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We develop a formalism for defining and studying the form factors which describe the coupling of
a spin-J particle through a conserved tensor current to a spin-S boson. For S =2, these form factors
are the single-graviton gravitational form factors. We investigate the behavior of the various form

factors under C, P, T, and CPT and classify them accordingly. We show that under CPT invariance

all the multipoles of the mass distribution are the same for a particle and its antiparticle. We also

show that in a quantum theory of gravity the coupling of a particle to the graviton is in general

different from that of its antiparticle. Only when P and T are both valid symmetries of the underly-

ing theory do a particle and its antiparticle couple identically to the graviton. The number of form

factors for arbitrary J and S is given. We show that a massive Majorana particle (a CPT self-

conjugate particle) coupling to an odd-spin boson possesses only anapole moments. Massless Ma-

jorana particles with spinW —, have no single-photon electromagnetic form factors while the ones

with spinW —„1,or —, have no interactions with a spin-3 boson; this applies to the graviton (J =2,
S =1,3) and to the massless gravitino (J=—', , S =1). Our results also apply to extended objects (nu-

clei, . . .) in the low-energy limit.

I. INTRODUCTION

In this paper we shall develop a multipole expansion
for classifying and counting the dynamical form factors
which describe the interaction of a spin-J particle with a
virtual spin-S boson as illustrated in Fig. 1 ~ To be more
specific, we shall always assume that the spin-S boson is
emitted by the particle through a conserved, totally sym-
metric, and Hermitian tensor current operator T„.. .„.Pl Pg
The generalization to a nonconserved current is straight-
forward. Our considerations rely solely on Lorentz in-
variance with no specification of the dynamics. The
physically interesting cases of gravity and electromagne-
tism arise for S =2 and S = 1, respectively. For S =1 the
form factors in question are the single-photon elec-
tromagnetic form factors of a spin-J particle. It is well
known that the electromagnetic structure of a spin- —,

' par-
ticle is determined by four form factors: the charge, mag-
netic dipole, electric dipole, and the anapole (also called
the charge radius). It turns out' that a massive CPT
eigenstate particle of spin —„such as the massive Majora-
na neutrino, can have at most one form factor determin-
ing its interaction with a single photon, this form factor
being the anapole. This result has been generalized ' to
the case of a CPT self-conjugate particle of arbitrary spin
J (generalized Majorana particle), with the conclusion
that such a particle can possess at most 2J single-photon
form factors, which are the anapole and its higher mo-
ments. Moreover, in the event of P or T conservation,
half of these form factors vanish. Thus, a generalized
Majorana particle of spin 1 such as the Z boson, can have
at most two form factors determining its electromagnetic
structure and in the event where P or T are conserved, it
has at most one form factor. On the other hand, it turns
out that a massless generalized Majorana particle does

not have any single-photon form factors unless J =
—,', in

which instance it possesses at most one form factor which
is of the anapole type.

These considerations will be extended here to include
the cases S ~ 2. In order to define the form factors of a
spin-J particle, we will adopt a noncovariant procedure.
The reason lies in the following: the usual covariant way
for defining the form factors consists in writing down the
most general expression allowed by Lorentz invariance
for the matrix elements of the current operp. tor taken be-
tween the initial and final states of the spin-J particle; this
procedure becomes increasingly involved as the spins J
and S take on higher values since one will have to write
down all the allowed independent covariant tensor opera-
tors. Dependency among the tensor operators arises
from algebraic identities and the mass-shell condition.

We find it more convenient for our purposes to adopt
the noncovariant procedure consisting in a multipole ex-
pansion of the various components of T„.. .„whichPl Pg

transform among themselves under spatial rotations.
This procedure allows us to define unambiguously the in-

dependent form factors as well as to classify and count
their number. We define our framework in Sec. II; a gen-
eralization of the usual Wigner-Eckart theorem to rela-
tivistic particle states allows us to define the form factors
of massive particles. For massless particles, the form fac-
tors are conveniently defined by transforming the current
operator to a suitable basis in order to find out the vari-
ous helicities it contains. Some known facts about the
discrete symmetries have been included in order to unify
the notation and for the sake of completeness.

The problem of finding a complete set of transverse
and totally symmetric tensor spherical harmonics of arbi-
trary rank defined on Sz is dealt with in Sec. III. We ex-
plicitly construct these harmonics and study their num-
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sition is greatly simplified in the Breit frame in which

p,. =(qo, q), pf =(qo, —q), and k =(0,2q). For k =0, the

Breit frame does not exist if A (p) is a massless particle.

FIG. 1. Vertex of a spin-J particle coupling to a spin-S bo-
son.

II. FRAMEWORK

We consider the transition process

A (p, )~ A (pf )B(k), (2.1)

where A (p) is a real particle with momentum p and spin
J and B (k) is a virtual boson of spin S and momentum k.
It follows from energy-momentum conservation that
k =p; —pf and (p, +pf ) 0. The kinematics of the tran-

ber as well as their properties under parity transforma-
tion and complex conjugation. In Appendix B it is shown
that these harmonics reproduce the usual vector harmon-
ics when their rank is one; similarly, they reproduce the
rank-2 spherical harmonics which exist in the literature
dealing with classical gravitational radiation.

In Sec. IV we combine the results obtained in order to
count and classify the form factors through which a
spin-J particle couples to a spin-S boson through a con-
served tensor current. It turns out that a generalized Ma-
jorana particle coupling to an odd-spin boson possesses
only anapole moments; the theorems of Ref. 3 are
recovered as a special case. For odd S, the electric- and
magnetic-type form factors of a particle and its antiparti-
cle are opposite in sign, while the anapole-type form fac-
tors are equal. The converse of the last statement is true
if S is even. As a result, a particle (with JAO) couples
differently to the graviton than its antiparticle does. Only
when both P and T (or alternatively Q are simultaneous-
ly conserved do particles and their antiparticles couple
identically to the graviton, and for a spin- —, particle P
conservation alone is sufficient to ensure the same cou-
pling. However, the interaction leading to the asym-
metric coupling of particles and their antiparticles is a
contact interaction which does not affect the scattering
on an exterior classical gravitational field such as the
gravitational field of the Earth. We also investigate the
coupling of massless particles to a spin-S boson. For ex-
ample, we find that the graviton has no coupling to a sin-

gle photon or to a single spin-3 boson.
We finally mention that no assumptions are made on

the mass of the emitted spin-S boson. However, in the
case where the emitted boson is massless, Weinberg has
proven that the current has to be conserved as a conse-
quence of Lorentz invariance and that massless bosons
with spin ~3 do not couple at zero frequency, i.e., the
lowest-order form factor of a particle coupling to such a
boson vanishes at zero momentum transfer; another way
of saying this is that massless particles with spin ~ 3 can-
not give rise to 1/r potentials.

(2.2)

where K is the boost generator and g is the rapidity. Un-
der spatial rotations, K transforms like a vector operator,

RE;R =R~;E) (2.3)

and lJM & transforms according to the Jth irreducible
representation of the rotation group:

&IJM & =+SJM ~(R)l JM'&
M'

with 2)M M(R) being the Wigner D functions. Therefore,
the state (2.2) transforms as

%lq; JM & =+2)M M(R)lq', JM'&, (2.4)

where

I
gi Rij gj

The form factors describing the transition (2.1) will be
defined through the multipole expansion of the matrix
element

( q;JM, lT—„.. . „(0)lq;JM, &, (2.5)

where T„.. . „ is a covariant tensor operator assumed to
P 1 Ps

be conserved and totally symmetric. The conservation
equation d„T» . . .„(x)=0 implies the transversality ofI'»z ~s
the matrix elements (in the Breit frame) with respect to
the spatial indices:

. . „(0)lq;JM;&=o. (2.6)

In order to define the form factors, we split the four-
dimensional tensor T„.. .„ into a set of S+1 three-

Pl P~

dimensional tensors: Tp. . . 0,T, 0. . . 0, . . . , T,. . . . ; . Clear-

ly, this set exhausts all the components of the totally sym-
metric tensor T„.. .„.T,. . . . ,

- 0. . . p transforms under a
I 1 PS ll lko 0

rotation R according to

ATi, i„o . OR = g RJ, . Rj, i„TJ . . . J O. . . p .
Jl 'Jk

(2.7)

The above S+1 tensors will be called the "irreducible
parts of T„.. .„." In what follows, we shall often omit

1"S

the indices which are zero when dealing with the irreduc-
ible parts and simply write T; . . . , for T, . . . p. . . p keep-

1
l

1

'
lk

ing in mind that T; . . . , derives from a four-dimensional
1 k

A. Massive particles

The state l JM & of a massive particle at rest, is specified
by its spin J and the spin projection M along a fixed axis,
say the z axis. The state lq; JM & of a moving particle
with momentum (qo, q) is constructed by applying a pure
boost on the state

l
JM &, i.e.,
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'q LMi

1 EI&

k 1
;„(q) &~i 8—MM &u

(2.8)

and transforms under a rotation R according to

&LM),

M M(R ')R)~I~ RJ, I„+LM''I) l~('q) &

M', l
l lk

(2.9)

where A, denotes any other quantum numbers. One can
write down the following multipole expansion for the ma-
trix element:

&
—q;JMfIT; . . ;„Iq;JM, &

Q JLM '( Iql )&LM;, , (q) (2.10)
LMA,

with

Q JLM '(Iql)= I" q X

rank-S tensor. It follows from (2.6) that any irreducible
part (except To. . . o of course) is spatially transverse with

respect to q:

q;, &
—q; JMfl T;, ;, (o)Iq; JM; & =o .

We mention that the number of independent components
of a symmetric and transverse tensor of rank k in three
dimensions is equal to (k + 1). Thus the transverse
and symmetrical tensor T„.. .„will have

Pl Pg

0(k+1)=—,'(S+1)(S+2) independent components.
We now seek a multipole expansion of the irreducible
parts. Let IPLM; . . . , (q) I be a complete set of sym-

metric and transverse tensors defined on S2 which
satisfies

and —M =Mf —M, , due to the occurrence of the Wigner
3-j symbo1. As a consequence, no form factors with mo-
ments higher than 2J can exist. An example for k =0 is
the expansion of the charge distribution according to the
ordinary spherical harmonics YLM(q).

q;~f—l T„. . „(0)l q;~; & (2.13)

and split the tensor T„.. .„ into its irreducible parts,Pg
whose matrix elements are transverse to q. For simplici-
ty, we choose a coordinate system with q being parallel to
the z axis. The transversality condition then states that
all the matrix elements in which one (or more) of the in-
dices i, ik takes on the value 3 vanish. The problem
then reduces to studying matrix elements of the form

(2.14)

k-v times v times

with 0 ~ k ~ S and 0 ~ v ~ k. For this purpose, it is con-
venient to decompose the representation of the group of
rotations around the z axis [acting on totally symmetric
rank-k tensors in the (x,y) plane] into its irreducible
components. This will lead to a new set of components
T+. . . + . . . obtained from T, , ». . . 2 through a

k -v times v times

linear transformation and having the property of getting
multiplied by

e i (k —2v)$

under a rotation by g around the z axis. It is instructive
to consider the cases k =1 and 2. For k =1 we have

B. Massless particles

The state Iq;k& of a massless particle of spin J is la-
beled by the momentum q and the helicity A. which as-
sumes only the two values +J. We consider the matrix
elements

1 k

x &
—q; JMf I T, . ";„I q; JM; &

T*=(T, +i T2 ),
while, for k =2,

It follows from a generalized Wigner-Eckart theorem—A.Mf M,
(proven in Appendix A) that Q zL~ '(Iql) can be factor-
ized as

M J L J
QJr~~ '

Iql = — '
M M M QJL Iql

(2.11)

and therefore the multipole expansion (2.10) may be writ-
ten as

&
—q'JMf IT; . . ;„Iq'JM; &

J —M,

For an arbitrary value of k, the components
T+. . . + . . . can be readily found by noticing that they

k -v times v times

transform like the tensor product T+g . T+
T . T where the (+) sign occurs k —v times
and the ( —) sign v times. This leaves us with investigat-
ing matrix elements of the form
&
—q, k,f IT+ . . . + . . . Iq, A.; &, which will be referred to

as "canonical form" in what follows.

X O'L,M, ~,~(q) (2.12)

the sum being performed over a finite number of terms

C. C, P, T, and CPT

In a theory where parity is conserved we have for a
massive particle at rest:



1992 V. RAHAL AND H. C. REN

(2.15) BT„.. .„(0)B '=( —
) T„.. .„(0) (2.25)

gp(M} being a phase factor, since in the Poincare group
[P,J]=0 A. pply now a pure boost on both sides of the
above equation:

e '~ "PlJM & =q, (M)
l q;—JM &

and since [ P, K I =0, one gets

PT„.. .„(0)P ' = (
—)"T„.. .„(0),

TT„.. .„(0)T ' = ( —)"T„.. .„(0),
(2.26)

and in the event where P or T are conserved we have, for
a Hermitian tensor (and not for a pseudotensor),

Plq;JM)=ri (M)I q'JM) . (2.16) k being the number of spacelike indices among JM] p&.
Finally, B acting in the space of a spin-J particle, obeys

This proves that the phases g~(M) for a massive particle
are independent of q. Moreover, the phases for various
values of M are not independent. To see this, we apply a
raising operator J+ to the angular momentum eigenstates

~
JM) in (2.15) (in the event where M =J, we apply of

course J ). Using [P,J+]=0,one obtains

rip(M+1)IJM+1& =rip(M)IJM+1)

from which we infer that all the values of gz(M) are
equal, leading to the relation

re(M)r)p(M')=1 .

In the same manner,

C
I qi JM &

=ric(M) I q; JM &

(2.17)

(2.18)

for a theory in which C is conserved, the bar denoting the
antiparticle state. The same reasoning that led to (2.17)
gives rise to

c(M)gc(M') =1 (2.19)

For a theory in which T is a valid symmetry, we have
similarly

TIq;JM &=rir(M)~ —q; J —M& . (2.20)

T is represented by an antiunitary operator in the Hilbert
space and satisfies J+T= —TJ . This leads to the phase
relation

B2—
( )2J (2.27)

and carry parities

III. TRANSVERSE TENSOR HARMONICS
ON S~ OF ARBITRARY RANK

In this section, we construct a complete set of trans-
verse and symmetrical tensor spherical harmonics of ar-
bitrary rank in terms of which any symmetrical and
transverse tensor field defined on Sz can be expanded.
We will further analyze the behavior of these harmonics
under rotation, space reAection, and complex conjuga-
tion. We first discuss vector harmonics and rank-2 tensor
harmonics and then go over to discuss the case of arbi-
trary rank.

The transverse vector spherical harmonics may be gen-
erated by applying a combination of the operators q and
V to the ordinary spherical harmonics Y&M.

1
YLM L(L+1}qX VYI.M L 1,

Yi.~——q XYLM L 1 .
They transform according to the Lth irreducible repre-
sentation of the rotation group, i.e.,

RYE.M(q)]; =R;,Y~I.M, , (R

I'M(R )Yqsr;(q),

(M)gz'(M )=( ) (2.21) Yr~( —q)=( —) +"Yg~(q) .

For a CPT operation, which is also antiunitary and which
we shall denote by e, we have

B~q;JM & =ye(M)Iq; J —M )

and using the raising operator, one obtains

ge(M)ge(M') = ( —)

(2.22)

(2.23)

&@~o~y &=&1(,'~eo'e-'~y, & . (2.24)

A Hermitian operator T„.. .„ transforms under 8 ac-
~s

cording to

We close this section by some general remarks on symme-
try operations. Given an operator 0 in the Hilbert space
of states ~g) and a unitary operator U acting on the
states

~ PU ) = U~ g ), one has

&ylolq &=&q, lUoU'ly', &,

whereas for an antiunitary operator such as e we have

They are mutually orthogonal

d'qYI. sr(q}YI. M'(q}=~11.~MJg'4g

and form a complete set in the space of transverse vector
fields on Sz. These vector harmonics play an important
role in the theory of electromagnetic radiation.

In the case of k =2, one can still try to generate the
desired tensor spherical harmonics by applying the opera-
tors q and V to the ordinary spherical harmonics. After
some quite lengthy manipulations, one ends up with the
following set of tensor harmonics:

Y~~ (~(q)= —(5; —
g;Q. . ) Yl~(q}, L &0,1

( )=
v'2(L —1)L (L + 1)(L +2}
X(e, „g V, V„+ej „Q V;V„)YI~(q),

L~2,
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l

&2(L —1)L (L +1)(L +2)
X [2(q;V +V,V;)YLM(q)

+ v'2L ( L + 1 }YiI.;~ ( q ) ], L ~ 2,
wh«e V =—IqlV —q(B/Blql ). These tensor fields are sym-
metric and transverse. The set is orthonormal,

f &'qTr~Y:M(q)Y'I (q)~=fi«fi~~fi-

the tensor product formed out of the vectors e+.
1/2

v!(k —v)!
kf

QP(e+ . e+Se . Se ).
P

The product which has been symmetrized above consists
of v vectors e+ and k —v vectors e, 0 ~ v ~ k; the sum
itself contains

and complete (for the proof, see Appendix B and the lem-
ma in Sec. III) in the space of rank-2 symmetric and
transverse tensors on S2. These harmonics realize the
Lth representation of the rotation group. Their parities
are given by

YL,M;, ( —q) =( )"—"YL.M;;, (q)

There are also other versions of the tensor harmonics of
rank 2 in the literature for the purpose of studying clas-
sical gravitational radiation.

As the rank S takes on higher values, the procedure for
constructing tensor harmonics used above gets more and
more involved. This procedure also fails to give a clear
understanding of the number of existing harmonics for
L &S. (For S =1, we do not have any transverse vector
harmonics for L =0 whereas for S=2 we do have one
such harmonic for L =0 and one for L =1.) To con-
struct the tensor harmonics with higher rank, we follow a
different route which is more systematic. First of all, we
require each tensor harmonic to be an eigenfunction of
the square of the total angular momentum operator and
of the z projection of the total angular momentum: i.e.,

J'7LM;, (q)=L«+1)7LM

+LMi

Upon a rotation R we have

%V~M, . . . , (q)=— g R; R; VLM . . . J~(R 'q)
J) '''Jk

=g &sr sr(R) 7LM;,
M'

Choose R to be a rotation bringing the z axis to q, i.e.,
q =R z. The above equation then reads

X+M'M(R )+LM'

terms. The tensor T' acquires a phase e ' ~ with
A, =(2v —k) under a rotation by an angle g around the z
axis (zllq in this frame) and is therefore an eigenfunction
of the helicity operator q.S. The allowed helicities
for a transverse rank-k tensor are therefore
k, k —2, . . . ,

—k+2, —k. Taking 'TLM . . .
~

(z) to beLMJ l

one of the T" and inverting Eq. (3.1), one obtains

, (q)=JV, SM",(R) g R, R, T' . . .

(3.2)

where A'I =&(2L + 1)/4m is the normalization constant.
'TL~; . . . ; (q) is a simultaneous eigenfunction of the

k

square of the total angular momentum, the z projection
of the total angular momentum and the helicity. The
foregoing construction is quite analogous to the construc-
tion of the wave function of a symmetric top in quantum
mechanics.

Let $, 8,$ be the three Euler angles of the rotation R
with q=Rz. Clearly, 8 and P are the polar angles of q
and 1( is unsPecified. Introduce the unit vectors es and e&

of the polar coordinates system:

es=(cos8cos{{},cos8sing, —sin8),

e&
= (

—sing, cosg, 0)

and define

1f+—= —(es+ie&) .v'2

With this notation, it can be shown that the tensor T (q)
defined through

J] '''Jk

R~~ R J 'Ti~~ . . . J z). (3.1) can be expressed as
' 1/2

g( ),g@ v!(k —v)!
q =e

kt
We now construct an orthogonal basis consisting of k + 1

elements in the space of rank-k symmetric tensors which
are transverse to the z axis. This will allow us to expand
any tensor VLM . . . (z} in terms of the k+1 basis ele-

ments defined as follows: introduce the canonical vectors

1
e+ —— —(xkiy)

2

and define a set of rank-k tensors by totally symmetrizing

XgP(E+S ' ' E+SE ' SE ) .
P

(3.4)

Putting the last two equations together in (3.2), one ends

up with an explicit expression for the tensor spherical

On the other hand, the Wigner 2) function can be written
as

cgLe(R ) &MPHIL (8)~~A/
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harmonics of rank k:

( )
2L+1

LM 'q
4

' 1/2

& '(R)T (q) (3.5)

By the Peter-Weyl theorem, the set 2)MM (8,$, g) is com-
plete on SO(3) and one can write

g(,P) g CMM DMM (8. ,$, $)
LMM'

+LM( l)
2L +1

4m

or equivalently
1 /2

v!(k —v)!
k!

eiM~dL (g}

with cMM. being constant coefficients. However, since the
functions e' ~ are linearly independent, the above expan-
sion actually reads

XQP(e+8 ' ' e+e ' ' ' 86 ),
P

(3.6)
e'" CL(8 4)=& CLM~&M~(8 0 tt)

LM

which depends only on the polar angles of q and thereby
removes the ambiguity of specifying f. A number of
properties of 5'LM; . . . ; (q) can be deduced from the

k

properties of SM&(R } and are summarized in the follow-

ing lemma.
Lemma. (i) The set 5'LM is orthonormal according to

the scalar product defined in (2.8).
(ii) The set V'LM is complete in the space of totally

symmetric and transverse tensors of rank k defined on S2.
(iii) For given L and k one has L~M~—L and

—min(L, k)~A, ~min(L, k). Furthermore, the consecu-
tive values A, assumes obey the rule hA, =2 and A, is even
(odd) if k is even (odd).

(iv) yLM ——I/&2(TLM+'TLM) are parity eigenstates
with

'y~LM( —q}=( —)""''y~LM(q»

where II(A, +)=II(0)=L and II(A, )=L+1. For A, =O
there is only one such combination yLM= V&M. For
L ~ k and k even, there are —,'k +1 tensor harmonics with

parity ( —) and —,'k with parity ( —); for k odd, there are
—,'(k+1) tensor harmonics with parity ( —) and —,'(k+1)
with parity ( —)

(v) Under complex conjugation,
cyA. »

(
)M+A(A, )rye

LM L —M

with A(A+)=k, A(0)=0, and A(A, )=k+1.
Proof. (i) We have

TA.') y Til»(~q)TA. '.

Consequently,

f q(7LM 7L M')

f d qS *(R}2) (R)

~A.A, '~LL '~MM'

(ii} Consider a transverse and symmetric rank-k tensor
field A(q} defined on Sz. For fixed q, T (q) is an ortho-
normal basis in the space of transverse and symmetrical
tensors of rank k which are defined in the tangent space
at q. With (3.4) we can thus write

k

A(q)= g e' ~cz(8, $)T"(q) .
A, = —k

with CLMi, ——CM&. For A(q) this implies that

~(q)= X CLM.&M".( } '(q)
LMA,

and this was to be proven.
(iii) This follows from the fact that 2)~& vanishes unless

—L ~M A, ~L and that —k A. ~k. The second part of
the statement is true because k=(2v —k), v being an in-
teger.

(iv) A parity transformation means i'~n+P an. d
8~F8 .—Bu. t dMi, (n 8)=(——)™dMi, (8) and
e'"~T"(—q)=e' ~T "(q) since under parity e+ trans-
forms into e+. Putting this together into the definition of
'yLM leads to the desired result. Moreover, the counting
rule for the allowed harmonics given under (iii) gives the
number of parity eigenstates harmonics existing for any
given L and k.

(v) Under conjugation, 2)~&(R)=( —) "2) M z(R)
and T '=T since e+=e+.

Some remarks are in order.
(1) Since parity and helicity do not commute, the parity

eigenstates yLM are in general different from the helicity
eigenstates TLM.

(2) The importance of the lemma above lies in the fact
that it determines the number and parities of the existing
transverse and symmetric tensor harmonics for L & k and
for L ~k. For instance, for k =0 we have from (i) that
A, =O and L&M ~L. T—he scalar spherical harmonic
'yLM has [from (ii)] parity ( —) . Note that yLM reduce
for A, =O to &(2L + I )/4n2)M»0(R) = YLM(8, $) which are
the usual spherical harmonics.

For k =1, we find from the lemma that there are no
transverse harmonics for L =0, while for L ~1 we find
that there exist exactly two transverse vector harmonics,
one with parity ( —} and the other with parity ( —)

In Appendix B it is shown that 'PLM (for k = 1) are pre-
cisely the transverse vector harmonics given at the begin-
ning of this section.

For k =2, we find for L =0 one transverse tensor har-
monic, having parity ( —) . For L = 1, we find again only
one tensor harmonic with parity (

—
) . For a given

L ~2, there exist three transverse and symmetrical har-
monics of rank 2, two of them having parity ( —) and
one having parity ( —) +'. In Appendix B it is shown
that the rank-2 spherical harmonics given at the begin-

A.+,0
ning of this section are identical to yLM (for k =2).

(3) It is evident that the condition of transversality may
be relaxed in (3.5). This formula then explicitly
represents all the tensor harmonics (for example, the
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symmetric and traceless ones) on S2, by taking the tensor
T' to be constructed accordingly (for example symmetric
and traceless). The construction can also be generalized
to the case of the spinor spherical harmonics by taking
T to be a higher-rank spinor. Moreover, by reversing
the procedure used in Appendix B, one obtains a sys-
tematic way to derive the arbitrary rank tensor harmon-
ics as being expressed in terms of the operators q and V

acting on the ordinary spherical harmonics Y'LM(q).

IV. NUMBER AND CLASSIFICATION
OF THE FORM FACTORS

In this section we combine the results obtained in the
last two sections in order to count and to classify the
form factors which characterize the radiation of a single
spin-S boson through the conserved tensor current of a
spin-J particle. We first study massive particles.

A. Massive particles

( —q; JMf I Tl q; JM, ) =g( —)
LA,

J L J
—M —M Mf 1

(4.1)

are real. Here A, and L run throughout the values al-
lowed by the lemma of Sec. III and L & 2J.

Proof. By Hermiticity, ( q; JMI I Tl q:J—M; ) '
= ( q; JM, I Tl —q; JMf &. Expanding both sides according
to (4.1) leads to

L J
M —M Mf f i i

x(i} "'QJL (Iql)'YLM(q),

Consider the expansion (2.12) and rephase the form
factors Q JI (lql ) according to

Q JL, (lql) =«)*'"QJ'L, (lql)

with X(A, + ) =X(A, ) =L +k, X(0)=L. Then, we have

the following statement: For a Hermitian operator
T; . . . , all the form factors occurring in the expansion

1 k

&.e.,

QJL'( Iql }=QJL( I ql ),

By decomposing the rank-S tensor into its irreducible
parts, one obtains for the total number of form factors of
a four-dimensional symmetric and transverse tensor of
even rank S:

5 5 —1

EI, + g Ol, =[J(S+1)(S+2)
k=0

k even
k=1
k odd

—
~1, (S —4)(2S+3)] .

For S odd, we have to replace S in the first sum above by
(S —1) and replace (S —1 } in the second sum by S.

(ii) For a rank-k tensor, we have for 2J & k the follow-

ing number of form factors:

which was to be proven.
We are now in a position to give the allowed number of

form factors in general for the vertex of Fig. 1.
(i) For 2J ~S, the number of form factors involved in

the process A (p; )~ A (pf )B (k) of a spin-J particle cou-

pling through a conserved and symmetric tensor current
to a spin S boson, is at most equal to

J (S + 1 )(S + 2 }——,', (S —4}(2S+3 } for S even,

J (S + 1)(S+2) —
—,', (S + 1)(2S +S —9) for S odd .

(ii) For 2J &S, the number of form factors is at most
equal to —,'(2J+1) (S 2J)+—PJ where

PJ= —,'(J+1)(8J +7J+3) for J integer, S even,

PJ= —,'(J+1)(8J +7J+3)——,
' for J integer, S odd,

PJ= —,', (2J+1)(16J +22J+9} for J —,'-odd integer .

Proof. Let us denote for 2J~k by E& the number of
form factors of a rank-k symmetrical and transverse ten-
sor operator with k even and by Ok with k odd. Using
the lemma of Sec. III and taking into account that no
form factors exist for L ~ 2J, one finds

EI, = —
—,
'k +2Jk +(2J+1),

Oi, = —
—,'k +2Jk+(2J+ —,') .

f
LA,

J L J
—M M- —M Mi i f f

x (i)""Q" ( Iql )&L -M( —q } .

2J +2J+1 for J integer, k even,

2J +2J for J integer, k odd,

2J +2J+ —,
' for J —,'-odd integer .

(4.2)

We now compare the coefficients of PL M(q) by using
the transformation law under parity and conjugation
given in the lemma of Sec. III and taking into account
the identity

We now divide the irreducible parts of the rank-S tensor
into two sets: a first set consisting of tensor with rank
less or equal to 2J and a second set with tensors whose
rank is greater than 2J:

J L J
—M M —M. Mf f i i

One finds

J L J
—M M- —M Mi i f f

Tp . . p T' . . . p. . . p (first set)
1 2J

p. . . p, . . . , T; . . . ; (second set) .

The number of form factors by which the first set contrib-
utes, is now given by part (i) by replacing the S there by
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2J. To count the number of form factors contributed by
the second set, we have to distinguish between the follow-
ing cases.

(A) J is integer and S is even. In that case, there will be
—,'(S —2J) tensors of even rank and —,'(S —2J) tensors of
odd rank among the tensors of the second set. Taking
(4.2) into account, the total number of form factors con-
tributed by the second set will be —,'(2J + 1) (S —2J).

(B) J is integer and S is odd. There will be
—,'(S —2J +1) tensors of odd rank and —,'(S —2J —1) ten-
sors of even rank in the second set. With (4.2), this gives
—,'(2J+1) (S —2J)——,

' form factors.
(C) J is —,'-odd integer and S is even. There will be

—,'(S —2J+ 1) tensors of even rank and —,'(S —2J —1) ten-
sors of odd rank in the second set. With (4.2), this leads
to —,'(2J+ 1} (S —2J) form factors.

(D) J is —,'-odd integer and S is odd. In this case, the
number of tensors of even and odd rank is the same as
under (A), and one obtains —,'(2J+ l)~(S —2J) form fac-
tors. Adding the contribution of the first and the second
set completes the proof of (ii). We illustrate the above re-
sult by considering some special cases. For S =1, we find
one form factor for a spin-0 particle. The covariant ma-
trix element of the current operator is in that case pro-
portional to (p, +pf ), the proportionality constant (prop-
erly normalized) being the charge form factor; on the oth-
er hand, if 2J & 1, we find (6J+1) form factors. This
leads to four form factors for a Dirac particle. For S =2
and J=0, we find two form factors; the first one stems
from the expansion of Too (for L =0) and may be called
the mass form factor, while the second one stems from
the expansion of TJ (for L =0) and is thus the coefficient
of the rank-2 transverse spherical harmonic (see Sec. II)
(5;J —g;g~). The covariant matrix element will thus con-
tain two form factors being the coefficients of
(p, +pf)„(p, +pf)„and (g„„—q„q„/q ). The last term
gives rise to a contact interaction potential in real space.
However, such an interaction affects only quantum-
mechanical systems. This may be seen by noticing that in
classical physics, the addition of a delta function poten-
tial to the Newton potential does not affect the Kepler or-
bits, since these orbits are sharply defined. In contrast,
the quantum-mechanical S states have a nonvanishing
probability density at the origin and will thus be affected
by a contact interaction. In that sense, the above correc-
tion may be called a quantum correction to Newtonian
gravity.

Concerning generalized Majorana particles, we have
the following statement.

(iii} If S is odd and the underlying theory is CPT invari-
ant and the initial and final particle states are CPT self-

A,

conjugate then
QJ~+ =Quiz

=0 and only one set of mul-

tipole moments QJr of parity type ( —} + ' exists. For
2J ~S, the number of these form factors can be at most

—,'J(S+1) —
—,', (S —1}(2S+3},

while for 2J (S it can be at most

—,
' J[—,'(J + 1)(8J+ 1)+(2J+1)(S—2J)+1]

for J integer,

(iv) If S is even and under the same assumptions on the
theory and particle states as in (iii), Qzz =0 and only the
multipole moments QJr+ and QJr of parity type ( —) can
exist. The number of these form factors for 2J ~ S is

—,
' J(S + 2) —

—,', (S +2)(2S —S —12)

and, for 2J &S,

—,'(J+1)[—,'(8J +13J+6)+(2J+1)(S—2J)]

for J integer,

—,'(2J + 1)[—,', (2J +3)(8J + 5)+ (J+ 1)(S—2J)+ —,
' ]

for J —,'-odd integer .

Proof. Using (2.22) —(2.24) we obtain

&
—q; JM

I
r

I q; JM; &

M —M,. +1=( —
)

' (q;J —M;ITI —q;J —Mf) .

We now expand both sides of this equation according to
(4.1) and use the symmetry property

r

J L J
)2J+L

M; M —Mf

and the transformation law

J L J
—Mf M M;

+LM( q) ( ) +LM(q}

in order to compare the coefficients of PzM(q). This
leads to the equalities

Q
A. —

( )
Il ( k ) +L + )

Q
k

and thus only the set Qjz which belongs to ()('r))r exists.
With this selection rule, the counting of the nonvanishing
form factors proceeds in the same manner as was done in
the proof of (i).

(iv) The proof here is the same as in (iii) except that the
tensor current is now even under CPT. This leads to

)
n(x) +rQ x

so that only the two sets Qjr+ and QJr of parity type
( —

) can exist.
A case of physical interest is S = 1. Here, we find from

the above statement that a generalized Majorana particle
of spin J can have at most 2J form factors. Thus, the
neutral pion has no single-photon form factors, the Ma-
jorana neutrino can have at most one form factor and the
Z boson can have at most two form factors. These form
factors are of the type QJr and are known under the
name "anapole moments" or "charge radius moments. "
Their counterpart in the classical theory are the so-
called "toroidal moments. "The origin of this set of form
factors lies in the following: in the classical theory (as
well as in quantum mechanics) the multipole expansion of
a conserved current J„ is determined by three sets of mul-

—,'(2J+ I)[—,', (16J +10J+3)+J(S—2J)]

for J —,'-odd integer .
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tipoles: The electric charge multipoles, the magnetic
charge multipoles, and the toroidal multipoles. While the
electric charge multipoles are determined by the charge
distribution p, the magnetic and toroidal multipole mo-

ments are determined by the current distribution J.
Thus, a system with no electric charge, no electric or
magnetic dipole moments, can still possess a toroidal di-

pole moment. The simplest example of such a system is a
coil shaped in the form of torus, for which the magnetic
moments of loops opposite to each other cancel, respec-
tively, to first order. Thus, a pure toroidal dipole mo-
ment [i.e., letting the dimensions of the torus go to zero
while keeping the product (current) X(dimensions of the
torus) fixed] possesses no electric or magnetic moments
and will thus not interact with a given external field but
will only scatter when it "hits" an external source, since
the fields are confined within the coil. In this sense the
interaction of a toroidal moment may be called a contact
interaction. This behavior also holds quantum mechani-
cally: for a Dirac particle, the interaction with an ex-
ternal current J„(one-photon exchange) is

(pIIj„Ip; &(1/q )J„and contains four terms: the first
three are the Coulomb interaction and the interaction of
the electric and magnetic dipole moments. The fourth
term is the anapole dipole moment and its interaction at
low frequencies is (q yq„y„q—)ys(1/q )J„=ysy„J„
since the external current is also conserved. The Fourier
transform of this interaction is a delta function in the
coordinate space leading to a contact interaction with the
external source. As a measurable physical consequence,
a11 the S states in an atom in which the bound particle
possesses an anapole moment will be shifted due to the
point interaction at the origin. In the classical theory the
radiation of the anapole moment is negligible in the wave
zone when compared with the radiation of the electric or
magnetic dipoles. It has to be taken into account, howev-
er, when the emitted wavelength is short (compared to
the characteristic length of the emitting source), such as
in nuclei. '

For S =2 and J =0, we find for a Majorana particle
two form factors, which is the same number as for any
other particle with the same spin. We thus see that to
lowest order in the multipole expansion, the coupling of
the particle and its antiparticle to the even spin field is
the same. That this property is not true in general is the
content of the next statement. Note that in contrast, any
odd spin S field, always gives 0 for the charge (i.e., the
lowest-order form factor) of a spin-J Majorana particle
coupling to it.

(v) If the underlying theory is CPT is invariant, the
form factors QJL of a particle and Q JL of its antiparticle
satisfy

o o
QJL Q JL ~ QJL Q JL~

—A-
QJL =Q JL for S odd,

A + p p
QJL Q JL QJL Q JL QJL Q JL

Proof. Using (2.22) —(2.25) we obtain

&-q;JM, ITlq; JM, &

=( —
)

' (qJ —M ITI —qJ —MI& .

Expanding both sides according to (4.1), we then com-
pare the coefficients of the tensor harmonics (see the pre-
vious proof). This leads to the equations

QJL =(-) Q:L, QJL=(-) QOJL, Q:L

which are the content of the above statement.
Some remarks are in order.
(A) For S =0, we know from the general counting that

a spin-J particle possesses at most (2J+1) form factors;
however, they all are of the type QJL and the previous
statement asserts that a spin-0 field couples in the same
way to particles and antiparticles. Thus, an interaction
mediated by a spin-0 boson is independent of the matter-
antimatter nature of the particles. This fact is only true
for a spin-0 field.

(8) For S odd, unless the particle is a generalized Ma-
jorana particle, the field mediating the interaction always
distinguishes between particles and antiparticles.

(C) The equalities QJL =Q JL, which are valid for S
even, show that all the mass multipoles (e.g., the mass,
the mass dipole, the mass quadrupole, . . . ) are equal for a
particle and its antiparticle. Furthermore, for S even, we
find the following: if J =0 or the spin-J particle is a gen-
eralized Majorana particle, the coupling is independent of
the particle-antiparticle nature; if J ~

—,
' and the particle is

distinct from its antiparticle, form factors of the type

QJL may be present. This has the consequence that in a
quantum theory of gravity the scattering of a particle
mediated by graviton exchange will be di8'erent in general
from the scattering of the antipartic1e in the same experi-
ment. To gain more insight, we consider the case J =

—,
'

and find from (ii) that there are at most six form factors
for the coupling to the graviton. With p =(p;+pI) and

q =(p; —pI ), the expression

~y f(q')p~. +F(q')(p„~.~q~ ),r ~+g (q')(p„~.Lq~),

+G(q')4 „(q rq. q'r. )L. r~+—(~ (q')+If (q')rs jq' g„.—

is thus the most general one which can be written down
for the matrix elements of the conserved and symmetrical
current, since the six tensors occurring in it are indepen-
dent. One can also establish this statement explicitly,

with no reference to (ii): by using Gordon identities and
reduction formulas for the product of y matrices, one can
check that all other symmetric and transverse tensors
such as p~„y~, . . . lead to nothing new in the expression
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above. f (q ) and F(q ) are the form factors of the mass
and the mass dipole, respectively. g(q ) is the dipole of
the momentum Bow distribution and its electromagnetic
analog is the magnetic dipole. The form factor G(q )

may be identified with QJL and its electromagnetic coun-
terpart is the anapole moment. In the low-frequency lim-

it, this terms gives rise to a contact interaction in real
space with the external source. This will affect the S-
wave scattering of particles mediated by graviton ex-
change and the S states of bound systems. However,
G (q ) does not contribute (in the low-frequency limit) to
scattering processes where there is no contact with the
external source, such as in the scattering of particles on
an exterior classical gravitational field. This implies that
under CPT, protons and antiprotons or neutrons and an-
tineutrons behave identically —say —when falling in the
gravitational field of the Earth. The next statements

show that the form factors QJL do occur in parity- (or
time-reversal-) violating theories.

(vi) If the underlying theory is C conserving, the form
factors of a particle and its antiparticle are equal in mag-
nitude and sign if S is even and are equal in magnitude
but opposite in sign if S is odd. If S is odd, and the initial
and final particle states are C self-conjugate, all the form
factors vanish.

(vii) If the theory is P conserving, the form factors of
A+ 0 L A+0

the irreducible part T, . . . , satisfy QJL
= ( —) QJL

Q =(—
) +'QJL if k is even and QJL+=( —) +'Q&L+,

QJL =( —) QJL if k is odd. For 2J S, a spin-J particle
can have at most —,

' J(S+1)(S+2}——,',Xz s form factors
where

XJ s =(S+2)(2S —S —12) for S even, J integer,

XJ s =(S+2)(S—2)(2S+3}

for S even, J —,'-odd integer,

X~ s = (S +1)(S+3)(2S —5) for S odd, J integer,

XJ z=($+1)(2$ +S —9) for S odd, J —,'-odd integer .

If 2J & S, the number of form factors allowed for 2J even
is —,'(2J +2J+ 1)(S—2J)+ Yzs where

Yzz= —,'(J+1}(8J+7J+6) for S even,

Fzs= —,'(J+1)(8J +7J+6)——,
' for S odd,

while for 2J odd the number is

—,'(2J+1) (S —2J)+ —,', (2J+1)(16J +22J+9) .

(viii) If the underlying theory is T conserving, the form
factors of the irreducible part T; . . . ; satisfy

QJL =(—) Qzz if k is even and QJL =(—)L+'QJL if k is
odd. For 2J~S, a spin J particle can have at most
—,
' J(S + 1 )(S +2 ) ——,', Vz s form factors where

VJs=($+2)(S —2$ —6} for S even, J integer,

V~+=($+1)($ —S —9) for S odd, J —,'-odd integer,

Vis =(S+1)(S+2)(S—3)

for S even (odd), 2J odd (even) .

For 2J (S, the particle has at most
—,'(J + 1)(2J+ 1)(S—2J)+ WJ s form factors where

WJ z
=

—,'(J + 1)(4J +5J +3) for S even, J integer,

Wqs =
—,', (2J+1)(8J +14J+9)

for S odd, J —,'-odd integer,

WJ s =
—,'(2J +1)(J + 1)(4J+3)

for S even (odd), 2J odd (even) .

Proof. (vi} Using (2.18) and (2.19) we obtain, for a
rank-k tensor,

&pf, JMflTlp;;JM; &=( —
) &pf JMfITlp;;JM; &

from which the statements immediately follow.
(vii) Using (2.16), (2.17), and (2.26), we obtain for the

irreducible part of T:

= (
—) "& q; JMf I T; . . ;„ I

—q; JM; &

Expanding both sides according to (4.1), we obtain the
desired relation

Qk —
( )k+lI(iL)QA.

%ith this selection rule, the counting of the form factors
proceeds in the same manner as was done in the proof of
(i).

(viii) Using (2.20), (2.21), and (2.26) we have

q; JM, I T, ,„lq—;JM, &

M —M, +k=(—)
'

&
—qJ —M IT, . . . ; IqJ —Mf & .

Upon expanding both sides and comparing the
coeScients, we find

Qk ( )k+Lgk

Some remarks are in order.
(A) From the selection rules above, we also see that if P

and T or alternatively C are conserved, all the QJL have

to vanish. Half of the form factors QJL are P-violating
quantities while the other half are T violating. Moreover,
we see that for a spin- —' particle, P conservation alone is

2 7

sufficient to ensure the vanishing of the Q&L form factors.
(B) The selection rules given above allow one to direct-

ly infer which form factors violate which symmetry. For
example, they show that if P is conserved, no mass dipole,
no electric dipole moment, no magnetic quadrupole mo-
ment, no anapole dipole moment, are allowed, etc. On
the other hand, they show that if T is conserved, no mass
dipole, no electric dipole, no magnetic quadrupole, etc.,
can exist. However, they show that the anapole dipole
moment is a T-conserving but a P-violating quantity.
They also show that an electric or a mass quadrupole are
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P- and T-conserving quantities, etc.
We finally give the number MJ of single-photon form

factors and the number XJ of single graviton form factors
which a Majorana particle is allowed to possess in the
event where P or T are conserved.

(a) If the underlying theory is P conserving,

MJ J XJ =4J +2 J integer

MJ J—
—,
' XJ=4J+ 1 J —,

' -odd integer

(b) If the underlying theory is T conserving,

MJ =J XJ =4J+2 J integer,

M =J+—,
' X =4J+1 J —,'-odd integer .

B. Massless particles

As explained in Sec. II, the form factors of the vertex
of a massless on-shell spin-J particle, coupling through a
tensor current to a spin-S boson, may be defined through
the matrix elements

(i) The matrix elements of the tensor current between
equal helicity states vanish if 2J & S.

(ii) If J =0 or 2J )S, there are at most —,'(S+2) form
factors for S even and —,'(S + I ) form factors for S odd.

(iii) If 0 & 2J ~ S, the number of form factors allowed is
at most —,'S —2J+I J ~ where

I J&=3 for S even and J integer,

I J&=2 for S even and J —,'-odd integer,

1 J&=—', for S odd and J integer,

J g —,
' for S odd and J —,

' -odd integer

Proof. Under a rotation by P around the z axis, the
states and the tensor transform according to

A(P)~q, A. ,
&=e' '

~q, A, ; &,

w(y)~ —q, xf&=e
' '

~q, kf&,

RT(k, v)% '=e'" "~T(k,v) .

Qq q (q, k, v)—= ( —q;Af T(k, v)~q;A. ; & (4.3)
Inserting such a rotation in the matrix element (4.3), we
obtain

of the canonical components T (k, v) = T+ +.. .

k-v times v times
with 0 ~ v ~ k and 0 ~ k ~ S. Because of Hermiticity, not
all the matrix elements in (4.3) are independent. To see
this, we relate the state

~

—q;A, & to the state q;A, &

through a rotation by m around the y axis:

IIA, +A. +k —2v)$
Q~, ~, (q k v) =e ' '

Q~, ~, (q k v) .

Therefore, if Qz z is not to vanish, the initial and finalf
helicities have to obey

A,;+if=2v —k .

I

—q;&&=c(q, &)e
'

'~q;&&

with c (q, A, ) being a phase factor and

(4.4)
Since (A,;+)(f ) can only assume the values 0 and +2J, the
only nonvanishing matrix elements are

QJ ~(q, k, —,'k )

(4.5)
for k even (0 ~ k ~ S ), and

We then have

Qq q (q, k, v)=( —)"c*(q,A, ;)c(—q, kf)Q&'z (q, k, v) .

Proof. The operator T(k, v) transforms under a rota-
tion by m around the y axis according to

—&mJ ivrj
e 'T(k, v)e '=( —)"T(k,k —v) . (4.6)

Q~, ~, (q k»=Q~,*~, (

Combining the last two equations yields the result. We
next give the general number of nonvanishing matrix ele-
ments Q ~ ~ for a massless spin-J particle. The matrixf
elements of a symmetric and conserved tensor current,
through which a massless particle of spin J couples to a
spin-S boson, possess the following properties:

Inserting a rotation in (4.3) and making use of (4.4) and
(4.6), we obtain the relation

Qt, ~, (q k v)

=( —)"c'(q, A, , )c( —q, kf)Q~ q (
—q, k, k —v) .

But the Hermiticity of T„.. .„ impliesPI Pg

QJJ(q, k, v) and Q J J(q, k, k —v)

for k such that 2J ~ k & S and such that v=(J + —,'k) is an
integer. Equipped with these selection rules, it is
straightforward to deduce the statements (i)—(iii).

We note that the concept "diagonal elements" in (i} is
frame independent, since the helicity is a Lorentz invari-
ant for massless particles. The theorems of Weinberg and
Witten" are contained in (i}, namely, for the case where
T„and T„, are, respectively, taken to be the covariant
charge current and the covariant energy-momentum ten-
sor. These theorems state that in a theory allowing the
construction of a conserved and Lorentz-eoUariant charge
current, no massless charged particles with spin greater
than —,

' exist and that in a theory allowing the construc-
tion of a conserved and Lorentz-couariant energy-
momentum tensor, no massless particles with spin greater
than 1 exist. We next give the number of nonvanishing
form factors in the event where the particle is a massless
CPT eigenstate, such as the photon, the graviton, and the
massless gravitino.

If the underlying theory is CPT invariant, the nonvan-
ishing form factors of a massless generalized Majorana
particle coupling through a symmetric and conserved
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tensor current to a spin-S boson satisfy

QJ J(q, k, —,'k)=( —) QJ ~(q, k, —,'k),

Q~z(q, k, v)=( —)
+"+ c*(q,J)c(q, —J)

XQJ J J(q, k, k —v} .

(iv) If S is even and J =0 or 2J & S, the number of form
factors is at most —,'(S+2), while for 0 & 2J ~ S it is at
most

(S —J+2) for S even, J integer,

(S —J + —,
'

) for S even, J —,
' -odd integer .

(v) If S is odd and J =0 or 2J & S, the particle has no
coupling at all to the single boson. If 0 (2J S, the num-
ber of form factors could be at most

( —,'S —J + —,
'

) for S odd, J integer,

( —,'S —J+1) for S odd, J —,'-odd integer .

Proof. Using (2.22}, (2.24), (4.3)—(4.6), we have, for the
nonvanishing form factors,

QJ z(q, k, ,'k)=—c*(q,J)(q;Jle 'T(k, —,'k)lq; —J ) =( —
) c'( q J) r)e(q, —J)rje(q, J)(q;Jl T(k, ,'k)e —'q; —J ) .

Because of Eq. (2.27), rje(q, —J)rje(q, J)=( —), leading to

QJ J(q, k, ,'k) =( ——)c'(q, J)( —
) (q; Jle 'e 'T(k, ,'k}e —'lq —J)

=( —)s+"c"(q,J)( —) (q; Jle 'T(k, —,'k)lq; —J )

=( —
) +"c'(q,J )(q;J le 'T(k, ,'k ) lq;

—J—)

=( —) "(—q;J T(k, —,'k)lq; —J),
which proves the first part of the equalities. On the other hand,

QJJ(q, k, v)=c'(q, J)(q;Jle 'T(k, v)lq; J ) =( —
) c*(q,J)(q; —Jl T(k, v}e 'lq; —J)

=( —
) +"c*(q,J)(q; —Jle 'T(k, k —v)lq; —J)

=( —
) +"+"c*(q,J)c(q, —J)( —q; JIT(k, k ——v)lq; —J & .

With these selection rules, the statements (iv) and (v) are
straightgforward to derive. We list some examples. For
S=1, we recover the theorem of Ref. 3; the massless
gravitino and the graviton, for which 2J & 1, have conse-
quently no single-photon form factors. For S =3, the
massless gravitino can have at most one form factor,
while the graviton has no coupling at all to a single spin-3
particle.

g)M'M(R)=( —)' S M M(R)

and the product of three 2)'s has the property

I dR2) ', (R)2) ', (R)$ ', (R)
1 I 2 2 3 3

Jl J2 J3 Jl J2 J3

M1 M2 M3 M1 M2 M3,
(Al)
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APPENDIX A

In order to prove (2.12), we make use of the transfor-
mation property of the various objects involved. First,
the particle states transform under a rotation R accord-
ing to (2.4). The Wigner matrices 2) are unitary and pos-
sess the symmetry

+M"M (R )+M'M (R )Rj i Rj i
M'M" f

&& ( Rq; JM"
I T, . . . , I

R—q;JM' ) . (A2)

We now expand both sides of the above equation accord-
ing to (2.10) in tensor harmonics and obtain

the integral being taken over the whole rotation group
with a normalized measure. Next, the tensor operator
transforms according to (2.7). We now use (2.4) and (2.7)
in order to relate the matrix elements of T, . . . , in two

1 /c

different frames differing from each other by a rotation R:

( q; Jmf I T;;,I
q—;JM; &
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X Q JLM '(
l Ql »LM;

LMA,

f(RQ)M M (R)R, , R, ,
M'M"LMA,

Jl '
Jg

X Q JLM
'(

lql ) &LMj . ,„(Rq) (A3)

Q
L

(l l)
— y (

)m+M" —J
M'M" m

J L J
—M" —m M'

x Q
™~(lql)

over the whole rotation group and make use of (Al).
This leads to the factorization property (2.11) with the re-
duced matrix element Q JL( lql ) being defined as

On the right-hand side, one can now replace
PLM, . . . , (R q) using Eq. (2.9) by the quantitiesLMg

1

PLMJ . . . , (q). This enables us to compare theLMJ
1

coefficients of 5'LM on both sides of (A3). We thus find
that the form factors possess the property

Q JLM (lql)= X &M"M (R)+M (R )+M'M(R)
M'M"m

X Q
xM"M'(

lql )

which can be rewritten using the symmetry properties of
the 2)'s as

M'M" m

X2) M(R )

XnM, M (R)Q J', ™(Iql).

As a final step, we integrate both sides of this equation

a quantity only depending on J, L, and A, . This proves
the expansion (2.12).

APPENDIX 8

Here we show that the tensor spherical harmonics of
rank k constructed in Sec. III, reduce for k =1 and 2 to
the ones constructed with the help of the operators q and
V. First, we derive two useful recurrence relations
between the Wigner functions dMM (8)—iJ 0—:(LMle ' lLM'). Define the operator

d M
j+—— + . +M'cotO

dO sinO

Then the following equation holds:

j+dMM, (8)= + &(L+M'+ 1)(L + M')dMM +) (8) . (B1)

To see this, we apply the operator (d/dO+M/sinO) to
dMM and obtain, as a result,

(LMle ' ( iJ )—lLM')+ . (LMlJ, e ' lLM')
sinO

=(LMle ' ( iJ~)l—LM')+ . (LMle ' (cosOJ, —sinOJ„)lLM')
sinO

=+M'cotOdMM (8) + (LM
l
e ' J+ lLM' ~ .

Acting with J+ on lLM' ) yields the result. Another identity we need is

1
V~ =— —(V~iq X V) =a+ Bs+

smO
(B2)

With the vector harmonics given at the beginning of Sec. IH, we obtain, using (Bl) and (B2),

&LM(q) —= —t —&LM(q) +—iYLM(q)]

—( V+i q X V ) 1'LM ( 8,$ )
1

L(L+1) 2

1 i
Bg+ . Byv'L (L +1) — sinO

' 1/2
2L+1 dL (8) iMy

4~ Mo

1

&L (L +1)

1/2 1/2
L +

[ dL (8)]eiM)g~ —+ dL (8)eiMd/~'
4m 4~

(B3)

V;QJ =(6;J—
q;g, ) (B4)

which is, up to a sign, %~M(q) for k =1. We now go
over to the rank-2 harmonics. We first note the identity

compact form as

1!(2—1)!
ELM(q) =1LM(q)

' 1/2

Vq . (B5)

so that the harmonic YLM. ;z may be written in a more To compute the tensor product V q we decompose V ac-
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cording to

V= —(V++V }v'2

and use the identities

(86)

which can be simplified by using the expressions (Bl 1):

[V8Yo~M]s
= i—&(L +2)(L —1)&2PLM —[YLM8q]s

and this gives, in view of (812),

—V+8 q= e+8 ev'2 (87}

7' (3)e —=cotOe (3e—,
A
V+8 e+ = —+2@+8q —cot8f+8 e+,

(89)

(810)

which are straightforward to derive. Using (81), (83),
(89), and (810), we find the expressions

' 1/2

V+8 YLM = &(L +2}(L—1)dM+2
4m

X e ™e+8E+ +2YLM 8q,
V+8YLM &L (L +—1)FLM(q)~+8&+

(811)

We now rewrite, using (84}, the rank-2 harmonic FLM in

a more compact form:

—V 8q=e' 86+'
2

Putting (86)—(BS) into (85) shows that the set YLM is
identical with the set PLM=VzM for k =2. To proceed
further, we need the identities

Next, we write

(814)

+(V8YLM ), ——2(V+8YL—M+V YLM+V+YLM

+V- YLM }s

and simplify using the expressions (811). One finds

(V8YLM }s &(L —1)(L +2)V 2PLM (YLM8—q)s

To rewrite the tensor YL~. ,
- in a compact form, we use

the commutation rule which is valid at q,

[V;,VJ]=g;V, —q&V;,

and obtain

1

v'2(L —1)(L +2)
X {[(V+q)8 YLM ],

&L (L—+1)YLM(q)V8q] .

Y1 1
(V+q)YtM s&2(L —1)(L +2)

(812) +&L(L+1)YLMV8q .

where the subsript s stands for symmetrization. We
decompose V according to (86) and express YLM in terms
of YLM. This leads to

+(V8YLM)s=
2

(V+8YLM V —YLM }s

(V+YLM V —YLM)s

By substituting this expression in (814), we obtain

i+
~L'M = &LM

We finally point out that the repeated application of (Bl)
gives a simple derivation for the Wigner matrices being
expressed as usual by the Jacobi polynomials.
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