are
small can also be reached by a calculation of the inter-
meson adiabatic potential due to Hsi of Eq. (2) using
methods which generalize those reported in Appendix D
of Ref. 1. Our conclusions regarding these potentials are
thus not very sensitive to our use of the questionable
F; F~ confinement potentials. "

Before actually using these potentials in the coupled-
channel equations, we expand their ranges to make them
more realistic. We argue that this ad hoc treatment is
justified by the inability of the nonrelativistic quark mod-
el to predict the correct charge radii of the ground-state
mesons and baryons. Since the intermeson potentials are
generated by quark exchanges, their ranges are deter-
mined by overlaps of qq wave functions and hence by the
qq radii. Thus, although we consider the relatiue
strengths and ranges of the potentials of Fig. 3 to be use-
ful predictions, we will expand their absolute ranges by
the ratio of the observed to predicted meson charge radii
((rx ),'„~,/(rx ),'h ——2) while decreasing their strengths
by a universal factor g. This prescription can certainly
be questioned (we consider it to be the weakest element of
our analysis), so we would like to add one more observa-
tion in its support. It has been argued that the qq wave
function of the quark model correctly represents the "ha-
dronic core" of the mesons, with the deficit in the ob-
served charge radius being supplied by vector-meson
dominance. While this may be, we note that purely ha-
dronic scattering is known empirically to be controlled by
essentially the same radius as observed electromagnetical-
ly. For example, the momentum transfer dependence of
high-energy pp and mp scattering can be well described by
the convolution of the electromagnetic form factors of the
scattering particles. ' Our method thus leads to results
consistent with the requirement that hadronic scattering
processes, such as those being considered here, be con-
trolled by the electromagnetic radii.

Since we do not know what to expect for the factor g,
we have determined it from a fit to the low-energy I =2
m.m. phase shifts (see Sec. IV), finding q=0.5 (with an er-
ror of +0.1). With the six adjusted potentials

-0.5-

FIG. 4. Some physical potentials, including (a) V for
(mm)' ', (b) V for (mm)'=, (c) 8' for (KK)' ~(qq)'= and
(KK)'='~(~q) ', (d) Vfor (mg) '. Note that Vfor (KK) =

and (KK) ' are equal and very small.

V~(r)=riV (r/2) and W~(r)=riW (r/2) we can then
predict using Eqs. (32)—(34) the physical pseudoscalar-
pseudoscalar potentials we require. Figure 4 shows a
selection of such potentials. For computational simplici-
ty, in Sec. IV we will replace these potentials by a set of
approximately equivalent square-well potentials.

To complete our coupled-channel approximation to
qqq q dynamics, we finally add in the effect of the annihi-
lation potentials 0;~ which couple the meson-meson
channels to the (closed) qq Po channels as shown in Fig.
1(a). These potentials are described in Appendix B.

C. Solution of the coupled-channel equations

The coupled-channel equations (20), with annihilation
channels added on, are sufFiciently simple that we have
chosen to solve them by direct numerical integration of
the radial Schrodinger equation. In the ¹hannel prob-
lem, if there is one open channel, then, for an arbitrary
initial slope of the open-channel wave function, the prob-
lem is solved once a set of initial slopes of the N-1 closed
channels is found which leads to their having damped
wave functions at large r: the asymptotic wave function
allows one to read off the phase shift of the open channel.
If there are two (n) open channels, then such solutions
must be found for two (n) linearly independent initial
slopes for each of the open channels. Linear combina-
tions of these solutions can then be constructed corre-
sponding to various initial conditions (e.g. , an incoming
plane wave only in the first open channel). In this way
one can extract the complete S matrix.

IV. COMPARISON TO EXPERIMENT

A. General comments

One of the most striking successes of the KK molecule
picture will be that it makes it obvious why the S* and 5
both lie just below KK threshold, bearing somewhat the
same relation to it that the deuteron does to the pn
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threshold. At the same time one can easily understand
why every threshold does not harbor a bound state: in
closely related channels such as m~ and m.K the delicate
binding is overwhelmed by the kinetic energy of the light
meson, while in others it can be upset by a change in dy-
namics that provides an insufficiently attractive potential.

PC„
That binding might occur in the channel with J "=0++
also seems natural, at least in retrospect, simply because
these are the quantum numbers of the qqq q ground states
in the absence of meson-meson interactions: namely, two
pseudoscalar mesons in a relative S wave. (Dynamical
calculations are of course required to show that the po-
tential between these two pseudoscalar mesons is
sufficiently attractive to bind them, and that this
sufficient attraction occurs in the cryptoexotic but not the
exotic channel. )

Another qualitative feature of these states which will
be automatically explained by the KK picture is their
small widths. (They are small relative to the norm, but
they are uery small relative to the expectation for a qq Po
state; see the Introduction. ) That KK molecules might
naturally have narrow widths is mostly easily seen by im-
agining the limit in which their (already small) binding
energy E~ approaches zero. The tail of such a KK wave
function behaves as gxx ( rex )- rzz exp( Qmlr —Ez rex )

so that in this limit the K and K spend almost none of
their time in the neighborhood of r&~=0. As a result

they can neither exchange quarks (KK~mrI) nor annihi-
late them (KK~n~) so that the bound state would be-
come increasingly stable against decay as it becomes
more weakly bound. (A quantitative discussion of these
effects appears below. }

The last easily understood qualitative feature of these
states which will emerge from our analysis is their special
relationship to the KK channel, and more generally to ss
quarks. At the crudest level such a special relationship
would be expected simply from the dominantly KK com-
position of the states, in stark contrast to the expectation
for an (co,p)-like doublet with no valence ss pairs. Some-
what more specifically, the KK molecule picture will nat-
urally explain the dual effects ascribed to these states:
their appearance as narrow resonances below KK thresh-
old and their association with the large I=O and 1 S-
wave KK threshold enhancements. From our point of
view we can see that these two effects are closely related,
but not to be identified. Consider, for example, the I=O
channel and imagine that I'(S*~~~)&&2M' —Ms~.
Then the S* would appear as a very narrow Breit-Wigner
resonance entirely below KK threshold. However, the
KK S wave would still show essentially the same thresh-
old enhancement, which is an effect of the distortion of
the free KK plane wave by the KK effective potential V&&

and not a resonance eff'ect. [Of course, it is caused by the
same potential which creates the S* bound state, and so
is related to the S'. The physical origin of such an
enhancement is, however, that the potential pulls in the
wave function of the KK spherical waves of energy E& 0,
thereby increasing the KK wave function at the origin,
Pzx(0). The matrix element for any local KK production
process will be roughly proportional to Pzz(0) and so be

enhanced for kinetic energies less than (or of the order oQ
the depth of V~~. This effect is well known in the analo-

gous deuteron system where, for example, pp~npm. +

shows a huge threshold enhancement. ] Other examples
of the special relationship of these states to ss are the re-
cent observations ' on the decays g~coX, pX, and PX.
These "flavor-tagging" experiments show the expected
strong signals in cofz, paz, and Pf z, but show little if any
signal in AS' or p5, and a large PS' signal. These results
blatantly violate the expectations of the qq picture, but
are, as we will see, very natural for KK molecules.

In many ways we believe that these qualitative
successes of the KK molecule picture are its best empiri-
cal support. In the next few subsections we will not only
establish these features, but also find further strong evi-
dence in support of the picture when we analyze it more
quantitatively. This analysis will be based on approxi-
mate solutions of the coupled-channel equations of Sec.
III obtained by replacing the physical potentials V and 8
(such as those of Fig. 4) by square-well potentials which
are approximately phase-shift equivalent at low energy.
There is, of course, some ambiguity in defining such an
equivalence. One could, for example, either demand
equal scattering lengths or a good "global" fit to the low-
energy phase shifts. In view of the semiquantitative na-
ture of our model at present, this extra imprecision is of
little real consequence. We have in fact used the freedom
it allows in choosing a set of "canonical" square-well po-
tentials with universal range a=0.8 fm and strengths
V„'=+0.57 GeV, V& =+0.29 GeV, V,'=+0.18 GeV,
V„' = —0.43 GeV, Vk = —0.25 GeV, and V,'= —0.15
GeV. Notice that the signs and approximate relatiUe
strengths of these canonical potentials could just be read
off Fig. 3; their absolute strength is controlled by the fac-
tor g introduced in Sec. III by fitting to the low-energy
I=2 mar phase shift. The annihilation potentials 0; we
use are also taken to be square wells of this radius with
strengths adjusted to give the computed '

qq scalar-
meson widths, while the qq channel was taken to be
confined by an infinite square well of range 2a (see Ap-
pendix B) with a depth, which determines the Po "bare"
masses, taken to be a free parameter. (We attempted a fit
to the data using the masses predicted by the model of
Ref. 3, but they appear to be about 200 MeV too low.
This indicates that spin-orbit forces in the P-wave mesons
are even smaller than those found in Ref. 3, a situation
reminiscent of the P wave baryons. } -The use of these
square-well potentials greatly facilitates the numerical
solution of the coupled-channel equations while retaining
their main features; at present, a more exact treatment is
difficult to justify. We will give examples of the sensitivi-
ty of our conclusions to these square-well potentials in
the following discussions.

B. Evidence from m.m. scattering

Studies of S-wave mm. , mK, KK, and KK scattering have
a long history, but it is only recently that the very
difficult experiments required to study these processes
have begun to draw firm conclusions on many of the is-
sues relevant to us.
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FIG. 5. The experimental (Ref. 24) I=2 m.m elastic phase
shift compared to theory; the dotted curve corresponds to using

a relativistic dispersion relation.

The oldest and simplest such process is msgr scattering,
which is essentially elastic up to, but very inelastic above,
KK threshold. Some measured amplitudes for this sys-
tem are shown in Figs. 5—7 along with the results of our
coupled-channel analysis defined in Sec. III. Figure 5
shows the simplest ease of all: the purely exotic
I =2 em~~~ phase shift. Since, as described in Sec.
III 8, we used this process to "tune" our model, the qual-
ity of the fit cannot be claimed as a success of the calcula-
tion. However, we emphasize that the repulsive charac-
ter of this amplitude, its qualitative shape, and its general
magnitude are unambiguous predictions of the model.
This one-channel process also allows us to illustrate the
effect of one of the simplest sorts of relativistic correc-
tions on our results: Figure 5 shows the predicted I=2
phase shift when the wave number k is given not by
m„=2(m +k /2m„) but rather by m „=2(m
+k )'~, as would happen if we replaced the Schrodinger
equation with the Klein-Gordon equation. It seems clear
that most of the difference could be absorbed into a small
change in the parameter g of Sec. III B.

We now turn from the simplest system to the most
complicated: I=O S-wave scattering. This process in
principle involves at least seven channels: ~m, KK, gg,
gg', g'r)', & I /2(uu +dd ) 'Po, and ss Po. Such a seven-
channel approximation to mm scattering should be useful
in the region below about 1.5 GeV where our immediate
interest lies. (Above this mass one must also consider the
S-wave spin zero vector-vector channels such as pp and
coco which we have hitherto ignored, the mm' channel, and
possible couplings to scalar glueballs and hybrid states.
A comprehensive study of this 00+ sector will thus
present formidable challenges, making us less than
sanguine about the possibility of uncovering a scalar glue-
ball in this mass region. ) Figure 6 shows the comparison
of this model of elastic m~ scattering with data, demon-

strating that the KK molecule picture explains the main
features of this channel. The broad rise from threshold is
due mainly to the combined effects of the attractive ~~
potential and a broad ' I=O Poqq state with bare mass
—1300 MeV. The sharp resonance below KK threshold
is the KK molecule. This strongly suggests that the ob-
served fo(1300) resonance is the Po qq state. Our mod-
el is not reliable at 1500 MeV, since by such a mass new
channels such as pp might be very important; we there-
fore do not show this region. However, our solution does
exhibit a small loop at about 1500 MeV associated with
the fo, showing that the dynamics has produced a new

scalar meson. We emphasize that the couplings of the
Po qq states were completely predicted by earlier analy-

ses. ' It should also be noted-that, as promised in the In-
troduction, the KK molecule picture not only explains
the existence of the S* just below KK threshold, but also
its width, giving I (S*~mir) =38 MeV, near to the tabu-
lated value of 34+6 MeV.

Of particular interest is the KK elastic phase shift.
Since the two-channel S matrix must have the form

ge
2ib ~

(1 2)l/2 1 2
i(b +5, )

.

S=
z & n 'Isi + siI 2l 5~ (38)

i 1 —i) e qe

the elastic KK phase shift 6zz can be obtained by sub-

tracting the mm~mm phase shift 5 from the mm. ~KK
phase 5 +5zz. The KK molecule picture shows the
characteristic drop from 180' expected for a bound state
(Fig. 7); experiment is ambivalent because it is very
difficult to find a phase with which to interfere mm. ~KK
near threshold, but the experiment ' which claims the
greatest sensitivity in this region sees a drop. Indeed, on
this basis it was suggested in Ref. 27 that the most likely
interpretation of the S* was as a KK bound state. Figure
7(c) shows the KK elastic Argand diagram. Several addi-
tional comments on Figs. 5—7 are in order.

(1) It will have been clear to the reader from Sec. III B
that there are substantial uncertainties in deducing the
coupled-channel equations for our qqq q calculations.
Figures 8, when compared with Fig. 6(b'), show how the
I=O arm scattering Argand diagrams vary with changes
in our coupled-channel parameters. Figure 8(a) shows
that the exotic potentials have little influence: even re-
ducing their strengths by a factor of 2 only makes the
phase shifts rotate slightly counterclockwise below 1

GeV. Figure 8(b) shows more sensitivity to the cryptoex-
otic potentials, as expected. On comparing Figs. 6(b')
and 8(b), it is clear that a small adjustment of V' would
produce an Argand diagram with a phase at KK thresh-
old identical to that shown in Fig. 6(b). This is an illus-
tration of the fact that this feature of the Argand dia-
gram is very difficult to determine (both experimentally
and theoretically) since it occurs during the rapid phase
motion associated with the S'. Figure 8(c) shows that
our results are not very sensitive to assuming an SU(3)-
breaking ss pair creation factor A, (see Appendix B):
changing from the SU(3) limit value of unity to —,

' pro-
duces only modest changes in Fig. 6(b'). Finally, Fig. 8(d)
shows that our results are quite sensitive to the annihila-
tion amplitude O. We will discuss this point further in
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Sec. IV E below.
(2) Despite its name and location, the "KK molecule"

is not a simple KK bound state. Its stability is dependent
on its couplings to the other I=O channels and at
E =M + the coupled-channel wave function has substan-

tial components of the other states.
(3) The addition of the qq Po states as closed channels

provides not only much of the S*~mm decay amplitude
(some also comes from second-order processes such as
KK ~rlrl~rrm via the large Okubo-Zweig-Iizuka- (OZI-)
rule violation in the r) wave function [see Fig. 1(c)]),but
also a significant source of stabilization to the KK bound
state.

(4) Unlike a qq resonance interpretation, in the KK
molecule picture the "~~ resonance" below KK threshold
and the dramatic threshold enhancement in KK produc-
tion are intimately related but not inseparable: even if

the effective KK potential were reduced to the point that
the bound state disappears, the large threshold enhance-
ments seen in KK production (see below) would remain.
(They would then be associated with a KK phase that
rose rapidly from 0 to just under 90' and then returned to
zero instead of one that dropped from 180 through 90 to
zero. ) Moreover, for fixed M +, even if the S*~mnc. o.u-

S
pling were tuned to zero there would still be essentially
the same KK threshold effect. This corresponds to our
earlier remark that the S' (and 5) are associated with,
but not to be identified with, the KK threshold enhance-
ments.

C. Evidence from production experiments

At this time it has been possible to extrapolate to on-

shell m exchange but not to on-shell K or g exchange to
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FIG. 6. (a) The I =0 mm. phase shift compared to the KK molecule picture; the data correspond to various analyses of the first of
Refs. 23. (b) The measured I =0 ~+~em Argand diagram (from the same experiment). (b'} The predicted I =0 m.+~urn Argand di-

agram.
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study directly coupled-channel meson-meson scattering.
Our predicted amplitudes for the I=1 coupled-channel
(rrrl, KK, mg'. ,I = 1 qq Po ) system shown in Fig. 9 cannot
therefore be directly compared to data. However, these
results are very useful for demonstrating the physics in
operation in this channel. In particular, we see that our
model predicts a 5 just below KK threshold to be the
partner of the S', as well as a mainly qq state ao(1300) to
join the scalar-meson nonet. The 5 is predicted to be
about 60 MeV wide at threshold, in reasonable agreement
with the experimental value of 57+11 MeV. (Note, how-
ever, that our predicted resonance is far from having a
Breit-Wigner line shape, so this comparison must be
treated with caution. ) We see that, in contrast with the
fo(1300), the ao(1300) creates a quite small disturbance in
the Argand diagram; this has consequences to which we
turn below. Figure 10 shows the sensitivity of our results
to the same variations that were considered in Fig. 8.

For further comparison of the KK molecule picture to
experiment, we must turn our attention to various pro-
duction processes in which S" and 5 effects can be seen.
We have begun a quantitative study of multichannel
production along the lines suggested in Appendix E, and
intend to report on our detailed analysis of the phenome-
nology of S-wave pseudoscalar-pseudoscalar production
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FIG. 8. Variation of the I =0 msgr Argand diagram (compare
with Fig. 6) with changes in the coupled-channel potentials: (a)
V'~0. 5 of its canonical value, (b) V'~0. 8 of its canonical
value, (c) A.~ 4, (d) 0 decreases from 0.11 GeV to 0.10 GeV.
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forthwith. We would nevertheless like to discuss qualita-
tively some particularly interesting processes here. For
orientation, let us consider a single-channel KK problem
with a KK bound state. The simplest S* and 6 effects
occur in the decay of a 0++ resonance into the KK chan-
nel. As shown in Appendix 8, the rate for such a process
will be enhanced by the "wave function at the origin
effect" mentioned in Sec. IV A above:
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FIG. 9. (a) The predicted coupled-channel Argand diagram
for nq elastic scattering. {b) The predicted Argand diagram for
EK elastic scattering with I =1. The dotted line shows the uni-

tarity circle. (c) The mq and KK elastic phase shifts; shown to
aid comparison is a simple Breit-Wigner shape with energy-
independent mass and width set to the Particle Data Group
values (Ref. 25) for the 5.

800 900

FIG. 10. Variation of the coupled-channel Argand diagram
for elastic ~g scattering with changes in the potentials (compare
with Fig. 9): (a) V'~0. 5 of its canonical value, (b) V'~0. 8 of
its canonical value, (c) A,~—', (d) 0 decreases from 0.11 GeV to
0.10 GeV.
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P~ (0)
r(S KK ) = r(S -KK )""

unfree( 0 )P

=I (S KK)"'"d (m —), (39)

of course, there will be final-state interactions between
the K and K and Y, but in the simplest case where they
can be ignored the final-state relative coordinate wave
function will be of the form

2
Po

d(m —)=
pocos (poa)+p sin (poa)

(40)

where po=+p +mz Vo; if the square well has a single
bound state with binding energy EB then this can be
rewritten as

mKK -2WK+ VP
d(m~g)=

m~g
—2mlr+Ee f (m~g)

where

(41)

Vof (mz~ )= cos'
B

mKK
—2~K

+1
Vo

'

E 1/2

X —+
2 Vo

(42)

where p =(—m ——mz) is the center-of-mass momen-2 2 1/2 .
4 KK

turn of the kaon pair, 1( is the S-wave wave function
with asymptotic momentum p, and the superscript "free"
denotes a quantity with VK&=0. For a square mell of
depth Vo and range a,

g (y)1( —( )

where the coordinates y are internal to Y, r is the KK rel-
ative coordinate, and R is the relative coordinate between
the KK center of mass and that of Y. In this case, in the
same approximation as above, the enhancement factor
d (mzz ) of Eq. (40) applies to the KK subspectrurn of the

more complex decay.
Simple one-channel models of these types have been

used to discuss several peculiar features of hadronic de-
cays near thresholds. ' The basic idea is an old one
which dates back to Fermi. ' The multichannel formal-
ism we have developed here can be applied to such de-
cays to make their treatment more realistic. In the sim-
plest case the decay might "feed" a single channel which
mould then scatter into other channels on its way out of
the interaction region. In general the decay can feed
many channels so that very complex behavior can result.
See, for example, the behavior of the fo(1300) and
ao(1300) resonances in Figs. 6, 7, and 9.

A more typical production process is shown in Fig. 12
in which the I= 1 5 channel is studied via
K p~n qX*+(1385)and K p~K K X'+(1385). To
the extent that they are dominated by K exchange they

Figure 11 shows how the width of a particle with fixed in-
trinsic coupling constant varies with its mass. The effect
is a prototypical KK threshold enhancement.

These e6'ects will also be present in multibody decays
X~YKII where X is any decaying state and Y may
represent a collection of final-state particles. In general,
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FIG. 11. I (S~KK) according to Eq. (39) for fixed intrinsic
S~KK coupling showing the effect of the enhancement factor
(40); the curve corresponds to a potential of range 0.8 fm which
has a 20-MeV deep bound state of KK.

FIG. 12. mg and KK production in {a) K p~m gX*+ and

(b) K p~K K"X*+ from Ref. 33. The curve in (b) is from
Eq. (43).
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are analogous to the m-exchange-dominated m.N~m~N
and KKN reactions, and lead to information on
K K ~K K and m q. The I=1 coupled-channel re-
sults of Fig. 9 cannot, of course, be applied directly to
this unextrapolated data which, even assuming K ex-
change, depends on the baryon vertex and on the ampli-
tude for off-shell K K„„„,~

scattering. However, the KK
molecule picture can still say a great deal about such
data.

To discuss such production experiments we need to ex-
tend our coupled-channel equations to include source
(i.e., driving) terms. By this device an outgoing I= 1

coupled-channel system {for example) can be produced as
a part of some more complex dynamical process. For
orientation, let us once again begin with a single-channel
approximation. As shown in Appendix E, the driven
single-channel problem produces an outgoing wave with
an intensity enhanced by the same "wave function at the
origin" factor (40) as is present in single-channel decays.
This threshold enhancement e6'ect in the one-channel ap-
proximation

Gf 0' free

=d(mxx )
8m~@ Gfm ~~

is compared to the data in Fig. 12 (by assuming
d 0 '"/dmzz is proportional to KK phase space).

Before closing this qualitative discussion of S-wave
pseudoscalar-pseudoscalar production, we want to quick-
ly touch on two other related processes and their inter-
pretation.

(1) We have mentioned that /~PS" ~/urn is seen. '
We expect that this process can be modeled by our
coupled-channel equations with a driven term in the
OZI-rule-allowed KK channel, or, perhaps, by one in the
OZI-rule-allowed Pp ss channel. That S*~~m. is seen in
this way is probably due to the very large inelasticity of
the low-energy coupled I=O m~ KK system —(see Figs. 6
and 7). Figure 13 shows a preliminary result from Ref.
30 based on driving the I=O sector with a source in the
KK channel.

(2) The process rl(1440)~KKm. has already been dis-
cussed in the one-channel approximation in the KK mole-
cule picture. It was argued that the very strong 5m sig-
nal seen experimentally ' is not inconsistent with the ab-
sence of an g~m signal since the 5 signal would arise from
a KK "wave function at the origin" effect.

D. Where are the qq scalar mesons and the scalar glueballs?

It seems fair to claim (see Figs. 6 and 7) that our model
has produced a reasonable qualitative understanding of
the I=O channel, including the observed fo(1300) meson.
There are also reasons to believe that the elusiveness of
its I= 1 partner ao(1300) may be associated with the very
small off-center loop the ap produces in the Argand dia-
gram of Fig. 9; we hope to make more detailed comments
on this issue later. The effects on mm scattering of the ss
state with mass around 1500 MeV cannot, as mentioned
earlier, be predicted reliably since at this high mass chan-
nels such as pp may be important. However, the model

IOOO

MASS (MeV)

I

IIOO

FIG. 13. A preliminary result from Ref. 30 showing the rate
of production of ~m and KI( when the coupled-channel equa-
tions of Sec. IVB are driven by a source in the KE channel as
discussed in Appendix E; data (Refs. 7 and 8) on P~Pmm and
PKK are in qualitative agreement with these curves, which
display an apparently very large violation of the OZI rule.

does predict reliably that this state should appear in KK
production experiments. It remains to study m.K
scattering to demonstrate that our picture can account
for the structures seen in this system. At this point we
can only say that SU(3) symmetry would suggest that this
comparison will be satisfactory. Thus we do not believe
the KK molecule interpretation of the S' and 5 creates a
problem for the quark model by producing a "hole" in
the L= 1 SU(6) supermultiplet. On the contrary, we be-
lieve the calculations presented here indicate a possible
resolution of long-standing puzzles associated with the
Pp nonet. '"

The identification of glueballs in the I=O meson sector
above 1 GeV is clearly going to be very complicated.
Nevertheless, this analysis allows us to compare expect-
ed structures in channels such as m.~~gg, gq', and g'g'
with those recently observed.

E. Other interpretations of the data

We have already discussed at considerable length the
interpretation of the S* and 5 in the bag model and its
relation to the one advocated here. In this section we
would like to mention some other alternatives.

The most economical possibility is that the S* and 5
can be associated with the Pp qq nonet. Tornquist in
Ref. 35 attempts to make such an association by invoking
unitarity shifting and narrowing mechanisms similar to
those of Flatte in Ref. 36. Indeed, in this picture the in-
trinsic widths of the scalar mesons are all in the
500—1000-MeV range, and narrow structures (recall
I s + —-35 MeV) are produced by the cusplike behavior of
amplitudes near thresholds. Figure 14 shows that this
possibility is quite realistic. They show the I =0 and 1

Argand diagrams with all the quark-exchange potentials
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FIG. 14. (a) The I =0 m~ elastic Argand diagram with 0 at
its canonical value, but with V' and V' set to zero. {b) The n.g
elastic Argand diagram under the same conditions as in {a).

set equal to zero, i.e., with pure qq resonance dynamics.
The I =1 channel in this limit has an ao which has been

pushed down below KK threshold and narrowed by the
Flatte-Tornquist mechanism. I =0 shows a similar be-
havior. The resulting amplitudes show many similarities
to those of the KK molecule interpretation: compare Fig.
15 with Fig. 9(b). There are, however, many ways to
discriminate between this picture and the KK molecule
interpretation. The most fundamental is that we require
two additional states: the Flatte-Tornquist mechanism
pulls the Po states down to KK threshold, but cannot
produce an additional state. Thus confirmation of the ex-
istence of an ao(1300) or an f0(1500) would strongly sup-

port the KK molecule picture.
Although strictly speaking it is not an "interpreta-

tion, " we would also like to mention the recent very ex-
tensive study of the coupled-channel I =0 system by Au,
Morgan, and Pennington. They performed a simultane-
ous and unitary fit to a very wide body of data based on a
minimal set of K-matrix poles. Their conclusion was that
the data required not only a broad fo(1300)-type pole,
but also a very complex two-pole structure near KK
threshold. One possibility, which they have emphasized,
is that one of these poles is a KK bound state and the oth-
er is a new, very narrow state (possibly a scalar glueball).
It might also be that the complex behavior they see is a

I IOO

1400 x~ QIO50

(c)
~~ lOOO

~050
v~~a

g l l00
..".„{a) ',

I
40Q".

FIG. 15. The elastic KK Argand diagrams of the resonance

fits {a) and {c)of Flatte in Ref. 36.

manifestation of the dual nature of the "S*effect": it is a
Breit-Wigner-type resonance in ~m. and a threshold
enhancement in KK. We hope to comment on this inter-
pretation of their result later.

V. FUTURE PROSPECTS AND CONCLUSIONS

We believe that the results presented here, along with
recent experimental findings we have discussed, make the
EK molecule interpretation of the S' and 5 more plausi-
ble than ever. Nevertheless, further investigations are re-
quired before it can be accepted.

On the part of theory, we hope we have made it clear
that much remains to be done at the fundamental level of
understanding the dynamics of the qqq q system. Given
the framework we have adopted, it would be possible to
improve substantially upon the accuracy of the solutions
we have obtained. However, we have taken the point of
view here that this is not warranted in view of the many
weaknesses of our model. Rather, it is in seeking
remedies for the fiaws of the model listed in Sec. II that
we feel there is the best chance for improvements. In
another vein, assuming the validity of the basic KK mole-
cule picture, there is a great deal of room for phenomeno-
logical work on the predicted properties of these systems,
and in particular on characteristics which can distinguish
between the qq and KK interpretations. We have already
mentioned in Sec. I an example of such work on the yy
couplings of the S* and 5 which favors the KK molecule
interpretation. There are also many ramifications of the
existence of substantial meson-meson potentials which
remain to be worked out. For example, it has recently
been suggested that various I =0 mm threshold
enhancements have their origin in the attractive mm. po-
tential (see Fig. 4). It may also be that other "bumps"
seen near thresholds [e.g. , the I =0 J =1++ effect seen
in K*I(, low mass Km e6ects, the series of vector-vector
peaks seen in yy~ V, V2, the A(1405) baryon, etc.] are
produced by residual hadron-hadron potentials.

There is at the same time a very large scope for im-
provements in our experimental knowledge of such
effects. Especially once theory has exposed more clearly
the expected behavior of KK molecules, the completion
of experiments such as the flavor-tagging measurements
mentioned above should clarify matters considerably.
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There is in addition much room for improvement in stan-
dard hadronic production experiments, as well as the pos-
sibility of experiments which can directly address novel
features of the KK molecules picture. For example, it has
been suggested that the forward cross section for pro-
duction of high-energy S*'s and 5's should, if they are
KK molecules, have a dramatically distinct dependence
on the atomic number of their production target from,
e.g. , the qq tensor mesons.

Given the improvements we can expect in both theory
and experiment, one might hope that the nature of the S*
and 6 will be established in the relatively near future. If
they are indeed KK molecules, then one would anticipate
that the quark exchange forces which bind them might be
important not only in this isolated system, but also in
other multiquark systems. The most important such ex-
ample is undoubtedly the nucleus itself.
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APPENDIX A: THE OPERATORS 'f ' AND 8'( r }

Relativistic corrections (including momentum depen-
dence of the interactions, off-shell effects, and the field-
theoretic cutoff intrinsic to the quark model} will smear
out all of the operators of the Breit-Fermi limit. Since
5 (r) is too singular an operator to be allowed in the
Schrodinger equation, it is essential to consider its smear-
ing; for the less singular llr potential we have simply
found it more convenient.

We take for both of these smeared operators Gaussian
forms:

3

5(r)= e (A1)

and
2 2

r i= V6 (A2)

Although we expect on general grounds that o. will be of
the order of the quark mass, its exact value is unknown
and so we treat it as a parameter. Our fits to ordinary
meson spectroscopy then give o =0.92 GeV. [This pa-
rameter is mainly determined by the splitting between the
1'P& meson b, (1235) and the center of gravity of the
1 PJ mesons az(1320), a, (1260), and a0( —1300).] On
the other hand, z is not a parameter: we choose it to be

g'&'(r~ )+ V&(r& )u &(r& )+Q(r~ )uz(2r& ) =Eu &(r& ),
2p 1

(81)

1 rp 7'p

u z'(rz )+ V~(rz )u z(rz )+0 u
~

2p'2 2 2

=Eu&(r& }, (82)

u, (r)=u, (r), V, (r)= V, (r),
uz(r)=u&(2r), Vz(r) = V&(2r),

(83)

so that Eqs. (81) and (82) become

u &'(r)+ V&(r)u ~(r)+Q(r)u&(r) =Eu ~(r),
2@i

(84)

u z'(r)+ Vz(r)u z(r)+Q(r)u &(r) =Eu&(r) .
8p~

(85)

The decay rate of a qq state S with unit normalized un-
coupled radial wave function us(r) is easily calculated in
this framework. Using continuum states with the asymp-
totic form

- &2/R sin( kr +5 ) (86)

(R is the radius of the normalization "box") this decay
rate is

2piR
(87)

In the absence of a potential V, in the channel 1,

where the u, (r, ) are the radial wave functions of channel
i, the potentials V;(r, ) include appropriate rest mass and
centrifugal barrier terms, and where Q(r) is the ampli-
tude for interconversion between the meson-meson sys-
tem with r, =r and the qq system with rz =2r. It is there-
fore convenient to set r, =r, rz=2r, and to define new
functions
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(kIQIS&&„„=&2/R f dr sin(kr)Q(r)us(r)

but more generally

(klQIS&= f "dr uk(r)Q(r)us(r) .
0

(B8)

(B9)

(B10)

As a simple example, consider the case where V, is an
attractive potential of constant depth —V0 and range a.
Then in the inner region

' 1/2
2 sin(ka+5)
R sin(k'a)

ij system) is a kinematic factor arising from the conver-
sion from (B7) and (B8) to the amplitudes of Refs. 3 and
4, and k is an empirical factor which can take into ac-
count the suppression of ss pair creation.

The correct value for 0 can be estimated by comparing
(B7) with the corresponding widths predicted in Refs. 3
and 4. These latter predictions are based on fits to known
related decays, but are, of course, model dependent.
From such a comparison we deduce that 0=0.11+0.04
GeV. In the "canonical" model of the text we used
0=0.11 GeV, consistent with this prediction.

(Bl 1 }

If we now take Q(r} to be a very short-range effect, then
only uk(r) near r =0 is relevant and

k'
(B12)k' cos (k'a)+k sin (k'a)

Vo+E
Vocos (k'a)+E

(B13)

as in Eq. (40). If V, = —
VD supports a single weakly

bound state, this can be cast into the fortn of Eqs. (41)
and (42).

Next consider the generalization of these remarks
when there are multiple coupled meson-meson channels.
In this case, as described in Sec. III C, there are as many
linearly independent solutions of the 0; =0 equations as
there are open channels. From these solutions, one can
form orthonormal solutions. The decay rates to these
final states, or to a particular open channel, can then be
calculated in exact analogy to the above single-channel
rates.

From (B7), (B8), and the decay rates of Refs. 3 and 4,
one can easily deduce the values of the 0, 's. They are

where k'=Qk +2@,VO or, i.e., using tan(ka+5)
=(k /ko)tan(koa),

1/2
2 sin(k'r)

u rk R k' /k'cos (k'a)+sin (k'a)

APPENDIX C: COLOR WAVE FUNCTIONS
AND MATRIX ELEMENTS

Our calculations use explicit color wave functions and
transformations between various color bases. We quote
some useful results here for completeness and to simplify
comparisons with related calculations.

The qqq q system can be coupled to an overall color-
singlet system in several ways. Three possible orthonor-
mal bases are (I3»334& I6]$634&) in the diquark-
antidiquark picture and ( I1,31/4 & I8/38/4 & ) or
( l1,41„&,l8, 48&& & ) in the meson-meson pictures.
[I3,z3&, & denotes, for example, that the quarks, particles
1 and 2, are in the antisymmetric representation 3 of
SU(3)„~„and the antiquarks, particles 3 and 4, are in the
antisymmetric representation 3 of SU(3)„~,„. In all cases
the total color is zero. ] The 3, 3, 6, and 6 wave functions
are

&
= &1/2m~i'q, ~qJ',

3 & &I/2e qq, ,
q, q

&
= V I /2d ~Prq Pq r

I J

6 &=&I/2d irq~qr

(Cl)

(C2)

(C3)

(C4)

where e ~~ is the usual antisymmetric alternating symbol
with e' =1, q, (q, ) represents the ith quark (antiquark)
of color (anticolor) a, and the nonzero d's are

(C5)

Q(ao ~gn ) =2QZ„, Q(ao~KK ) = —2QA, , 212 d 221 d 413 d 431 d 523 d 532 (C6)

Q(ao~g'm. ) =2QZ„„,
Q( fo-~sr) = —&12QZ„„,
Q(fo~KK) 2QA Q(foggy) QZqq

Q( foggy') =&2 QZ„„, Q( fo~g'g') =QZ„„
(B14}

Q(f0-7r7r)=0, Q(fo-KK)= —&8Q,
Q( fo~qg) =&2 QZ„„X,

Q(fo~gv]')= —2QZ „A, ,

Q(f0-g'q') =&2 QZ„„A, .

Here Q is a reduced coupling of the SU(3} limit,
Z;, =+pz~ /p;, (in which p, is the reduced mass of the

The normalized color-singlet wave functions construct-
ed from (Cl) to (C6) are

I3,~3~~ &
=v'I /12' ~ e ~ Iq~~q);q~~q~ &,

I6,z6&, &=&'I/12d'~ d r Iq~q(q~~q~& .

(C7)

(C8)

I l, ~ 1~~ &
=& I /3 I 3,~3~~ &+&2/3I6, ~6gg &, (C9)

I 8)ggp~ &
= —&2/3I3)p3p~ &+& I /3I6, ~6g~ &, (C10)

It is clear that the constraints imposed by the symmetries
of the Hamiltonian in the equal mass limit under 1~2
and 3~4 interchanges will be most easily implemented in
the 33—66 basis: the 3 and 3 are antisymmetric under
these interchanges while the 6 and 6 are symmetric.

To transform to the mesonlike bases use
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and

1114123&
=&1/91113124& +&8/91813824 ),

1814823 &
=&8/911»12~ &

—&I /918»8z4 &

(C 1 1)

mesons V;-:

IP»P,4) =&1/4ls»s, 4)+&3/41 A» A,4), (D5)

(C12) IP,4P23 ) = —&I/41s, zs3~ ) +&3/41 A, 2 A34), (D6)

F, .F3

Fi-F4
(1131241 F F2' 3

F.F
F3 F4

0
11,31z4) 0

0

4
3

4
3

(C13)

From this last set of equations one can see that the states

11»lz4) and 11,4lz3) span the space of internal color
states; it is this observation that leads to the wave func-
tion based on (23)—(26) of the text.

Finally, we list the matrix elements of the color
Casimir operator F, F, in the (11,3lz4), 11,4122) }basis:

F).F2

13 2$ 3 /4 1S12S34 ) 1 /41 A 1z A34 ) (D7)

Si.S2

S, S3

Si.S4
(S12S341 s s IS12S34&=2' 3

S2 S4

S3 S4

—3
4

—3
4

(D9)

l&1~ &23) = —&3/41S12S24) —& I/41 A, z. A34) . (D8)

The matrix element of S; SJ in the bases (D3} and (D4)
are

Fi F2

F, F
F, .F4

14 231 p .p I 14 23 &2' 3

F F
F F

4
3

4
3

(C14)

Si'S2

S, S3

S) S4
( A12 A341 s s I A» A34) =

2' 3

S2 S4

S3 S4 1

4

1

2

1

2

1

2

1

2

(D 10)

F&.F2

F, .F
F, F4

(113 241 p .p I 14 23&2' 3

F F
F F

+ 4

4
9

4
9

4
9

4
9

4

(C15)

S1 Sz

Si S3

Si.S4
(slzs341 s .s I A12 A34& =

2' 3

S2.S4

S3'S4

0
—&3/4
&3/4
&3/4

—&3/4
0

(Dl 1)

APPENDIX D: SPIN WAVE FUNCTIONS
AND MATRIX ELEMENTS

1/2(1;1, —1; 1', ),
Aij =( A;J, A; & A„)

=[1;1,, &i/2(1;1, + 1;t, ), l;1, ] .

The qqq q spin states with total spin zero are

Is»S,4) =s»s34 I

(D 1)

(D2)

(D3)

I A12. A34 1/3(A, zA34 —3 12334+ 3 12 34

(D4)

The calculations described in the text depend on spin
wave functions and on transformations between various
spin bases. In the qq and q q spaces the scalar S and
axial-vector A spin wave functions are

APPENDIX E: A SIMPLIFIED ANALYSIS
OF PRODUCTION PROCESSES

In the context of the coupled-channel equations of the
text, the production of S-wave pseudoscalar-meson pairs
can be studied via the addition of source terms. In the
single-channel pointlike approximation one would write

1 V'g(r}+ Vg(r)+X(r}=EQ(r),
2p

(El)

where X(r) is some production source. [We can visualize
X(r) as being a cross-channel coupling IV(r)g'(r) in
which we ignore the effect of the coupling on the primed
channel. ] Such an equation can, of course, only describe
the production of pseudoscalar-meson pairs in the ap-
proximation in which their interaction with other parti-
cles participating in the reaction can be ignored.

If V=O, then Eq. (El} can easily be solved by noting
that

To accomplish transformations to the meson bases we use
the analogous spin states for pseudoscalar I',-,. and vector

z kz) cos(klr —r I )

4m
I
r —r'I

(E2)
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so that, with k =&2ltE, Eq. (El) has the solution

qfree( ) J d3, «s(klr —r'I ) 2„&(,, )4')r —r')

+4x'='o(r»

where gz"o(r) is the most general solution of Eq. (El)
with V =X=0. If we simplify to a source at the origin,

uz"'(r) = — —cos(kr)+ a sin(kr)
&4~

which leads to a solution with outgoing waves of

+tree(
)

P &
kr'2 0

u& r= — —e

(E5)

(E6)

X(r') =tT5 (r'),
then the most general free S-wave solution is

(E4) as usual. Now consider the case that V(r) is a square
well of range a and depth —Vo. In this case the driven
S-wave solution is

cos(kor), r ~ a,
us(r)= — —X .2pcT

&4sr V cos (koa)+(ko/k )sin (koa)cos(kr+ri), r ~a, (E7)

where ko=Qk +2p Vo and tan(ka +g)=(ko/k)tan(koa). Since the solution of the X=O equation is now that of Ap-
pendix B with VAO, the most general solution is

2pcT y(k/ko )sin(kor)
cos(kor)+ r&a,

icos (koa)+(k /ko)sin (koa)
us r

icos (koa)+(ko/k )sin (koa)cos(kr +g)+ y sin(kr +5), r & a,4'

(E8)

leading to an outgoing wave solution

us+(r) = — X2pc7

&4~

k cos (koa)+kosin (koa)
cos(kor)+le"

kocos (koa)+k sin (koa)

gd (k)ei(kr+s)

sin(ko)r, r ~ a,
(E9)

where

d(k)= ko

k(')cos (koa)+k sin (koa)
(E10)

is the enhancement factor (Bl 1) which appears in Eq.
(39). Thus the production of this channel is enhanced by
exactly the same "wave function at the origin" factor as a
simple decay and it appears with the elastic phase 5 as re-

quired by Watson's theorem.
In a multichannel problem the only essential complica-

tion is that there will, in general, be (complex) source
terms O. „o2, . . . for each channel. This is true even if
there is only one open channel. Thus the prediction of
production amplitudes in general requires that one also
predict the o's. With a given dynamical model for the
o's, however, multichannel production is a straightfor-
ward generalization of the single-channel case.
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