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Remarks on the anomalous magnetic moment of the W boson
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We comment on the experimental significance of limits on the electroweak-boson self-interactions
derived from studies of the radiative corrections to currently well-measured quantities.

Now that copious numbers of Z’s are available on both
sides of the Atlantic, the next target for experimental in-
vestigation in the electroweak theory, failing a fortuitous-
ly easily accessible Higgs boson, is the self-interactions of
the Wand Z. The standard theory makes definite predic-
tions for these interactions that so far are almost wholly
unchecked by experiment. Given the success of the stan-
dard theory why should we expect its predictions for the
self-interactions not to match experiment? The answer is
that we do not expect the standard model to be a “final”
theory of nature; it is too complicated and contains too
many free parameters for that. At some point then the
standard model must begin to fail and one of the few
remaining unchecked places is the electroweak-boson
self-interactions. Historically we can notice that one of
the earliest hints that the proton and neutron were not
fundamental particles was their anomalous magnetic mo-
ments.

The study of nonstandard electroweak-boson self-
interactions has, by now, a long history.!~* Although the
current situation is not completely clear and there has
been a regrettable tendency for later contributions to
reprise rather than clarify earlier work, three distinct ap-
proaches can be discerned: model making,’~” direct cal-
culations of the effect of nonstandard couplings,>*?-10
and indirect calculations (typically through radiative
effects) of the effect of nonstandard couplings.'!"'* The
latter two endeavors have been hampered by the fact that
there does not yet exist any able contender to the stan-
dard model as a theory of the electroweak interactions.
As a consequence, most calculations have tended to use a
fairly ad hoc subset of the general interactions given by
Gaemers and Gounaris.’

The lack of a viable alternative model has not been too
great a problem for direct calculations: there the signal
appears to be clear;”'> nonstandard couplings enhance
the total cross section, particularly at large angles and
higher energies, for two-boson production reactions, e.g.,
ete " >W'W —, pp—>WyX, etc. The situation with
the indirect approach is less clear-cut; model dependen-
cies can have a greater effect on results, witness the pa-
pers of Suzuki'?> and Neufeld, Stroughair, and
Schildknecht!* both of which attempt to limit « (the W
magnetic moment parameter) by considering corrections
to the low-energy p parameter. Suzuki obtains bounds on
Ak=k—1 at least one order of magnitude tighter than
Neufeld, Stroughair, and Schildknecht; the difference is
due entirely to the fact that Suzuki allows only « to vary,
whereas Neufeld, Stroughair, and Schildknecht, requiring
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a global SU(2) symmetry”!® for the interactions, must
also vary other parameters and hence rediscover some of
the cancellations that make the standard model renor-
malizable. We will refer to these two works again be-
cause they usefully illuminate certain points.

As well as the model-dependent uncertainties there are
also problems with the physical meaning we can attach to
these indirect results. It is this question that this note
seeks to address. To do this we will have to first recap
the methodology of the indirect studies. Typically a
physical quantity is identified that has radiative correc-
tions that depend on the electroweak-boson self-
interactions, e.g., the muon anomalous magnetic mo-
ment!! or the previously mentioned p parameter.'>!*
The next stage involves picking a set of deviations from
the standard-model couplings and calculating the effect
these deviations will have on the chosen physical quanti-
ty. The current experimental limits on this quantity then
provide the bounds on the nonstandard couplings. The
calculation itself is vexed by several nontrivial technical
problems; once the boson self-interactions are changed,
two of the standard model’s most attractive features are
lost: gauge invariance and renormalizability. This means
that the R, gauges are no longer available'” and all calcu-
lations must be carried out in the physical unitary gauge,
where the boson propagators take the canonical form of a
massive spin-one particle. It is probably not supereroga-
tory to stress that loss of gauge invariance is not a fatal
flaw when one is no longer dealing with a gauge theory.
The lack of renormalizability is dealt with by introducing
an arbitrary cutoff A to control divergent integrals and
by truncating the perturbation theory at one loop with a
plausibility argument that the higher orders are ‘“‘small”
if A is not “too large.” The use of a cutoff tends to lead
to problems with U(1) electromagnetic gauge invariance,
that unlike the weak gauge invariance is not negotiable
and must be restored by hand using the Ward identities.

We do not wish to argue that the technical difficulties
inherent in these calculations have been solved in a com-
pletely satisfactory manner and it is arguable that there
are too many ambiguities to place much faith in them.
They are though, for now, our only window onto these
interesting interactions; if we accept the assumptions
needed to carry out the calculations, what guidance can
they give to the experimentalist hoping to measure the
Yy WW and ZWW vertices at CERN LEP 200 or the Fer-
milab Tevatron?

First, note that experiments will be measuring an
effective (summed to all orders) electroweak-boson in-
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teraction; whereas the studies of radiative effects have
given us limits on parameters in the tree-level Lagrang-
ian. This distinction has not been given much attention,
probably because it is of no great practical significance in
the standard model. This has been shown by the work of
Bardeen, Gastmans, and Lautrup!’ and Bilchak, Gast-
mans, and van Proeyen18 who considered the effect of ra-
diative corrections on the parameter x. « is identically
equal to unity at the tree level in the standard model;
these authors have shown that « picks up O(a /) correc-
tions at one loop. This level of change in « is almost cer-
tainly unobservable at all currently planned machines.
The questions can then be stated as follows: given the
existence of a A-dependent limit on, for definiteness, «°
(the tree-level value of ), what can we then say about, for
example, o'"PleTe” W W ;A% A)? In other
words, we know that if <=1, then Ax!' °P=0(a /) and
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the one-loop corrections to ole e  >W' W ™) are
small;'>? but if k41 how sensitive is Ak' '°°P and hence
o ! 199 to the fact that Ax® is no longer zero?

We have tried to answer this question by calculating
the one-loop corrections to k for the case xk°%1. The
relevant diagrams are given in Fig. 1. In this calculation
we are faced with all the previously mentioned problems
attendant with the lack of renormalizability and gauge in-
variance. We have not attempted to solve these in all
generality, instead we have opted for consistency with
previous calculations in the literature; if we are to take
seriously a limit on Ak® due to a one-loop calculation we
should ask what would a Ax° of this order imply for the
observed value of «, to one loop.

Suppressing all the nonstandard couplings except for «
and «z, the analogue of k for the ZWW interaction, we
find, keeping only the dominant cutoff-dependent terms,

k=k"+[aA?/(8mM},)1(2( A+ (Ak®)* —3AK°/ sin?0y, + cot?@y, { AKY(2 cos?8,, +2) — Ak [ 2+ Ak — Ak®(3+ Ak%) 1))

with Ak’°=k"—1 and Ak =«% —1. Setting Ay =0, we
arrive at

k~k"—0.045AXTeV){ A°[1—2Ak"—(AK°)*]} . )

Rather unsurprisingly this tells us that if Ak is small
then after the one-loop corrections k will remain close to
k°. As an example let us consider the previously men-

tioned result due to Suzuki,'?
|AK®| < 7X 103 A TeV)] !, (3)

and for numerical simplicity set A=1.0 TeV. Inserting
this into Eq. (2) gives

0.9933 =k =1.0067 . (4)

So we have arrived at the reasonable result that if at the
tree level k deviates from its standard-model value by a
small amount, then this deviation is stable at one loop,
granted the assumptions inherent in this sort of calcula-
tion.

However, in a similar approach Neufeld, Stroughair,
and Schildknecht'* found that «° can be an essentially
free parameter if k% is related to «° through

(k%) sin?0y, =1— (k%) cos?6,, . (5)

(Trivially satisfied by the standard model.) As we have
mentioned earlier the only difference between the ap-
proach of Suzuki and that of Neufeld, Stroughair, and
Schildknecht is that the latter authors retained some of
the symmetry of the standard model. While Eq. (5) al-
lows for large values of Ak® [for example, K= —1 and
k7 = — 1 are consistent with Eq. (5)], only for small values
of Ak® does Eq. (1) give sensible results. For example, if
we set k°=—1 and impose the relation of Eq. (5), and
take A=1 TeV, then Eq. (1) gives k=0.3: a one-loop

(1)
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correction of the same order as the tree-level result. Ob-
viously even our cutoff-dependent perturbation theory
has broken down and must be discarded; therefore, the
limits on «°, in this case, cannot be taken as a guide to the
range of possible observed values of k.

Our conclusions must perforce be a little negative. If a
one-loop calculation of the effect of nonstandard cou-
plings on a well-measured quantity leads to tight limits
on the nonstandard couplings then our work indicates
that these limits can be taken as a good guide to the size
of the effects that might be expected in a direct experi-
ment. Unfortunately these effects will also be small. On
the other hand, if a particular model leads to loose limits
on the self-interaction at the tree level, these limits can-
not then be taken as a reliable guide to the possible effects
to be seen in a direct experiment. For a definitive answer
on the boson self-interactions we will have to wait for an
experimental answer.
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FIG. 1. Feynman diagrams contributing to « at the one-loop
level.
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