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The Dyson-Schwinger equation for the fermion propagator can be effectively solved in the ap-
proximation of the small-momentum-transfer vertex function. There exists a critical value of the
coupling constant above which the ordinary infrared-divergent solution for massless quantum elec-
trodynamics bifurcates to another, massive solution. With a proper transverse part included in the
vertex function, the bifurcation point is gauge independent, the new solution is finite in all gauges,

and does not require momentum cutoffs of any kind.

I. INTRODUCTION

Recent numerical results in lattice quantum field
theory! brought new evidence that quantum electro-
dynamics may possess a second, chiral-symmetry-
breaking phase. A discovery of such phase would greatly
enlarge the family of theories that exhibit physically
relevant dynamical features such as symmetry breaking,
anomalous scaling, etc.

The problem of dynamical chiral-symmetry breaking
was also studied using analytical methods. The search
for novel solutions of the Dyson-Schwinger (DS) equation
for the fermion propagator was initiated by Johnson,
Baker, and Willey? (BJW). In their method, the infinite
hierarchy of DS equations was broken with use of the so-
called truncation procedure in which the full vertex of
the theory and the gluon propagator were replaced by
their respective bare values. In this contribution we shall
use a different method of truncation and therefore we
shall refer to the BJW method as the constant vertex ap-
proximation.

In their pioneering work, Masakawa and Nakajima3
found that, in the constant vertex expansion, the chiral
symmetry of massless electrodynamics is broken. These
results were derived in the so-called Landau-like gauge
which provides an effective infrared (IR) cutoff by adding
a small mass term to the photon propagator. In addition
to this cutoff, the standard Pauli-Villars-Rayski regulator
had to be employed in order to eliminate the ultraviolet
(UV) divergence produced by the photon loop in the
truncated DS equation.

Further progress in the study of the symmetry-
breaking mechanism directly from the DS equations was
hindered by the realization of the fact that the constant
vertex procedure was gauge dependent. A generalization
of the method beyond the Landau gauge produced off
sheet poles and other inconsistencies.* The source of
troubles can be directly traced to the substitution of the
constant vertex in the DS equation. The Ward identity
for the vertex function,

(p —q*T (q,p)=S"'(g —p)

=pA(p)—4A(q)—B(p)+Blq), (1.1
implies that, if I',=v,, then A (k) must be identically
equal to unity. It is a peculiarity of the constant vertex
approximation that the function A4 (k) obtains nontrivial
radiative corrections in all but the Landau gauges.
Therefore in non-Landau gauges the approximation can-
not be properly renormalized. The standard relations be-
tween the renormalization constants are a consequence of
the Ward identity. If these relations are imposed in a
non-Landau gauge, the coupling constant vanishes in the
limit of infinite cutoff; to eliminate all radiative correc-
tions and conform to the identity (1.1) which in non-
Landau gauges is satisfied only by the free theory solu-
tion.

One possible way of restoring the consistency of the
approximation is to add supplemental contributions to
the vertex function in the DS equation in order to
preserve the Ward identity. The method of Delburgo
and West,>® inspired by Salam’s seasoned gauge tech-
nique, is an excellent example of such a procedure.

The Ward identity imposes no constraints on the trans-
verse part of the vertex. Therefore, for the sake of simpli-
city, the transverse part was typically ignored by virtually
all authors. Such simplification jeopardizes consistency,
as a transverse component is needed for proper renormal-
ization of the DS equation.’

Miransky and co-workers® have argued (within the
constant vertex model with cutoffs) that symmetry break-
ing can occur in massless fermion theories with the
charge parameter above a certain minimal value. In a
series of recent papers, Atkinson and Johnson® have reex-
amined this problem restating it mathematically as a bi-
furcation problem for the DS equation. Symmetry break-
down is then indicated by the existence of a positive criti-
cal value of the coupling above which the chirally invari-
ant solution bifurcates to a nontrivial solution that gen-
erates a fermion mass term. Atkinson and Johnson ex-
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amined several regularization cutoff procedures with, and
without, a momentum-dependent running coupling con-
stant. They were able to prove the existence of such criti-
cal values, but again, like in all previous attempts, the ar-
gument explicitly demanded IR and UV momentum
cutoffs in the DS equation.

Unfortunately, introduction of external mass scale pa-
rameters in the context of the problem of chiral-
symmetry breaking is particularly risky since one can
never be certain whether the fermion mass is an artifact
of a hidden transmutation of the scale parameter or a tru-
ly dynamical phenomenon.

The results of Refs. 8 and 9 are also gauge dependent.
Gauge covariance may be improved by inclusion of a
transverse part of the vertex.!® The prescription for the
transverse part proposed in Ref. 10 assures gauge in-
dependence to first order in the coupling constant. This
is encouraging, but further expansion in terms of higher
powers of the charge parameter would be necessary to
eliminate the gauge dependence entirely. Such infinite
series expansion is incompatible with a nonperturbative
method designed to unravel a phenomenon taking place
above a (possibly large) critical value of the coupling.

In our previous paper'' we discussed the solutions of
the DS equation in an expansion scheme based on the ob-
servation that the dominant contribution to the propaga-
tor equation comes from the vicinity of the photon prop-
agator pole, i.e., the vertex function is dominated by
zero-momentum transfer contributions,

T*(k,p)=T*(p,p) . (1.2)

The principal advantage of this prescription is that it pro-
duces a nontrivial, momentum-dependent longitudinal
component of the vertex function. The prescription (1.2)
must not be regarded as a definition of the entire vertex
function. This would violate Pauli antisymmetry under
fermion exchange. The approximation is performed on
integrands by effectively replacing photon propagators
D™ (p?) by D*(p*)8(p?). For the one-loop fermion self-
energy diagram this is formally equivalent to (1.2). In
more complex graphs different combinations of extremal
momenta are routed through the photon lines and the
prescription (1.2) does not apply.
In our case the Ward identity implies that

T*(p,p)=03S ~}(p)/dp,=3[#A(p)—B(p)1/3p, .

For massive fermions, the prescription (1.3) produces
the DS equations which are UV finite in the Landau
12 and have a structure simple enough to permit

(1.3)

gauge,
their use in the analysis of fermionic bound states and
dynamical symmetry breaking.'?

In Ref. 11 the solutions to the DS equation linearized
in the mass function B(p?) in the propagator were dis-
cussed. In the Landau gauge, the exact solution to the
equation for the factor 4 (p?) of the propagator bifur-
cates at

(€eric /4m)?=2.39 . (1.4)

For weaker couplings the boundary conditions for this

solution cannot be imposed at zero or infinity, although
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they can be satisfied at finite values of momenta. There-
fore momentum cutoffs need to be imposed in IR and UV
regions. This indicates that the propagator remains
massless and the symmetry is preserved.

At the bifurcation point an entirely different solution
appears. The function 4 (p?) corresponding to this solu-
tion is very regular and the DS equation does not require
any cutoffs. The equation for B (p?) produces nontrivial
solutions which also satisfy their boundary conditions
without cutoffs. There is no externally introduced dimen-
sional parameters and therefore the mass pole is dynami-
cally generated.

The scope of Ref. 11 was restricted to the Landau
gauge only. In non-Landau gauges, the DS integrals in-
clude a logarithmically divergent term.

Conventional renormalization techniques cannot help
at this juncture. Our procedure produces a new, essen-
tially nonperturbative solution which defines the first
(and hopefully the leading) approximation of the theory
with broken symmetry and massive fermions. Contrary
to what one encounters in perturbative calculations, now
there is no underlying free theory of identical structure,
and endowed with a sufficient number of adjustable pa-
rameters (mass included) able to absorb the loop diver-
gencies. The only permissible renormalization operations
comprise of finite, multiplicative transformations of the
coupling constant and wave functions. Such normaliza-
tions alone cannot make the model finite nor cure the
problem of gauge dependence of the dynamical mass.

There is still one avenue left open. The divergencies
and gauge dependence may be eliminated not by counter-
terms to the existing parameters but by extra terms gen-
erated by a transverse part of the vertex function. The
transverse part must produce terms of the same structure
as the longitudinal part, otherwise it will introduce its
own divergencies and produce more gauge-dependent
terms. For this reason, the transverse vertex must be
linear in A (pz), B (pz), and their derivatives.

This paper presents a simple and unique prescription
for the proper transverse part which eliminates the diver-
gence producing terms in the integrands of the propaga-
tor equations. New equations still depend on the gauge
parameter G, but in a much simpler way. A common,
G-dependent term appears together with the coupling
constant as a multiplier in front of all integrals in the
equations for A (p) and B(p). This term can be incor-
porated in the redefined charge parameter. The bifurca-
tion condition determines the critical value of that
redefined coupling and therefore variations of gauge pa-
rameter cannot affect the location of fermion’s mass pole.

II. THE PROPAGATOR EQUATION
IN GENERAL GAUGE

The Dyson-Schwinger equation for the fermion propa-
gator has the form

S Y p)=A(p¥—B(p)

=p+ie? [ dgT,(p,q)S(@T°,D*(p—gq), (.1
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where the integration measure dq =d%q /(27)*, and the
ordinary fundamental vertex I'°, of the theory is deter-
mined by the bare Lagrangian, e.g., for QED I'° =y,
and the function I',(p,q) represents the full vertex func-
tion. The longitudinal part of I'* is effectively approxi-
mated by

L *(k,p)=T*(p,p)=38S ~'(p)/3dp,, . (2.2)

In Euclidean space, one can integrate over angular
variables to obtain the following equations for the form
factors 4 (x) and B (x):

xZA(y)=x2+;<e/4fr)2f0*dyy2[<G —3)r+2G¢]

+e/amx? [ Tdy[(G —3)r+2GE],  (2.3)

and |

A(x)=1+ /23 [ "dy[(G —3)y*(d 4 /dy)/ A()+2Gy)+(h/2) [ “dy[(G =3)(d 4 /dy)/ A(»)+2G /],

and

2011
xB (x)=1(3+G)(e /4m) [ *dy y(yn+20)
+(e/amx [ Tdy[2Gn+(3+G))
+13-361x2 [ “nay , 2.4)

where x and y represent Euclidean momenta squared, and

r(x)=[x(dA/dx)A +(dB/dx)B]/(x A>+B?), (2.5a)
n(x)=[(dA/dx)B — A(dB /dx)]/(x A*+B?),  (2.5b)
&(x)=AB/(x A*+B?), (2.5¢)
Ex)=A4%/(xA*+B?) . (2.5d)

The chiral-invariant solution bifurcates to a
symmetry-breaking solution at the lowest value of the
coupling constant for which the linearized (in B) version
of (2.3) and (2.4) has a nontrivial solution.’ Introducing
B(x)=38B (x), we obtain the bifurcation equations in the
form

(2.6)

xB(x)=(3+.G)(k/2)foxdy{y[(dA /dy)B(y)— A (p)(dB/dy)]/ AXy)+2B/ A}
+ax [ “dy(2G[(d 4 /dy)B(y)— A (p)dB/dy)]+(3+G)B/(y A))

+(1—G)X31/2)x2 [ “dy[(d A /dy)B— A(dB/dy)]/(yA?)

where A= (e /47)%.

In the Landau gauge the divergence structure of the
above equations is better than predicted by ordinary
power counting. In this gauge the 2G/y term in the
second integral in (2.6) responsible for logarithmic diver-
gences disappears. The remaining integrands are propor-
tional to the derivatives of 4 or B. If these derivatives
vanish rapidly enough, the integrals in the DS equation
are finite and do not require subtractions. Previous
work!! shows that this is indeed the case, provided the
coupling exceeds the value (1.4). The IR-divergent solu-
tion continues beyond the bifurcation point, but the other
solution is IR finite.

This improvement of renormalization properties above
the critical coupling results from lucky cancellations
which in the Landau gauge eliminate the most divergent
terms in the fermion self-energy diagram. This is all that
is needed for the purpose of this analysis, but it would be
naive to hope for similar improvement in all types of
graphs.

In the UV region the mass function oscillates very rap-
idly:!!

B(x)~x*{csin[wln(x)]+c, cos[wIn(x)]} . (2.8)

A similar behavior also characterizes the solutions in the
constant vertex approximation,® and is a trademark of

(2.7)

[

unstable, tachyonic vacua.'* We shall see that such oscil-
lations are artifacts of purely longitudinal vertex func-
tions. If an appropriate transverse part is added so that
the DS equation for the fermion propagator remains
finite in all gauges, the oscillations give way to a regular
power behavior.

III. TRANSVERSE PART OF THE VERTEX FUNCTION

The solution described in the previous section is gauge
dependent. First, the divergencies disappear in the Lan-
dau gauge only. Next, the dependence of the bifurcation
equations on the gauge parameter is rather complex.
Every integral in these equations appears with a different
gauge-dependent multiplier and the location of the mass
pole is also gauge dependent.

Our hope is that finiteness and gauge independence of
the bifurcated solution can be restored in a single swoop
by adding a transverse part of the vertex function. In
agreement with Eq. (2.2), we demand that the transverse
part of the vertex function has the form

I'#(k,p)=T t*(p,p)

=(g"—p*p*/p*)y,T 1(p) . 3.1

The longitudinal part defined by Eq. (2.2) was linear in
form factors A (x) and B(x) (and their derivatives). In
order to produce cancellations with the contributions
from the longitudinal part, the transverse part must be
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also linear:
T(P):rﬂ(Pz)'*'l‘rrz(Pz)
=C,A(p2)+C,p%*4'(p?)

+P[C3B(p?)/p*+C,B'(p?)] . (3.2)

%Tr[ET(x)]=%M3+G)foxdy[(y/x)l“n(y) )+ (p2/x)T ry(p)
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Any other combinations are trivial or excluded for di-
mensional reasons.

Substituting the above expressions into (2.1), taking
traces and integrating over Euclidean angles, we obtain
the following additional contributions to the self-energy
function 2(p):

»)1/D(y

+3Af°°dy[l“r1( )B (»)+yTry(») A (»)1/D ()

+3IMG

and

ITr[y3, x)]—37L(G+l)f dy[(yp /x)*T () A (p)+(p2/x)T 15(y)B

+3A( G+1)fx dy[Tr(»)4

In the above, D (y)=y A %(y)+B(y).

G-1) f dy[(x /9)T (B (»)+xT 1, (») A(y

)}/D(y), (3.3)
(y)1/D (y)

»1/D(y (3.4)

With all additional contributions included, the bifurcation equations are

Am,(x)=1+(x/x2)fo"dy{[G —3C,(G +1)/4ly +[(G —3)/2—3C,(G +1) /4y [(d A /dy)/ 4 ()]}

+Afxwdy{[G —3C,(G+1)/41/y +[(G —3)/2—3(G+1)C, /4](d A /dy)/ A ()} . (3.5)

and

xBrn(x)=MG +3)f0"dy(1/x)g[<2e +1)/(G+1)+3C,1B(y)/ A (p)

+(1+3Cy(dA/dy)By)/ AXy)+

(3C,—Ly(dB/dy)/ A(y)}

+A [ dy{[(3+G)+4G /(G +1)+3C, 180 /[y A (D] +(2G +3C;)(d A /dy)Bly) / A¥y)

+(3C,—2G)(dB/dy)/ A(y)} +7»f:°dy x{(G

Only one of the four available constants, C, is able to
generate a contribution which can eliminate the term
contributing to the UV and IR divergences. Finiteness is
achieved by setting

C,=4G/(3+3G) . (3.7

It is not possible to choose the values of C, through C,
so that the parameter G is completely eliminated from
(3.5) and (3.6). Still, the solutions generated at the bifur-
cation point can be gauge independent even if the bifur-
cation equations depend on the gauge parameter. This
can happen provided all G dependent factors combine in
such a way that a single G-dependent term, say ACg, be-
comes a common multiplier of all integral terms in (3.5)

Bran(x) =4

+MG +3) [T dy[Bly)/yA(y)+24"(p)Bly /Az(y )—=2B'(y)/ A ()] .

Up to the multiplicative gauge term, the equation for
A (x) is identical to Eq. (2.6) with G =0. Therefore, all
results for A4 (x) obtained in the Landau gauge without
the transverse part remain valid beyond the Landau

MG +3) f dy(1/x)[B)/ A (p)+2yA4'(»)B(y)/ A

—1D[G/(G+1)+3C,18/[y*A ()]
+3(1=G)(1—C,/2)B(y)\d A /dy) /[y AX(y)]

(G —D[2+3C,)dB/dy)/IyA]} . (3.6)

and (3.6). Then the bifurcation condition determines
C A rather than A, and the location of the mass pole is G
independent. The proper choice of the three available
constants is surprisingly simple:

Cy=—C,=—4G/(3+3G) and C,=—C,=2. (3.8)

Then several integrals in (3.6) disappear. The surviving
terms produce a common factor of (G +3) and the com-
plete bifurcation equations have the form

Ap(x)=1—1A(G +3)foxdy(1/x2)A’(y)/A(y)
+HIMG+3) [Tdy 4'p)/4), (3.9

and

—2yB'(y)/ A(y)]

(3.10)

[
gauge, with the transverse vertex included, except that
now the effective coupling constant is a=(3 + G)A, and

=(3+G)A,; =(3+G)e, /4m)?=7.18 . (3.11)

Cl'll
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The equation for B can be converted to a second-order
differential equation:

[xB(x)]"=a{B/[xA(x)]+2A4"(x)B(x)/ A (x)?
—2B'(x)/ A (x)} . (3.12)

The boundary conditions for (3.12) are
}T})[xﬁ(x)]=0 and xli_r.rlc d[xB(x)]/dx =0 . (3.13)
Both boundary conditions can be imposed at x =0 after a
simulated subtraction is performed at zero momentum.

Near x =0, both asymptotic solutions to (3.11), behave
like x ", with n determined by

n(n—1)+2n[14+a/A4(0)]—a/A(0)=0. (3.14)

Table I contains a few chosen values of n;. Not only
lim, _,[xB(x)]=0, but also lim,_ ,B(x)=0. Therefore,

xB(x)=xPB(x)—xp(0) ,
and the integral equation (3.12) has an equivalent form
xBru(x)=a [ “dy(1=x /y)[By)/ 4 ()
+2y A’ (y)B(y)/ A%(y)
—2yB'(y)/A(y)],
with the boundary conditions

lirr})[xB(x)]=O and lin})d[xﬁ(x)]/dx=0. (3.16)

(3.15)

These conditions are met by each asymptotic solution of
the equivalent differential equation (3.13). Moreover, in
the UV asymptotic limit, the unwanted oscillatory behav-
ior of the solution is replaced by a regular power behav-
ior. As x— oo, A(x)—1, and A'(x)—0. Therefore, in
the asymptotic region,

x2B"(x)+2xB(x)=A[B(x)—2xB'(x)] . (3.17)

Near the critical point, the asymptotic solutions are
B(x)~x%% and B(x)~x ~'>8. The magnitudes of the ex-
ponents corresponding to higher values of the coupling
constant are presented in Table I. The table reveals
another desirable characteristic of the new solution. For
all values of the coupling constant above the bifurcation

TABLE 1. Power exponents n'® and n"Y of the asymptotic
behavior of B(x) in the infrared and ultraviolet regions, respec-

tively, for selected values of the coupling parameter
a=(G +3)(e/4m)".
a nik n® nyv nyv
A =17.18 21.1 0.54 —15.8 0.45
7.5 21.7 0.54 —16.5 0.46
10 26.6 0.53 —21.5 0.47
50 107 0.51 —101. 0.49
10? 206 >0.50 —201. <0.50
10° 2x10° >0.50 —-2X10° <0.50
10° 2% 10° >0.50 —2X%10° <0.50
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point, IR and UV asymptotic types of behavior are such
that B%(x) is suppressed by x4%(x). This property is
particularly important for consistency reasons. In the
process of linearization, the B2%(x) terms were disregard-
ed as insignificant compared to x 4 %(x).

IV. SUMMARY

Our results confirm that the truncation procedures for
the Dyson-Schwinger equations demand that a nontrivial
transverse part is included in the vertex function.
Without a transverse part, the results are gauge depen-
dent in a most drastic way. Inclusion of a transverse part
is instrumental in restoring gauge independence of the
solutions, and it helps to absorb the divergences arising
from loop integrals.

We began by adopting an approximation for the longi-
tudinal part of the vertex,

[ “(k,p)=T *(p,p)=3S"'(p)/3p, , @.1

which states that the pole of the photon line adjacent to
the vertex dominates all other contributions to the DS
propagator equation for the fermion propagator.

The transverse part is fully determined by two require-
ments. First, we demand that the DS equation is free of
UV divergences in all gauges. We also require that the
location of the mass pole at the bifurcation point is gauge
independent. It turns out that the transverse part has the
compact form

I #(k,p)=T*p,p)
=(g""—p"p”/pP )y (¥ /p?)
X{C,[fA(p*)—B(pH)]

+C,p*[#A'(p>)—B'(pA]}, 4.2)
with constants C,; and C, given by (3.8).

The scope of this paper was restricted to the question
of the existence of nonstandard solutions to the equations
of QED for large values of the coupling constant. The
discussion was possible mainly because in the linearized
(in the mass term) case, the nonlinear differential equa-
tion for A (p?) is exactly solvable. The analysis was re-
stricted to the linearized system of equations which
suffices as a tool for exploring the bifurcation problem. It
would be premature to speculate on the physical interpre-
tation of the novel solution. This task had better await
the results of (numerical) study of the full, rather than
linearized, Dyson-Schwinger equations.
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APPENDIX

Let us demonstrate that in a theory without a trans-
verse part of the vertex function cutoffs are necessary in
non-Landau gauges. Equation (2.6) is equivalent to a
nonlinear differential equation,
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d*A(t)/dt*+2d A (1) /dt + MG —3)(d A /dt)/ A1)
+2A0G =0, (Al)

where
x=x.e', t=In(x/x;) .

(A2)

The results presented here are x; independent and there-
fore we shall arbitrarily substitute x, =1.
The boundary conditions for (A1) are

lim e?(dA/dt)=0, (A3)
t— — o0
HT [A(t)+§(dA/dt)]=l. (A4)
1 — 0
We define
X(t)=A(t), Y(t)=(dA/dt). (A5)
Then
(dY/dt)=P(X,Y)=—(2+a/X)Y —§, (A6)
(dX/dt)=Q(X,Y)=Y, (A7)
dY(X)/dX=F(X,Y)=P(X,Y)/Q(X,Y)
=—2—a/X—-§/Y, (A8)

where a=(3—G)A and §=2GA.

The function F(X,Y) is single valued and continuous
everywhere except at X =Y =0, and it satisfies the
Lipshitz condition |F(X,Y)—F(X,Y,)| <const|Y,—Y]|
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in any interval that does not include Y =0; hence, Eq.
(2.10) satisfies the Cauchy criterion' for uniqueness and
therefore it possesses integral curves passing through all
finite points except Y (¢)=(d A /dt)=0, X =0. For {0,
the isoclines of the equation, (dY/dX)=—-2—a/X
—&/Y = f=const, pass through the origin for any value
of f. Hence the origin is a node. Since there is no other
finite singular points, at least one end of any integral
curve approaches |X|= . For G#0, the boundary con-
ditions cannot be met at this point.

Indeed, as |X|— o, the asymptotic equation has the
form dY/dX=—2—£/Y. Therefore X=(Y,—Y)/2
+(B/4)In[(2Y +£)/(2Y,+&)]. The condition for
|X|— o requires that Y~—2X or Y>~—¢£/2. In the
former case, the limit |X|— o is achieved as t— — .
Then the solution behaves as X(¢)~e %, and the IR
boundary condition (A3) is violated. If the same limit is
achieved at t— 4+ o, the solution behaves as
X(t)~ Yyt +Ce % and this contradicts the UV condi-
tion.

If Y>~—£/2, then X ~ —&t/2+¢(t), with ¢ such that
in the asymptotic region d¢/dt—0 and ¢—0. Solving
for ¢ we find that ¢~ —(Y,/2+£&/4)e ~?". This means
that the above limits can be reached only for t— + oo,
but then (X +Y/2)— « and the condition (A4) is again
violated.

The only way to satisfy both boundary conditions is to
impose them at finite points rather than at zero and
infinity. This is equivalent to introducing cutoffs in the
original equation for A4.

1J. B. Kogut, E. Dagotto, and A. Kocic, Phys. Rev. Lett. 60,
772 (1988); E. Dagatto and J. B. Kogut, Nucl. Phys. B295,
123 (1988).

2K. Johnson, M. Baker, and R. Willey, Phys. Rev. 163, B111
(1964); K. Johnson, R. Willey, and M. Baker, Phys. Rev. Lett.
11, 518 (1963); Phys. Rev. 163, 1699 (1969); Phys. Rev. D 3,
2516 (1971); 3, 2541 (1971); 8, 1110 (1973).

3T. Maskawa and H. Nakajima, Prog. Theor. Phys. 52, 1326
(1974); 54, 860 (1975).

4D. Atkinson and D. W. E. Blatt, Nucl. Phys. B151, 342 (1979);
D. Atkinson and M. P. Fry, ibid. B15, 301 (1979); D. Atkin-
son, M. P. Fry, and E. J. Luit, Lett. Nuovo Cimento 26, 413
(1979).

SR. Delburgo and P. West, J. Phys. A 10. 1049 (1977); Phys.
Lett. 72B, 96 (1977); R. Delburgo, Nuovo Cimento 49A, 484
(1979).

SR. Delburgo and R. Zhang, J. Phys. A 17, 3593 (1984).

7J. E. King, Phys. Rev. D 27, 1821 (1983); C. N. Parker, J.
Phys. A 17, 2873 (1984).

8P. Fomin, V. Gusynin, V. Miransky, and Yu. Sitenko, Riv.
Nuovo Cimento 6, 1 (1983); V. Miransky, Nuovo Cimento

90A, 149 (1985); V. P. Gyusynin and V. A. Miransky, Phys.
Lett. B 191, 141 (1987); Prog. Theor. Phys. 81, 426 (1989).
The last of the papers quoted above contains references to a
larger list of related papers by the same authors.

9D. Atkinson and P. W. Johnson, Phys. Rev. D 35, 1943 (1987);
J. Math. Phys. 28, 2488 (1987); D. Atkinson, ibid. 28, 2494,
(1987); D. Atkinson, H. Hulsebos, and P. W. Johnson, ibid.
28, 2994 (1987); D. Atkinson and P. W. Johnson, Phys. Rev.
D 37, 2290 (1988); 37, 2296 (1988).

10D, Atkinson, P. W. Johnson, and K. Stam, Phys. Lett. B 201,
105 (1988).

11p, Rembiesa, Phys. Rev. D 41, 1303 (1990).

12H. S. Green, J. F. Cartier, and A. A. Broyles, Phys. Rev. D 18,
1102 (1978); J. F. Cartier, A. A. Broyles, R. M. Placido, and
H. S. Green, ibid. 30, 1742 (1984).

13P. Rembiesa, Phys. Rev. D 38, 1916 (1988).

14R. W. Haymaker and T. Matsuki, Phys. Rev. D 33, 1137
(1986).

15See, e.g., T. V. Davies and E. M. James, Nonlinear Differential
Equations (Addison-Wesley, Reading, Mass., 1966).



