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%'e study a light-cone model of the nucleon and the S»(1535) resonance which provides a relativ-
istic generalization of the constituent-quark model in the nonperturbative low-Q regime. The two
parameters of the model, namely, the size parameter a and the constituent-quark mass m~ =300
MeV, are fixed by the axial form factor. %'e find good agreement for the electromagnetic form fac-
tors of the nucleon up to Qz = 1—2 GeV'. All static properties of the nucleon, except for the neutron
charge radius, are reproduced within 10%. In addition, we show that the electromagnetic current
of the nucleon is conserved. The S»(1535) transition amplitudes, where gauge invariance is
achieved by including a three-body current, are calculated from a constraint-free form-factor set.
They are in reasonable agreement with the available photo- and electroproduction data.

I. INTRODUCTION

Quantum chromodynamics (QCD) is now generally
considered to be the gauge field theory of the strong in-
teraction, although it remains unsolved at low momen-
turn. Within its framework there is growing evidence'
for the "constituent" light quark carrying an effective
mass m„= md =m =mtt /3, when the gluon fields are in-
tegrated out and meson-exchange dynamics emerges.
Skyrme models approximate the latter by nonlinear pion
dynamics and are thought to be a long distance and large
color N, ~ ac approximation of QCD. These aspects are
practically ignored (except perhaps for m ) in the suc-
cessful nonrelativistic quark model (NQM). Since the
mid 1970s it has been improved by ingredients from
QCD, such as the color-magnetic part of an effective
gluon exchange now known as the color hyperfine in-
teraction.

The NQM and its relativistic, chiral, or other generali-
zations are based on the dominance of valence quarks in
the Fock-state expansion of hadrons. Relativistic effects
are often large, e.g., the axial-vector coupling constant
g„=—', in the NQM changes to —,

' upon including them,
and longitudinal-momentum distributions are broad and
asymmetrical. The p/m expansion of Foldy et al. for
light quarks allows including relativistic effects of low or-
ders more consistently than in bag models. However,
the average quark momentum ( p ) ' =m in the NQM.
Hence the Gaussian wave functions of the underlying
NQM also play the role of convergence factors so that
relativistic effects become cutoff dependent.

The light-cone formalism provides a consistent relativ-
istic theory for composite systems with a fixed number of
constituents. Dirac's front form has been implemented
in light-cone time-ordered (r=t +z) perturbation theory
in the asymptotic freedom phase of QCD. This
method converges even when relativistic wave functions
are used that have only a power-law falloff at high

momentum. On the light cone it is consistent to take
particles on their mass shell, similar to the Schrodinger
equation, but off-P shell in general. This feature allows
using light-cone spinors for quarks in multiquark hadron
wave functions rather than propagators in instant form.
The linear dependence of p =p+p —

p~ on p is crucial
to satisfy the additive cluster decomposition property, a
consistency requirement of relativistic many-body theory.
A decisive advantage of the front form is the separation
of the total momentum from the internal motion, which
is connected to the transitivity of the seven kinematic
(interaction-free) generators in momentum space. '

The construction of three-quark nucleon and resonance
wave functions is guided by their nonrelativistic form in
the NQM. The Melosh transformation to the light cone
generates relativistic spin wave functions with approxi-
mately correct J, which is diScult to achieve in general
on the light cone because of the interaction dependence
of Jj.

Using the relativistic generalization of the harmonic
( ls) wave function allows comparing directly with the
NQM to estimate relativistic effects. For the magnetic
form factor of the nucleon such a calculation was done in
Ref. 11. We show here in addition that, despite the phe-
nomenological nucleon wave function, the nucleon
current matrix elements satisfy gauge invariance. For the
electromagnetic transition amplitudes to the nucleon res-
onance S&i with J =

—,', there are additional constraints
from gauge invariance, which lead to the introduction of
a three-body current. The slow q falloff of the S&& heli-
city amplitude A, &2 is of particular interest since it is
hard to reconcile with the NQM.

Our main motivation has been to provide electromag-
netic form factors from a relativistic quark model that in-
terpolates between the static properties of bound three-
quark states and their longitudinal distribution func-
tions. ' In the intermediate momentum region the data
on electromagnetic N-N* transitions is scarce and pre-
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dictions are particularly useful for planning experiments
at the Continuous Electron Beam Accelerator Facility
(CEBAF), at the ELSA accelerator in Bonn, and at the
MAMI accelerator in Mainz.

This paper is organized as follows. In Sec. II we give a
brief review of the light-cone formalism with special em-

phasis on the three-quark kinematics. The construction
of our S»(1535) and nucleon wave function can be found

in Sec. III. The general form of transition current matrix
elements and their evaluation on the light cone is dis-
cussed in Sec. IV. Finally, in Sec. V we consider current
conservation and present our numerical results for the
nucleon form factors and the S» (1535) transition ampli-
tudes.

II. LIGHT-CONE FORMALISM

The light-cone formalism is known to be suitable to de-
scribe the relativistic many-body problem, since it decou-
ples the total momentum (c.m. ) motion from the internal
motion. For a general review of this formalism the
reader may be referred to Ref. 9. Here we just want to
recall some basic facts. In light-cone dynamics one de-
scribes a system by its evolution in the "time" ~=x +x
and by "coordinates" (x,x~)=(x —x,x', x ). For the
ten generators of the Poincare group there is, as Dirac
has shown, a maximum of seven generators free of in-
teraction in the light-cone system. This subalgebra also
includes the three boost operators, which take a particu-
larly simple form, in contrast with the conventional in-
stant form, where the boost operators are in general in-
teraction dependent and not known for a composite sys-
tem. On the other hand, rotational invariance is difficult
to implement on the light cone for the interaction-
dependent generators J' and J (rotation around x and y
axis). However, there is invariance under z rotations,
where the z axis is an appropriate quantization axis.

In the light-cone approach all particles are on their
mass shell; that is, a particle with mass m has the four-
momentum

m +pp"= p+=p'+p'» =
+

p

[Note that the scalar product in light-cone variables takes
the form a„b"= ,'(a+b +a b+—)—a~1~. ]

A spin- —, fermion is described by a Dirac spinor with

helicity +—,':

spinors are identical to the conventional Dirac spinors
for p=O. However, they differ for pWO since the light-
cone boost generators differ from the conventional ones.

As suggested by deep-inelastic scattering, the n-body
configuration (with n =3, e.g.) is conveniently described
in terms of the longitudinal-momentum fractions
(Bjorken-Feynman variables)

p. n

j=1
O~x ~1, (2)

where P+ = g"
~
p+ reflects the conservation of the to-

tal momentum I', and in terms of the relative momentum
variables

X2P1 X1P2

X1+X2

Q3 (x1+x2)p3 x3(pl+p2) p3 x3P
(3)

3=:m —M

Thus G30 is independent of the four-vector P„(except for
the dependence on the Lorentz scalar m 2=PVPP).

Also the %einberg equation of motion' written in
terms of these variables

The crucial property of q3 and Q3 is their vanishing
"invariant" +component: Q3 =O=q3. Hence they are
spacelike four-vectors q3= —

q33 Q3 Q3~ It can be
shown that this property leads to a simple linear relation
of the invariant mass s =(g tp. ) in terms of the rela-
tive variables and that in turn this feature leads to the
so-called cluster decomposition property which is violat-
ed in most formulations of relativistic many-body dynam-
1cs.

The six relative variables x„x2,q3~, Q3j are translation-
al invariant and invariant under the three light-cone
boosts. ' Thus they are convenient to decouple the inter-
nal dynamics from the c.m. motion: The free three-
particle propagator 630 with

3

G3O' =P s=P+ P —g—p)
j=1

may be rearranged with the help of P3 = g=, p j and
m 2=x +a- —P,'as

2

G3O =m — g —
q3

—
Q3

mj

x, x&x2 x3(1—x3)

1
u, , (p) = (p++Pm+a, p, )q, ,

2mp

1 0

G 'q (x,q, g )= fdr'V(x, q, g;x', q', g')

Xgs(x', q3, Q3), (6)

0 1 1

Xf ~2 1 & Xi ~2 0
0 —1

(with the metric convention of Ref. 13).
These spinors are solutions of the on-shell Dirac equa-

tion (gf —m)uz(p)=0 and the 1 and J, solutions refer to
helicity eigenfunctions as measured from a system rnov-
ing with U~c in —z direction. Note that the light-cone

with the invariant phase-space volume element

dI"=
3

d q33d Q3~6 g x —1
(16~ ) i=1 i=1 Xi

rejects the proper separation of internal motion and c.m.
motion, since the internal baryon wave function
1(s (x q 3 Q 3 ) does not change under boosts and transla-
tions.
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III. WAVE-FUNCTION MODELS
FOR THE NUCLEON AND THE S& ) RESONANCE

For the nucleon a wave-function model exists' ' that
represents the relativistic generalization on the light cone
of the conventional three-quark spin-isospin wave func-
tion in conjunction with a Gaussian momentum wave
function [see Eq. (18)]. This relativistic wave function is
most convenient for estimating relativistic effects in a
comparison with the nonrelativistic constituent-quark
model (NQM).

The spin wave functions

these invariants form a complete basis for the nucleon
ground state with totally symmetric momentum wave
functions, since it can be shown' that all other invariants
without explicit derivative terms depending on p; (which
correspond to P-, D-wave quarks in the nonrelativistic
limit) are linearly dependent on Ip, I„I2. More general
in variants —beyond the totally symmetric momentum
distribution —are discussed in Ref. 18.

In order to construct the spin invariants of the
N'(S» ) wave function we start with negative-parity in-
variants by substituting uz~y5uz and adding an explicit

p dependency. This yields

~ ( —,
'

—,
' )S =0, —,';J =

—,
' m J =A, )

1
X (Xti&2X2 )(X3X3.)XlX2X3

2
X3

~( —,
'

—,')S=1, ,';J= —,'m —=A.)

(8a)

Ieo=ulysrGu zu3(Pl P2}ysru~+

+ (23)1+(31)2,

I l
=u ly TGu 2u3(Ill Ii2 )y Tu

X (Xl+l~2X2 } (X3~X3.)XlX2X3&6

[with the spin S of quark pair (12)], and similar isospin
wave functions lead to the nonstatic (i.e., momentum-
dependent) Lorentz invariants

+ (23)1+(31)2,
1

Iq2 = u lI g, ysTGu 2u3(Iil Ii2)ysrulvg
Pl ~

+(23)1+(31)2

(10)

Ip =u lysGu 2usulv(P)+(23)1+(31 }2
(9)

and leads to the following ansatz for the S» wave func-
tion:

1
u, PysGu 2usulv+(23)1+(31)2I~=

m~

I, =uly"TGu 2u3 y„ysru lv(P) +(23)1 +(31)2,

where G =i~zC =G is the G parity with the charge-
conjugation operator C=iy y and u;=u(p, ), i =1,2, 3
are the quark light-cone spinors. The summation over
spin and isospin of the three quarks, as well as the totally
antisymmetric color wave function, is understood but not
written explicitly. With the conventional Dirac spinors
the spin parts of Io and I, reduce in the nonrelativistic
limit, where only the lowest order in pj /mz and P!mdiv is
retained, to Eqs. (8a) and (8b), respectively. However, we
will use Eq. (9) with the light-cone spinors of Eq. (1).

Together with

4„(x,q3, Q3 ) =c„@o(x,q3 Q3 ), (12)

where 4o is a totally symmetric momentum distribution,
and determine the constant coeScients c„by comparison
with the nonrelativistic Sll(1535) wave function which is
an eigenstate of total angular momentum —,'. This wave
function may be written in momentum space as

2

gz+(x, q3, Q3, k)=N + g 4„(x,q3, Q3)I, „
n=0

with totally symmetric momentum wave functions 4„.
In order to deal with the problem of angular momen-

turn J in light-cone dynamics, where only J, is well
defined, we need some approximation to specify the X*
wave function completely. Therefore we set

~N„, A, , mr) =[~(—,
'

—,')S =0;—,
' ) Y, (p )]&~ g ~T;Ms )+(23)1+(31)2

1
(Xlio 2X2 )(X3cr p~~)XlX2X3 e l &;M, &+(23)1+(31}23/8~. .. (13)

where p = (1/3/2 }(p,—p2) is the relative momentum between quark 1 and 2 and
~ T;M, ) denotes the mixed symmetric

isospin wave function

~( —,
'

—,')T= 1; —,'mz. ) = — — g (4,rir242 )(4,~ )4,4243,
1

v'6 T
(14)

which will be evaluated in the uds basis. ' The superscript I in g, refers to the fact that the Pauli spinors are in the in-
stant frame.

We now write the spin invariants I„ofEq. (10) explicit in the N rest frame where P, =(m „0)and only the upper
component of u contributes. For eight different combinations of helicity components the results may be found in the
Appendix, subsection 1 and Tables II and III. In the nonrelativistic limit we may approximate

p2 p3 ™~p2 ) +p3 } p2 p3
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For the comparison with the nonrelativistic wave function we have to transform the instant spinors y, into the light-
cone helicity eigenstates ~A,; ). For free particles this transformation is known as the Melosh transformation

y', , =w, [(p,'+m, )l t; &
—p;„Il; &],

y,', =w, [pL~1, &+(p,++m, )~1, &]
(15)

ith w;=j[2p;+(p;+mq)]' I '~[(2mq2x;P+)' ] ' in the nonrelativistic limit and pz~=p +ip2 W. e use this
transformation here, thus neglecting the quark binding effects but only for the determination of the coefficients c„. A
straightforward but lengthy calculation shows that agreement for all eight helicity components can only be achieved for
the choice co =c2 = 1, c, =0; thus

N~Q@o(x q3 Q3 )(I+ o+I+2 ) (16)

A similar analysis for the nucleon wave function leads to '

N
=Net'o(x, q 3, Q3 )(Io +I2 ) . (17)

These results may also be obtained from a different starting point. ' Using a separable scalar-quark-quark interaction
the Weinberg equation (6) can be solved with the ansatz (11) and (12) and leads to co =c2, thus confirming (16) and (17).

For the totally symmetric momentum distribution we choose a Gaussian shape

(l)o(x q3 Q3 ) exp( M3 /6Q ) (18)
where M3 is defined in Eq. (5). This anasatz will restrict our model to low-Q values, since it does not exhibit the
correct power-law falloff at high Q . But it should be emphasized that our model still leads well beyond the nonrela-
tivistic quark model, because it incorporates the relativistic quark motion in the nonstatic spin wave function and a
proper boost treatment.

There are only two free parameters in our model: the effective quark mass m =m~/3 and the hadronic size parame-
ter a, which will be fixed by static nucleon properties.

IV, CALCULATION OF NUCLEON FORM FACTORS AND ELECTROMAGNETIC S]] TRANSITION FORM FACTORS

The form factors of the nucleon are conventionally defined in terms of the electromagnetic current matrix element

(NA, '~ J"~A, ) =euz (P') y"F, (q )+ q [y",y"]F2(q ) uq(P)
1

4m~
(19)

with momentum transfer q =P' —P. It is known that this
matrix element has an exact expression in terms of the
light-cone three-quark wave function fz(x;, q3, Q3). The
calculation on the light cone can be simplified consider-
ably if one chooses the Drell-Yan frame with the essen-
tial feature q+ =0:

2m~P"= P+, , O~

(20)
q"=(O,q, q~) .

Then the electromagnetic current matrix element
(NA, '~J+~NA, ) is diagonal in the Fock-state basis. In
particular, Fig. 1(b) does not contribute because on the
light cone all fermions have k+, k )0 (Ref. 9) and the
+ component is conserved at each vertex:
q+ =k +k+ &0. Furthermore, if we can restrict our-
selves to the J+-matrix element (-y+ upon neglecting
anomalous magnetic moments of the constituent quarks),
then we do not get contributions from the instantaneous
fermion propagator parts —y+ /2k + [Figs. 1(c) and
1(d)], since y+y+=0. Indeed a short calculation with
the explicit light-cone spinors of the Appendix, subsec-
tion 1 in Eq. (19) shows that we can determine F, (q ) in
the Drell-Yan frame from the J+ matrix element alone,
i.e.,

eF&(q )= + &N(P')TIJ+IN(P)1&

eF, (q') = (N(—P') t
~

J+ ~N (P)1) .
2mp„p+ (21)

Hence only Fig. 1(a) contributes to the electromagnetic
form factors of the nucleon and the matrix element for
the three-quark nucleon wave function gz of Eq. (17)
reads

). I 1 t
ia)

(I Ll
(0)

(c)

FIG. 1. Calculation of the electromagnetic current matrix
element on the light cone. The matrix element is diagonal in the
Pock-state basis, i.e., diagram (b) does not contribute, if we
choose a frame with q+ =0. The diagrams (c) and (d) originat-
ing from the instantaneous part of the propagator do not con-
tribute to the + component of the current.
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J+ 3

Nl' NA. = g f dI g~(x,', q', , Q', , X') '
e, y+ ' 1(„(x,, q, , Q, , A. ), (22)

where e is the charge of the struck quark and a sum over quark spins and isospins is implicit. Note that x,'=x, since
q+ =O.

If quark number 3 is active (i.e., j=3, P 3 =@3+q, P ', =P, , P 2 =p2 for the +, l components) we find, from Eq. (3),

(23)

Note that p ~
—P, Aq whereas P P—=q . Details of the calculation may be found in the Appendix subsection

2.
The axial form factor G„(q ) can be obtained in a very similar fashion from

(N(P')A, '~ A,+ ~N(P)A, ) =u ~(P')y~y+G„(q )r ulv(P)/2

and the analog of Eq. (22) in the light-cone model with the replacements y+ ~y&y+ and ei ~r~ /2.
For the S» transition current some care is necessary to define a set of gauge-invariant transition form factors that are

also constraint free, i.e., are independent of each other for all values of q . We follow the analysis of Devenish, Eisen-
schitz, and Korner and start with the covariant, gauge-invariant, and constraint-free parametrization of the
( —,
'+ ~—,

' )-transition current as

(N*(P, )A, '~J"~N(P)A, ) =eu, (P, )[G, (q )(q y" glq")y, —+G2(q )(P qy" p"g)y,—] u(lvP) .

With the help of the Gordon decomposition for the negative-parity case

(m, —
mdiv)u ay"y~uv=u, [(P, +P)"+ia""q,, )y~ulv,

the transition current (24) may be rewritten in terms of the analog of Dirac and Pauli current

2

(N"A. '~J"~NA, ) =eu «(P„) F,„(q )y~ y" +q" +F2, (q )iy~o"'q„ulv(P),
m, +m~

(24)

(25)

(24')

where the form factors

F„(q )= (m, +miv—)[G, (q )
—

—,'G2(q )], F2, (q )=—,'(m, +mdiv)Gi(q )

are obviously still constraint-free, since they are obtained by linear, q -independent combinations of the G, s.
Again the F,, may be obtained from the + component of the current alone:

+mam~
eFl, (q ) = —

(, N*(P, ) 1 ~

J+ ~N(P) l ),
Qm, m„

qLeF, (q )= (N'(P ) 1 ~

J+~N(P) $ ) .p+

(26)

(27)

Since the F;,(q ) are finite for all q we can infer from Eq. (27) that (,N' 1 ~
J+(q =0)~N $ ) must vanish linearly with q

and (N' t'
~

J+(q =0)~N & ) with qL. However, there is still another set of form factors h; which is of more physical im-
portance. These form factors h; enter diagonally into cross sections and correspond to definite helicity transitions

(N*)l, '~J" NA, ) =u, (P, ) h, (q ) (p qq" qp")y~+h3(q —
) iP, e" ~rq~ yr uN(P)2 1 2 1

=:h, (q )JI',„+h3(q )J"„,„, , (28)

where Q:=(m, —
mdiv)

—
q defines the pseudothresh-

old (at Q =0), and we use the convention
Eo)23= E = 1. The form factor h, (q ) is called longi-
tudinal since, for a transverse photon,

&trans J~ 0p ong

[as is most easily seen in the laboratory system, P=O,
with q=qe, and (e")'""'=+(I/&2)(0,1,+i,O)], while

h3(q ) is called the transverse form factor because, for a

longitudinal photon,

long Jp 0p trans

p )
long (t v —q, O, O, v)

with v= p q /mlv]. Using the identity

[take, for instance, in the laboratory system
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1.50

1 25-

0.75-

0 50-

G~ (cf) /(c~(o) FD(8) )

(rn, —mz)ht(q )~ +m, h3(q )~ =0 . (30)

Although the pseudothreshold Q =0 occurs for q &0
and is not accessible in electroproduction (where—

q &0) a model for the transition form factors should
obey the constraint (30).

The helicity amplitudes which enter into the radiative
decay width I (X'~Mr ) of resonances are defined as

]/2
N 4m'a

2K~

0.25
0 0.2 0& 0.6 0.8 1.0 1.2

Q [Ge

FIG. 2. Axial form factor of the nucleon normalized to the
dipole St (33) with m &

= 1.09 GeV. : our calculation with
a=0.33 GeV, m~=0. 38 GeV; ———". recoil-corrected soli-
ton bag model (Ref. 30); —"-: relativistic potential model (Ref.
27); ———:static MIT bag model (Ref. 32). The experimental
data of Ahrens et al. (Ref. 28) are displayed as the hatched area
which corresponds to a dipole 6t with m „=(1.09+0.05) GeV.

NS]/2
4ma

2K

where X, = %f—, = —g &e„J" is the electromagnetic
interaction part of the Lagrangian. For A t/z (St/z) only
transverse (longitudinal) photons with helicity +1 (0}
contribute. In (31}K' is the energy of an equivalent real
photon and ~q'

~
the three-momentum transfer of the vir-

tual photon, both in the isobar rest frame:

2
e Nm —m

2m~

and the Gordon decomposition (25) we find
F

h, (q') =2 F„(q')—F„(q')
m~ +mN

g+g — (m, —m~+q )t

4m 2 4m 2

Q*=(rn, kmN ) —
q

h3(q )=2= 2 2

]e 0
m~ mN

+(m, —m&)Fz~(q )

(29) 2
Ia—

4~ 137

Evaluating (31) with the current defined in (28) yields
finally

From these equations we see that there is a constraint be-
tween h, and h 3 because

gN 4nag+
A ]/2 my 2 28m'(m, —rn~)

' ]/2

h "(q')

2
(m, —m~)h, +m, h3= Q F„

m~+mN

so that, at the pseudothreshold,

1
S]/2

2m~

(32)
4mag+(Q+Q +2mNq )

hN( 2)
Sm„(m', —m„')

TABLE I. Static properties of the nucleon. The parameters a, m~ are given in GeV, the magnetic
moments in Bohr magnetons pq and the rms radii in fm. (For the neutron charge radius we adopt the
convention (r ) = +6dG/dg'. } Our results are compared with the recoil-corrected soliton bag model
of Betz and Goldflam (Ref. 30) and the static MIT bag model. Experimental data are taken from Refs.
29 and 31.

g~ /'gv

Pp
Hn
(r2 )I/2Tg p
(r2 )1/2

~M, p

( r2 )1/2

( 2 ) I/2

a=0.32

mq =0.33

1.20
2.80

—1.73
0.83
0.78
0.15
0.79

This calculation
a=0.32

mq =0.36

1.23
2.73

—1.67
0.81
0.76
0.16
0.76

a =0.33
mq =0.38

1.23
2.67

—1.62
0.79
0.74
0.16
0.73

Ref. 30

0.91
2.63

0.96

MIT

1.09
2.57

0.97

Experiment

1.255(6)
2.793

—1.913
0.862(12)
0.858(56)
0.342(42)
0.876(70)
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U. RESULTS AND DISCUSSIGN 1.50

A. Nucleon form factors

In our model there are two free parameters: namely,
the constituent-quark mass m~ =mz/3 and the scale pa-
rameter a of the momentum distribution (18). It is well
known that the pion cloud surrounding the three-quark
core gives sizable contributions to the static electromag-
netic properties of the nucleon (-10—20%%uo, see, e.g. , Ref.
26). On the other hand, it can be shown that the pion
field, if introduced by a term f„B"4in the axial-vector
current, does not contribute to the axial form factor
G„(q ). Thus the axial form factor has a special sensi-
tivity to the quark core and is used as an input for our
model.

The recent experimental data on G„(q ', obtained
from quasielastic antineutrino scattering are well de-
scribed by the dipole parametrization

G„(Q )

G„(0)
(33)

2
—2

=FD(Q ):= 1+
mg

1.40

with Q = —
q & 0 and the axial regulator mass

m„=(1.09+0.05) GeV, while the axial charge
Gz (0)= 1.255(6) is obtained from neutron P decay. 29

In Fig. 2 we show our result for the axial form factor
normalized to the dipole fit and to G„(0), since not all
other models reproduce the axial charge. However, in
our model G„(0) is explicitly fixed and this puts the con-
straint a=m on the parameters (Table I) just as in the
NQM. Our results for Gz(0) and for the magnetic mo-
ments of the proton and the neutron (see below) agree
with the equivalent calculation of Dziembowski. " The
agreement with the data in Fig. 1 is quite impressive and
shows the importance of a proper relativistic treatment of
recoil and c.m. motion.

We turn now to the electromagnetic form factors of the
nucleon. At this point it should be emphasized that
gauge invariance holds for the electromagnetic current of

GE (Q )/FD(Q )E,p
NQM

/'

/ tl tl (100-"-' &

~4 6-»~

1.25-

0.75-

0 50
0 0.25 0.50 0.75

Q [GeV )

1.00
I

1.25 1.50

FIG. 4. Proton charge form factor normalized to the dipole
fit (34). The curves are denoted as in Fig. 3.

the nucleon, i.e.,

0= q„(x Iz~Ix)
2mN

3

g e f dI f~u '(P' i')ujf—~
2mN

3= g e~ f dI fzuj'((P'+) —(P+))u~fN,

2
' —2

=FD.= 1+
mD

(34)

where we use the light-cone projection operators (P'+) of
Eq. (A7). Thus we avoid the explicit calculation of the
"bad" current components J~.

Our results for the electromagnetic form factors of the
nucleon are displayed in Figs. 3-6. Since the magnetic
form factors and the electric form factor of the proton
are empirically well described by a dipole fit

GM,,(Q') GM, .(Q')
GE(Q ) =

pp Pn

'I. 20-
( ')(~ D( ))M, p p D

NQM 1.40

1.00-

0.80—

1.20-
(

M (Q )/(! FD(Q ))
NQM

/
/

/

1.00 ——ti- —„
II

060
0 0.25 0.50 0.75

Q2 I(-ev'}

1

1.00
0.80—

FIG. 3. Magnetic proton form factor normalized to the di-

pole fit (34). this calculation with a =0.33 GeV,
m =0.38 GeV; —.——.: nonrelativistic quark model (NQM)
with the same scale parameter a; ———:relativized quark
model of Warns et al. {Ref.6). The experimental data are from
Ref. 33.
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I
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FIG. 5. Magnetic neutron form factor normalized to the di-

pole fit (34). The curves are denoted as in Fig. 3. The experi-
mental data are from Ref. 34.
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010-

stead of our model (which means only a 10% change in

Gsr), then GE „changes by 50% to 80% [see curve (b) in

Fig. 6].

G (G)
E,n B. Helicity amplitudes of the S»(1535)
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If we calculate the current matrix element
( N'( P') 1'

~

J+
~
N (P) 1 ) of Eq. (27) we find a nonvanishing

contribution even at q =0, which would lead to an un-

physical pole in the S,&2 amplitude. This problem can be
traced back to the nonorthogonality of the N and N'
wave function [cf. Eqs. (16) and (17)] in our simple model
which in turn leads to a violation of gauge invariance. In
order to restore current conservation we introduce a
three-body convection current, thus replacing

J"=e y"~J"=e y"—, (P'+P)"(P'+P) q
(35)

FIG. 6. Neutron charge form factor. The curves are denoted
as in Fig. 3, (a) with GM from light-cone calculation, (b) with

GM from dipole fit (see text).
which is necessary for a transition between states of
different mass m =P AP' =m, . The three-body
current in (35) does not contribute in the nucleon case
since there ( y q ) = (P' P) =—0, as shown in Sec. V A.

By construction the current in (35) is conserved and
from that we easily deduce the orthogonality of different
states

with mD =0.71 GeV, we display our results normalized
to FD. The magnetic form factors agree quite satisfacto-
rily within 10-20% with the data, as expected without
pionic corrections. It is interesting to note that pionic
corrections to the magnetic moments as calculated by
Cohen and Weber raise their absolute values by -6%
(15%) for the proton (neutron). This correction, when
applied to our three-quark core values of p~ and p,„(cf.
Table I), would bring them remarkably close to the exper-
imental values. However, it is not clear at this point to
what extent pionic contributions are already incorporated
in the constituent-quark mass m .

The dashed-dotted curve in Figs. 3-5 represents the
results from the nonrelativistic quark model with the
same parameter a=0.33 GeV as in our calculation.
Thus the ratio to the full line gives an estimate for the
relativistic effects in the nucleon. For comparison we
show in Figs. 3-6 also the results from the relativized
quark mode1 of Warns et al. where relativistic effects are
included via the p/m expansion of Foldy et al. . How-
ever, since (p )'/ =m in the NQM it is not clear
whether such an expansion will be convergent. Despite
this conceptual difficulty their results agree quite well
with the data, although pionic contributions are not in-
cluded. But one should keep in mind that their model
contains six parameters which are fitted especially to the
electromagnetic properties of the nucleon.

The charge form factor of the proton falls off too fast
compared to the dipole fit while the electric form factor
of the neutron is about a factor of 2 too small in magni-
tude. However, at this stage of the model the result for
GE „should not be taken too seriously since it depends
sensitively on the ratio of F, „and Fz „. If, for instance,
we write

0=q„J~= ,'(q'J +-q J+ q,J,-)—
=—'q J+ for q =0,

where the last equality holds for a frame with q+=0.
Hence (N" ~J+(q =0}~N)=0, since

q = (m, —mz —
q )%0 for q =0,1

p
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FIG. 7. Helicity transition amplitude A &&2 of the S»{1535)
resonance (a) from the proton, (b) from the neutron. : this
calculation with a=0.33 GeV, mq =0.38 GeV; ———:rela-
tivized quark model (Ref. 6); —.—- —:nonrelativistic reduc-
tion. Data are taken from Refs. 36—40 (see also text). The
points to the left of Q~=O correspond to three different pho-
toproduction analyses.and take G~(Q ) from the empirical dipole fit (34) in-

GE F)+
2

F2=F~+
2 (G~ F~}—

4m~ 4m~
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60-

TABLE III. Light-cone
(2P+2m, )'~'Q x3u, t uzt(P) for P=O.

matrix elements

r=r $1rs

30-
b1

P1R

P1L$1R
+

p1R $1 b1$1R

0

O

Better data of S&&z in the low-Q region will be of great
value, since they would allow a decisive distinction be-
tween various models.

-30- VI. SUMMARY AND OUTLOOK

-60
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I ' ' ' ' I

10 15 20
Q~ [Qeg~]

I
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FIG. 8. Same as Fig. 7 for S1&2. The dotted line is an
analysis of q-electroproduction data {Ref.41).

TABLE II. Light-cone matrix
2P+2m, +xzx3u, t u 3 (with b„d, =p; m;).

elements

r=y, c
2p3 p2L 2P2 P3L
d3d2 —b3b2
b3b2 —d3d2
2p3 p2R 2p2 p3L

r=q, ~,c
2 lq{p2L p3L )
—{b2b3+d2d3+2P2LP3R )

b2b3+ d2d3+2p2R p3L
2m {p2R —

p3R )

whereas (N*~J (q =0)~N*) may be different from
zero. In fact we take (N', 1~J+(q =0)~N', 1)=1 as a
normalization condition.

We calculate now the constraint-free form factors
F;,(q ) [cf. Eq. (27)] from our light-cone model, so that
the pseudothreshold constraint (30) is trivially satisfied.

The results of the parameter-free calculation for the
S» (1535 ) helicity amplitudes are displayed in Figs. 7 and
8 (solid lines). Data for these amplitudes are still scarce
and are obtained by highly sophisticated fitting pro-
cedures to the observed cross sections so that they con-
tain a lot of uncertainties, e.g. , background and the use of
fixed-t dispersion relations. For the A, z~ the three
points to the left of Q =0 correspond to the last three
analyses of pion photoproduction data in Refs. 36, 37,
and 38, respectively. The electroproduction data are tak-
en from a compilation of Foster and Hughes and
Krosen and, for S i zz and Q ~ 1 GeV, from the g-
electroproduction analysis of Gerhardt ' (dotted line).

For comparison we show in Figs. 7 and 8 again the re-
lativized quark model of Warns et al. (dashed line) and
the nonrelativistic result (dashed-dotted line). The strik-
ing feature of the A &&& data, namely, their slow falloff
with Q which cannot be reproduced in nonrelativisitic
quark models, is seen qualitatively in both relativistic cal-
culations. However, both results seem to be somewhat
too low. For the S,&z the agreement with the analysis of
Gerhardt is better than for the calculation of Ref. 6.

TABLE IV. Light-cone matrix elements. For the definition
of (P„)=(P„+ ) see Eq. (A7).

T

T, l

r (it&)t uz

uk t A ki + uk $Kki
+ R

uk )Kkt + uk f Aki

uk f A/„+ uk $Ka;

uk TKki + uk J Ak,

kl, |, ai

&apt

R
+tPk

2uk f Aki + uk $
m/„

L
+tPk

uk ~

—2uki Aki

L
+kPi

uk)
mki

u~ I uq
k i

5A.k, f Aki +5k.k, )Kai

5~k, lKk+5~ lAk-
—5, , A, , +5, )KaR,

5A, k, 1'Kk 5A.k, $ k'

5A A Xkk'
R

&apt
k, T

ma(
+tPk

25~ ) Aa, +5),k' k' mk,
L

+tPk
5A. , f 5A. , j Akik* ma, k'

L
+kPt

m

The main motivation for our calculation has been to
study relativistic effects in the constituent-quark model
for baryons. The appealing features of our light-cone ap-
proach are (i) the validity of the wave functions in any
frame, (ii) the relativistic consistent treatment of quark
spins and boosts, (iii) the proper decoupling of the c.m.
motion. We considered a simple model for only the
three-quark core of the baryons where the internal
momentum distribution were taken to be of Gaussian
shape.

With only two free parameters we got an excellent
agreement with the experimental data for the axial form
factor of the nucleon and good results for the static nu-
cleon properties as well as the magnetic form factors up
to Q = l. 5 GeV . Relativistic effects are found to be siz-
able in comparison to the NQM. The proton charge
form factor falls off too fast with Q although (rE& )
differs only by 10% from the experimental value. This
discrepancy may be seen as the result of the imperfect
momentum distribution of Gaussian shape. More realis-
tic calculations should replace them by momentum distri-
butions which are consistent with the underlying dynam-
ics [see, e.g., Eq. (61) in Ref. 16] and with the power fal-

loff

a large Q .
The neutron charge form factor comes out too low by a

factor of 2, because we did not consider configuration
mixing of the nucleon ground state, which has been



2210 %. KONEN AND H. J. WEBER 41

found ' to be more crucial for G& „ than relativistic
effects. Future work in this direction should clearly in-

clude the color hyperfine interaction.
We have shown that for the elastic process Xy ~X the

electromagnetic current is conserved in the light-cone ap-
proach with only the diagram (a) of Fig. 1. We have con-
structed a negative-parity wave function for the
S»(1535) resonance with the same prescriptions as for
the nucleon to ensure that the S» is approximately a
(J=—,') eigenstate on the light cone. In evaluating the

transition amplitudes for the process Ny~S» special
care was taken to use a constraint-free form-factor set
and to satisfy current conservation by adding a three-
body convection current. As a result the available photo-
and electroproduction data could be reproduced in sign
and magnitude and the slow falloff for A»2 is seen as a
relativistic effect. However, the anomalously high decay
ratio of the S» into the ri channel (-50%) remains unex-

plained at this stage, as it is in other quark models. Fu-
ture work in the light-cone approach should also include
the 6(1232) resonance, where more reliable data for
G& (Q ) are available and the D&s(1520) resonance,

where the helicity asymmetry

2 2A I/2
—A 3/2AI-

A I/2+ A3/2

provides a more direct test of the photon quark dynamics
than the individual amplitudes, since A, is insensitive to
the specific form of the momentum distributions. For
both resonances the spin wave functions can be con-
structed in a similar manner as for the neucleon and the
SII, respectively. Future experiments with electromag-
netic probes at CEBAF and MAMI B are expected to
provide more precise data so that we will hopefully get
better insight into the photon-quark dynamics by testing
various models.
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APPENDIX

1. Helicity representation of the invariants I;,I»;

Following the metric convention of Bjorken and Drell' we can deduce from Eq. (1) the explicit form of the light-
cone spinors

(ut, u), v), Ut)=(ysvt, ysvt, ysut, ysu()=( Cv tt CU (, Cu t, Cu t)T T —T —T

pL d pL

1

&2p'2m

pz

pz

b

PL b

—d

PL
(Al)

V(

—V~r5

V)$5

u )$5

u )$5

+v C

+v Cl

+u C

+u C

1

&2p '2m

6 pL d pL

pR b —pz d

PL b PL
—p„d —

p~ b

(A2)

J

with ps L.=p'+ip, b, d:=p++m, and the charge-conjugation operator C =iy y (C '=C =C = —C). The spinors
are normalized so that uu =1=—vv.

In the uds basis' where the quarks are treated as distinguishable, we take quark 1 and 2 as up quarks and quark 3 as
a down quark for the proton case. With the help of +„i~24„'Nd@„=0,N„iv2+d+„+„=1=—Ndi~24„4„+„ the in-
variant I2 becomes, in the nucleon rest frame,

I2(P=O)= g (u2yoysCus )(u, u )
—(usyoysCu, )(u2u ) luud ) (A3)

and, similarly for the N*(1535),

I~2(P„=O)= g [ 2(u i yoysCu—
2 )(us~sysu~»)+("2yoysCu s )(u ix'&ysu~ )+("syoysC" i )("2/2ysuN*)]luud ) (A4)

with s3 =p, —
p2 and cyclic permutations. The invariants Io and I,o can be obtained from I2,I,2 by replacing @0~1.

The explicit form can be constructed with the matrix elements given in Tables II and III.
The corresponding invariants for the neutron and the (mT = —

—,') channel of the S» differ merely by an overall sign
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when written down in terms of ~ddt ).
The nonrelativistic N (1535) wave function (13) can be written as

~N', k= 1', mT=+ —,
' }=[(1fl )'(s„—s2, )+ ~l f 1') (s„+2s„)—(131}(2s„+s„)

~ lid } (slR s2R } ~ 1 l l }(s2R+2s3R }
~ ~ ~1 } (2s3R+slR )]luud } (A5)

with
~ 1 1 1 } =y»gz&g&, etc. Applying the Melosh transformation (15}to each yt„and collecting the terms, one can

l

compare the eight possible helicity amplitudes with the corresponding eight terms of g„c„I,„. Since the Melosh trans-
formation (15) does not involve d; =p; —m; the combination g„c„I,„should also be free of them. A glance at Table II
shows that this is the case precisely for the combination I,o+I,2 and the explicit calculation con6rms this for all eight
amplitudes consistently.

2. Calculation of current matrix elements

As an example we calculate the current (NA, '~J"~M, ) of Eq. (22) for the proton in the uds basis
~
uud ):

uj
(NA, '~J"~Nk) =NN f dI'4'(M3 }4(M23) g (Io+I2)+(A, ') e y" (Io+I2)(A, )

j=& PJ PJ.

3

, N„' J dl 4'(M3')4(M3) g [ii „'u', ii3 C 'y, (p'+m~)u2 —2(13)]
PEN j=1

g

Q j uj
X ej y" [u 2(P + in' )y scu 3 u i uN

—(31)2]

3

p+ (A6}

For each term in the sum over j we may separately permute the quark indices so that quark number 3 becomes the ac-
tive one (but keep e, fixed), i.e., p3 =p3+q, and use u,'= u, (since p,'=p; } for the spectator quarks i =1,2. After some
spinor algebra, with the use of the light-cone projection operators

(p;+):=
kg/, +m,.

2m;

uIu

—g U;U; =g(cu, )(u, C ') (A7)

and the identities

c'= —c=c-'=c', cy„'c-'=c-'y„'c= y„, [—c,y, ]=0,

we obtain, for example,

(NA, '~J~(ii~NA, }='eN~ f dl 4'(M—
3 )4(M3)

X3

X4ii N [(I(3)y"($3)Tr[(p', )(P)(p'2)(P")]+(p3)y"($3)(P)(p2)(P')(p, )

+ (pi )(P )($2)(P')($3 )y"(p3 )+ (pi ) Tr[($2 )(P )(p3 )y"(p3 )(P')] j ~&, (A8)

where (If,. ) = (gf;+ ) is used as a shorthand.
The matrix element (NA, '~J"~NA, }can be further simplified by using the fact that each term is invariant under index

exchange 1~2 and that in a trace of y matrices their order may be reversed anticyclicly:

Tr(/zs(2 yf2„)= Tr(yf2„. gf2yf, } if [a;,a ]=0 .

A very similar result is obtained for the neutron. Altogether then
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&XX'~S+~XX)= ;em-,' f dr@*(M32)e(M23) u ~[(1+3&,)(p', )y+(p, ) Tr[(p, )(p)(p, )(p )]
x3

+(1+3~O )(p3 )y+ (p3 )(P )(p2 )(P')(p 1 )

+(1+3rD)($1)(p )(p2 )(P')(p3 )y+(p3 )

+ (1—3~O)(p1)(P )($3 )y+(p'3 )(P')(p2 ) I u Jv,

where Xdenotes proton or neutron, respectively. The normalization constant X~=X is determined from

(A9)

1=FR(q'=0) =—
& p 1

~
J+(q =0) Ip 1' ) (A 10)

To evaluate the six-dimensional integral Jd I we proceed as follows. We define

1
m;k =Qx;m;xkmk, A;k = (x;mk~xkm;),

2mik

~R,L — (x pR, L x pR, L)
m;k mik

for & k = 1 2 3 X N with x~ =x~ = 1 p~g =Pz p~ z
=Py+ qy p ' =p, Zip 2 ~ If the momenta

x3 xp
plJ q3J. Q3i+x1PJ. P2J. q3J Q3J +x2P p Q +x

1 x3 1 x3

(A 1 1)

[from the inverse of Eq. (3)] are used and if we substitute the light-cone spin sums of Eq. (A7), then Eq. (A9) can be ex-
pressed in terms of x;,q3~, Q3J. (As a check, the result must not depend on P, .) Useful relations are given in Table IV.

This rather lengthy and tedious but straighforward computation was facilitated by using the symbolic formula ma-
nipulation program REDUCE. The q3J and Q3J integrations can be done analytically, while the remaining two-
dimensional integrations over x

&
and x2 were performed numerically.

For completeness we list here also the axial-vector current for the nucleon and the transition current to the S» reso-
nance:

&X(p')~'lx.'IX(p)~&=8N f dI 4'(M )4(M ) u r [(gf )y y (gf )Tr[(p )(p)(p )(p')]
x3

+(p'3)y5y+(p3)(P)(p2)(p')(p, )

+ (P I )(P )V2 )(P )(I 3 )3 Sy '(P3 )

+ (p 1 )(P )(p3 )y5y (p 3 )(P')(p2 ) I u Jv,

& &*(+,)&'l&'I&(p)&) =g&„.& f dl +'(M3')+(M3 ) u t
—(1+3',)X', y, (p'1 )(P)(p2)(P„)(p3)y+(p3)

x3

+(1+ro))f'Jy5(pJ )(P)(p3)y+(p3)(P, )(p2)

—2roJt'I y5(gf1 ) Tr[(Jt(2 )(p)(gf3 )y+(p 3 )(p„)]
+ ( 1 + ro)R 3y 5(p 3 )y (p3 )(P )(p2 )(P„)(p1 ) j uJv
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