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Sign of the neutron-proton mass difference in an SU(2) XU(1) supersymmetric toy model:
A possible scenario for solving the old puzzle
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Based on the idea that electromagnetism is responsible for mass differences within isotopic multi-

plets (e.g., pointlike neutron and proton or u and d quarks), we generalize an SU(2) X U(1) model in

a toy field theory of vectors to a supersymmetric model and investigate the finite mass difference
within the isotopic doublet. It is found that under soft-supersymmetry breaking, a positive n-p mass
difference can be obtained under reasonable assumptions for the parameters involved.

I. INTRODUCTION

The question of the sign of the neutron-proton mass
difference is an old puzzle. ' Based on the idea that elec-
tromagnetism is responsible for the mass difference, cal-
culations show that the proton is heavier than the neu-
tron in contradiction with nature. In the standard model,
which is couched in terms of the u and d quarks, the
masses m„and m& are arbitrary parameters and one does
not ask as to the origin of their mass difFerence. This
view may well be correct but the fact that the u and d
quarks are nearly degenerate in mass compared to the
others in the quark families sets them apart and makes it
important to explore the possibility that there exists a
special relationship within this isotopic doublet.

In this paper we examine the finite mass differences
within isotopic doublets in supersymmetric gauge field
theories. The development of renormalizable gauge field
theories within spontaneously broken gauge symmetry
has yielded a different view of the origin of this approxi-
mate symmetry. Three separate types of zeroth-order
mass relations provide the mass differences in higher or-
ders. However, detailed calculations of the proton-
neutron mass difference ' in some illustrative models of
the type-1 symmetry have shown that this mass difFerence
btrt ~„ is manifestly negative. In all type-1 symmetry
models, the mass differences can only be obtained after
second order and they are zero at the tree level due to
some symmetry (including discrete symmetry) ' restric-
tions.

Since supersymmetry is a bigger symmetry, it is in-
teresting to investigate whether or not the result can be
improved in supersymmetric gauge field theories. In this
paper based on the same idea as in gauge field theory, we
generalize the SU(2) XU(1) model of Freedman and
Kummer to a supersymmetric madel to see whether the
mass difFerence hm ~„~ can be improved in a second-
order calculation. We find that the mass difference
b, m ~„ is less negative in the exact-supersymmetry situ-
ation than the b,m ~„obtained in Ref. 6. A positive
b,m

~ „z, however, can be obtained under soft-
supersymmetry breaking. In doing this, the mixing of
scalar fermions and the mixing of neutral gauginos and
Higgsinos play very important roles. To obtain a positive

hm ~„, the parameters we choose are consistent with
the estimates of the supersymmetry (SUSY) phenomenol-
ogy

Our model ignores strong-interaction effects as contrib-
uting to the mass difference. In that sense the n pand -d-
u mass differences are equivalent. The current estimates
do indeed indicate that both mass differences are about
the same ( =4 MeV).

The model we are considering cannot be incorporated
in the standard electroweak model as it is not a chiral
model and, unlike the standard model, it imposes strong
isotopic syinmetry for the fermion doublet. It is used
here as a toy model to provide a scenario of how one
might proceed if one were to continue, as in the past, to
attribute the n-p mass difference to electromagnetism. Its
applicability is likely limited to small mass differences.
For the doublets (c,s) etc., the underlying cause of their
typically large mass difFerences is very likely deeper than
electroweak.

The e -v mass difference, however, can be understood
within the context of this model as long as their zeroth-
order masses do not vanish.

In Sec. II we generalize the simple model of type l with
SU(2) X U(1) gauge symmetry and parity-conserving cou-
pling to a model of supersymmetric SU(2)XU(1) gauge
symmetry. In Sec. III we present the detailed calculation
of b,m~„ for the exact SUSY model. The improve-
ments due to soft-SUSY breaking in this model are dis-
cussed in Sec. IV. In Sec. V we carry out explicit calcula-
tions of b, m for some special cases for the parameters in
the soft-SUSY breaking terms.

II. SUPKRSYMMKTRIC GENERALIZATION
OF THE SU(2) X U(1) MODEL

The original SU(2) X U(l) model is a model of minimal
algebraic complexity. It incorporates triplet and singlet
gauge fields V„and V„' and fermion doublet fields

(2.1)

as mell as the scalar doublet
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TABLE I. The fields in the SU(2) X U(1) model. Note: {1)The charge Q is obtained via Q = T, + Y/2; (2} ti; = ( g, t /tt, s ); and (3) If
we consider proton and neutron as point particles, and let g= (p/n ), then, we should have yI = l,ys = —1.

Gauge multiplets

Matter multiplets
Scalar fermions

Higgs bosons

Boson fields

ya
VI

PgL (ti lL~1(2L }

(F12L F2L ~

P~R=( 42R
—4iZ}

H',

Hi
N

Fermionic partners

W,L =(WiL. tt2L }

=(F~L F2L ~

PER ( 02R ~ 41R }

=( —
tY2~ 1('lL }

=(FlR,FqR )

(4H, O'H, }

(t('H, O'H, }

NL

SU(2) ~

Triplet
Singlet

Doublet

Doublet

Doublet

Doublet

Singlet

H1H=
2

(2.2)

+ ~B„H+i ,'gr V„H—+i,'g'V„'H~ —pHH-
+k(H H) (2.3)

where we note that SU(2) X U(1) invariance permits a
mass term with equal 4, and 4'2 masses but does not al-
low Yukawa couplings. This Lagrangian does not de-
scribe weak interactions as such but we are considering it
as an illustrative model for the problem at hand. In con-

each with T= —,
' and Y=1. We consider the parity-

conserving Lagrangian

z = —
—,'(a„v„—a„v„+g v„xv, )' ——,'(a„v'„—a„„')'

+%(itt} —,'gr—V —
—,
'g'V' —m )4

trast with the standard model, where fermion masses are
arbitrary parameters arising from the spontaneous gauge
symmetry breaking, here we start with degenerate masses
for the fermion isodoublets in order to answer the ques-
tion about the sign and magnitude of their mass
difference due to second-order loop corrections.

The supersymmetric generalization of this model con-
sists of the fields listed in Table I.

Note that we have additional scalar fields H2 and N
compared to Eqs. (2. 1) and (2.2). H2 is needed for gen-
erating masses for the supersymmetric partners of the
gauge particles, and N and its supersymmetric fermionic
partner are responsible for the existence of a unique
ground state which breaks SU(2) X U(1) to U(1) at the tree
level for this unbroken supersymmetric model, as we will
see.

Following the same procedure as in Ref. 8, we can ob-
tain the scalar potential V as

V=h (H' H'2+HI HI )N'N+ ~heJHIHJ2+s~

2

+ (F~LF~LFLFJL+F,'„F,„F,„F,„+H', H', H', H', +H'2 H2H2 H2+4FLF~RFRF/L 2FiLFiLFJ'RFJR—
8

iL 1 1 jL iL iLH1 1 iL 2 2 jL iL iL 2 2 iR 1 1 jR iR iR 1 1

+4FRH2H2 F&R 2FRFRH2 H—2+4HI H2H2 H, —2H') H', H2 H2 }

&2

+ (yLF iF i+vRFiRFR H 1 H2+H2 H2 }
8

(2.4)

From Eq. (2.4), the only scalar fields which acquire
nonzero vacuum expectation values are

(Ht &= "- 0, (H2&= (2.5)

which break SU(2) XU(1) down to U(1)EM. The constant
v is related to h and s of Eq. (2.4) by —,'v h+s =0. By in-

serting this solution back into Eq. (2.4), we note that at
this minimum we have V=O thus implying that the
theory remains supersymmetric.

By considering the SUSY interactions between the
gauge and rnatter multiplets and the self-interactions of
the matter multiplets, after spontaneously gauge symme-
try breaking, we can have the following mass eigenstates:
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~- (+H —'pH )

lk, Z

with mass m, = gU
V„= —(V„'+iV„), with mass m„=P 2 9 P v'2 '

Z„=, , (g V„' —g' V„'),1

g'+g'
1

with mass m = —(g +g' )'~ U,Z

1 (gV„+g'V„'), with mass m„=O,g'+g'

with mass m& =hU, (2.6)

1
with mass mz = —(g'+g')' 'U,

2
where

(A{+i~2) A.
g

' —g1
z

Ay= gk +gA,

gg 2+g ~z

III. FINITE MASS DIFFERENCES

and

with mass m~=0, %ithout loss of generality, we consider the case

The interaction terms of the gauge and scalar-fermion
multiplets, which can affect the self-energy of the fer-
mions, are given by

I 2 ~2

gV„'P{y"4z+H.c.—,A„T{'{y"{I'{—,Z„'{I'{y"'{I'{+—,'(g +g' ) Z„%'zy"4'z

2 ~2

g(re{ P—
L 0 z+{L+H.c. +ruzP&%'{'Pzl +H. c. )+

2

1/2

(PL 'PzC'zl +H. c.

2 I2 I

,z, iz (PL%,%,L+H. c. —
z Iz {zz yPL'P{'P{L +H. c.

[2(g'+g ')]'" [2(g'+g') l'"

I /2

g(ru, C P+%', %'zzt+H. c. +coz C P„%z%,++H. c. )+ g C P„'P Pz„z+H.c.
2

z z, z g C P~%'{'P{~+H.c. — z,»zz yP„%'{'P{~+H.c.[2(g'+g')]'" [2(g'+ g ')]'" (3.1)

The second-order contribution to hm due to elec-
troweak interaction can be readily calculated (see Fig. 1)

following Freedman and Kummer. Working in the U

gauge, one finds that

2 &2 2

1+x ln 1+
sm. {g +g' ) X Pl

V

v+

-~)ggr+g 2 yi

-i(g~- g~)

+ p(g2+q~2] &r2

~gg2+g'2 y"

-i(g~ —g'~)

p(g2+ gran)
{/2

(3.2)

which is manifestly negative, where hm; =b,m; lz —
&

=[m(neutron) —m(proton)], and the subscript i indi-

cates the figure number under consideration.
The contribution to hm due to the SUSY particles can

also be calculated (see Figs. 2 and 3). It is given by

Y

-(gg y~
-igg' yV

{g2pf2)l/2 {{g2+s 2)l&2

FIG. 1. The Feynman diagrams contributing to the fermion

(t(, and {ijz) masses due to the interactions of the gauge particles
and fermions.
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/
1 (gPR

b)
g2+ g/2

&
(/2 ~ ~ I g2+ g'2&(/2

2

(
~ ~ )p, ( ~ )p„

c)

g+
2

e)
-2)gg ~~ ~w 21gg

J'&(g2+g'2) 'g ',J2(g2+g'2) "

d)
(g2 g' )

--
1 (g2 g'2)

+ ~2(g2+g'2)
~

' S2(g2+ g'2)
FIG. 4. A partial set of diagrams of the contributions to the

fermion (f, and 1(,) masses in the SU(2) X U(1) model with soft-
SUSY breaking, where i,j, l, m, n =1,2; i&I;g& =y2, g„y as-0 -0 -0
i = 1; yg =y2, y3 as i =2.

FIG. 2. A partial set of diagrams of the SUSY contributions
to the fermion (P& and t(g) masses in the exact SUSY model.

We will omit the SU(2) XU(1)-singlet fields (X,%~) to
consider the minimal number of Higgs multiplets.

With soft-supersymmetry breaking, the vacuum expec-
tation values of H, and H2 will generally be replaced by

Thus the supersymmetric contribution is positive and,
indeed, goes in the desired direction. However, the total
Am is still negative, given by

Am =6m, +hm2+hm3

—mg g dx ln 1+ 1 —x mz

Sgr(g +g' ) o x m
(3.4)

The fact that the supersymmetry part gives a positive
contribution to 5m is encouraging. It is now interesting
to consider what happens if this symmetry is broken
which is expected to occur at low energies. In the next
section, we will discuss the consequences due to soft-
supersymmetry breaking.

IV. SOFT-SUPERSYMMETRY BREAKING

mg g
2 &2

1 1 —x mz2bm2=bm3=
2 z, 2 f dx x ln 1+

16gr (g +g' ) x m

(3.3)

(4.1)

and the soft-SUSY-breaking terms will bring in mixing of
scalar fermions, and of charged gauginos and Higgsinos,
as well as of neutral gauginos and Higgsinos. '

(a) Mixing of the scalar fermions.
In exact supersymmetry, +,L and %,z are degenerate

partners of +, . With soft-supersymmetry breaking, the
following mass eigenstates can be written as

4,'=0 „cos0,+%,Rsin0, ,

g; = —t(,L sin8;+P;Rcos8;, i =1,2,
with

(4.2)

where 0, is determined by'

m~, , =m + —,
' I(L +R )m~

I

+[(L; —R; )m; +4A; m m, ]' i, (4.3)

In the following, we consider soft-supersymmetry
breaking in the Lagrangian given by Eq. (3.1) (Ref. 10). 2A, m

tan20,=, i = 1,2,
(L, —R, )m;

(4.4)

a)

-lgC- P» ~lgP, C

b)
2+ /2 w ~~ 2+ '2

i
g+g C-(Pr i

i
g+g

P C
2 Rl 1 2 L

and I.„R;,A„m, are free parameters with m WO.
(b) Mixing of charged gauginos and Higgsinos.
With soft-supersymmetry breaking, it can be seen that

c)

-igc 'P„( )igp C

d)
-i(g -g' ), ~-~~ i(g -g' )

/2(g +g'g( $ '(/2(g&+g' ) X; XI,

e)
frigg'

/2(g2+g'2) "I &P(g2 + g'2)

(.-)p„(~ -) p,

n

FIG. 3. A partial set of diagrams of the SUSY contributions
to the fermion (g~ and t(2) masses in the exact SUSY model.

FIG. 5. A partial set of diagrams of the contributions to the
fermion (P, and ti, ) masses in the SU(2) X U(1) model with soft-

—0 -0 —0
SUSY breaking, where i,j,l, m, n =1,2; imam; p& =pz, p3, y as

-0 -0 -0
g3 as i =2.
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the possible mass terms in two-component notation are Xo

(V 1~'0H +Vzk 0H )+MA, A, p1!—JH 14 +H. c.

(4.5)

( ~ ~ ) p, ; p„ ( ~ ~ ~ ) P„;p„

r

Then, the mass eigenstates are given by

with masses

M =—'(M +p +2m

+[(M —p ) +4m&cos 28„

(4.6}
FIG. 6. A partial set of diagrams of the contributions to the

fermion (p, and 1(z} masses in the SU(2) XU(1) model with soft--0 -0 -0
SUSY breaking, where i,j=1,2; yl, =y&, g3, y as i =1;
yk =y„y3 as i =2.

cos1t1~ sing+
—sing+ cosP+

ma&2cos8,
'

where

+4m11,(M +p +2Mp sin29„)]'r ), (4.7)

tan2$

m ~&2 cos0, p
2v'2m 1v(p cos8„+M sin0, )

fL +2m ~cos20 ~
(4.8)

y,+=
V, , ( iA—)+, V; Q'

= U;, ( i A)—+ U. , z1(rH

U=O, V=0+, detX ~0
1

tan61, —=

V2

2+2m 11,(p sin6}„+M cos8, }

M —p —2m ~cos28~

where

V G 30+,detX & 0 are unitary matrices (c) Mixing of neutral gauginos and Higgsinos.
With soft-SUSY breaking, the possible mass terms are

given by (in two-component notation)

—'}rg +g' Az(V, QH
—vzgH )+ ,'(M cos 811,+—M'sin |}~)Azkz

+(M —M')sin81vcos81VAzA, + —,'(M'cos 8~+M sin Ha, )A, A, +pQH QH +H. c. , (4.9)

1 2
V 14H1 V2 4Hz

yz = ( i Az) cos—P+, , sing,
(V1+Vz)

2

m = — —M + m +1 Mp'
4 2 z 2

1/2

2 2

1 2
V14H, V zWH,—iy3=Azsing+, ( i cosP),—

(V1+Vz)
'2

P' 2 MP
4 2 z 2

1 2
V14H1+Vz 4z

( z+ z)1rz ' 4

1/2
1+—
2

(4.10)

where M and p are the same as the ones in Eq. (4.5). M,
p, and M' are independent free parameters in our case. '

We let M=M'. Then, the mass eigenstates with their
corresponding masses are given by

X1=—) ky, m1 =M,0

where

V1+V 2 4mz2 2

p'= p, tan2$=
V1V2 2M+@

and we have inserted ( i } in g, so that m3—can always
be positive.

V. THE MASS DIFFERENCE, h, m,
%'ITH SOFT-SUSY BREAKING

Substituting Eqs. (4.2), (4.6), (4.8), and (4.10) into Eq.
(3.1), we obtain the interaction Lagrangian (see the Ap-
pendix) contributing to the mass differences. From this
Lagrangian, we note that there are three types of one-
loop Feynman diagrams, in the supersymmetric -sectors,
contributing to Am. These are shown in Figs. 4—6. For
the first two types, Figs. 4 and 5, the integral J appears in
the form

or I'RJI'L

in the calculation of Am. These types of relations were
already involved in Sec. III. For Fig. 6, however, the in-
tegral J appears in the form
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~R J~R (5.2)

As we shall see, due to the free parameters in the soft-
SUSY breaking terms, it will play an important role in
obtaining positive mass differences.

In the calculation of hm, the following type of integral
occurs:

F(O, m;M, ,Mi) =
M1ln

M1

m

M1 —m

M21n
M

m

M2 —m

For small fermion masses (i.e., m ~0), the above in-

tegration is particularly simple:

F(m, m;M iM 2)

= J dr ln
0

rm '+ (1—r )M2i r(1—r)—m'
rm'+(1 —r)M,'r(1 ——r)m'

where m is the mass of the (degenerate) fermion isodoub-
let, m is a gaugino mass and M„M2 are scalar-fermion
masses.

(5.4)

If we make the further approximation that

m &M],M2, (5.5)

which is quite consistent with the current phenomenolog-
ical limits, one obtains, by expanding (5.4),

F(O, rn;M, ,Mz)= ln +m
2

ln
M2 M1

M

m

1

M
ln

M

m
(5.6)

We now consider the following two interesting cases
for the choice of the parameters in the soft-SUSY-
breaking terms.

First of all, we take M;. to be the masses of the scalar
fermions P and choose

It can be shown that z&1. Therefore, from (5.9), we

6 M
It can easily be verified (see the Appendix) that

ui =u2( ~ I V~ I

= IUJ I) .

Case A. We take

j9, =e2=e,
p'=2M[ m2=mi=(mz+M )' ], (5.7)

and that

Am1+Am4+bm5-m .

Hence, we have

Am =Am, +Am4+Am5+hm6) 0

for M sufficiently large.
Indeed, under the limits

0&t&1 .

Then, the SUSY contribution to b m from Fig. 6 will be

Qm6=
z 2 2 [—(g +g' ) F(m, mz, M2, ,M22)

M sin28
64m~(g'+g' )

+(g' g')'F(rn, —m, ;M„,M„)
+4g2g'2F(rn, M;Mii, Mi2)]

m«M,

m «M„,„;,„(m%0),

and (5.5), one can write, using (5.6),

hm = M sin28ln
r'+s' M11 M22

64m 12 21

(5.12)

(5.13)

(5.g)

One can easily verify that

(~—1)M(g +g' )
b m6 &

2
sin20, F(m, m~;M~„M~~ }& 0

64m

which is positive if (5.10) is satisfied, where we have used
the fact that the factors from the integrals do not affect
the results in any substantial way as the SUSY particle
masses appear inside the argument of the logarithm and
are distributed in both numerators and denominators.

Case B. Here we take the scalar fermion masses M;- to

provided

M11 M 21

M12 M22

where the quantity ~ is defined by"

9) be

M11 M21 M1s M12 M22 M2

01=82=0, P'=0 .

From (4.10), one then obtains

mz=(mz+ —'M )' +—'M
4 2

(5.14)

(5.15}

F(m, mi, Mii, Mi2)=a'F(m, mz', M2i, M&2) . (5.11) m =(m'+ —'M')' ' ——'M m =m
4 2 ' 1
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—m3F(m, m3;M„Mz)sin P

MF—(m, M;M, , M~)] . (5.16)

This can be further simplified using (5.6), under the limit
(5.5}and small fermion masses, to

2 2a sin20 MMz
lnM' M'

2 .

where we have expressed

m2+m3 2Mz and M] +Mq =2M

and assumed that M & (M, —Mz ).
We note that

(5.17)

hm )0
provided

M) )M~ . (5.18)

Finally, we observe that, due to the small mass
difference between e and v, the same approach as above
can be used to calculate the e -v mass difference as long
as the zeroth-order masses do not vanish. For the case
when the zeroth-order fermion masses vanish, one can
easily check that Am will vanish identically.

VI. CONCLUSIONS

We have found that in order to obtain a positive b m it
is extremely crucial, first of all, to incorporate supersym-
metry and, second, to have soft-supersymmetry breaking
so that mixing occurs for the gauginos and for the scalar
fermions.

This breaking must be complete as is evident from the
formulas (5.13) and (5.17) for the cases considered. In
other words, the sign of hm is remarkably sensitive to the
fact that the scalar fermions mix (i.e., OWO} with
stringent conditions on the mass ratios [see (5.10) and
(5.18)] and, of course, that photino acquires large enough
mass. In the absence of any one of these conditions, hm
reverts to the negative sign.

The cases we have considered for the supersymmetry

The expression for Am, which, as we stated earlier, comes
entirely from Fig. 6, is

o; sin20 2Am 6
= [m iF(m, m p,'M /, Mp )cos y

parameters cover values that have certain restrictions but
are reasonable according to current estimates. The fu-
ture discovery of these particles will naturally shed fur-
ther light on this subject.

In terms of the magnitude of Am, the experimental
value is about 3 —4 MeV for the (n p)-doublet and for the
(u-d) doublet. If the masses of the supersymmetric parti-
cles are —100 GeV, and the values of the logarithms [see
(5.13) and (5.17)] involving scalar-fermion mass ratios are
in the range 10 ' to 1 for small mixing angle 8-10
then hm of the above order is quite possible.

In the absence of supersymmetry, on the other hand,

b, m ——em,
so that for m —3—4 MeV, not only is Am of the wrong
sign but almost a hundred times smaller than the expect-
ed value.

To obtain the correct mass difference it is not essential
to involve the full machinery of supersymmetry. In our
model, we notice by examining case A considered earlier,
for example, that the essential items are that the photino
gets large enough mass, as well as the mixing of the scalar
fermions such that (5.10) can be satisfied.

Our model should be applicable for those cases which
involve typically small mass differences with elec-
tromagnetism as their principal underlying cause. The
large mass differences within the doublets (c,s), (t, b)
(neglecting the mixings among these quarks), etc. , howev-
er, have, very likely, a totally different origin. Further-
more, as stated in the Introduction, our SU(2) XU(1) iso-
doublet model is not consistent with the standard elec-
troweak model. It is rather a toy model simplified to in-
clude only the vectors. It may, however, suggest a possi-
ble scenario if one were to follow the historic path of at-
tributing the n-p mass difference to electromagnetism. If,
indeed, one succeeds in this task then the neutron-proton
mass difference will no longer remain a puzzle. '
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APPENDIX

Substituting (4.2), (4.8), and (4.10) into the interaction
Lagrangian (3.1), we have

2 r2

z„qy y+ , (g +g ) z„yy—q
2 g2+ ~2)1/2 P

g I 22+ 1
I 127 2 L ~2 lP cosO& le& sinO~ )+,( I pp t/2 RXl ~12 42 RX2)(4lcosO1 PlsinO )

detV (det V)*

1+ ( Uppgi Uip Jp)PL 1P&(fp cosOp 1/tp slnOp)
detU
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+ ( U221 1 RXl U1241 RX2) 42 ~2 1 2s ~2
(det U)*

1/2

g +g
2

(X 2cosi)) kg 3slnf )PL 02( tl/2 co 82 42 in'92 +H. c.

2 ~2 =0
(y 2costb —iy3sinp)Pt g, (g, cos0, —p, sin0, )+H. c.

+2(g +g' )

1 2
@PLY,(g, cos8, —

1b, sinH, )+H. c.
2(g'+g')

+g $1Pt ( V22y1
—V12y2)( $2sin82+ $2cos02) +H. c. + $2PL ( U2, 7('1 U12—y2)(ttitsin61+ Qicos91)+ H. c.

det V detU

1/2

g +g 0 0 ~ 1 ~ 2

2 4 (() )( tb2stn92+ 42cos()2)+ H. c.

2 ~2 0 t

+ Q, PL(y2cosg —iy3sin(() )(lb', sin6, + ill, cos8, )+H. c. + Q, PLy(g', sin8, + lb', cos0, )+H. c.
2(g'+g') 2(g +g' )

(Al)

If we choose the parameters as (5.7), then, the SUSY contribution to b, m ~2, from Figs. 1, 4, and 5 will be

—mg 2g 1 —t
bm, t2, +Am, 2, +i3m6~2, = dt(1+t)ln 1+

Sn. (g +g' ) t'

1
mz

2m-

m(g2 —g'2)2 1 (1—t )m 2+ tM» —t( 1 —t )m+, dt tin
64~'(g'+g') o (1 t)m', +tM—'„t(1 t)m—'—
m(g2 —g'2)2 1 (1—t )m2+tM22 t(1 t)m- —

+
64~ (g +g' ) & (1—t)m2+tM„—t(1 —t)m

64 2(g2+g 2) 0

64ir (g'+g')

(1 —t)m2

(1—t)m, ,

(1 —t)m2

(1 —t)m

+ tM', , t (1 t —)m '—
+ tM,', t (1 t )m—'—
+ tM~» t (1 t )m—'—
+ tM'» t(1 t )m '— —

where m =M and m2, m3 are given by (4.10).
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