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We present an analytic variational method in 3+ 1 dimensions for Hamiltonian lattice gauge
theory. This method is based on Batrouni’s mean-plaquette method and Robson’s plaquette space
integration. The Abelianized Bianchi identities are used and a detailed study of the number of iden-
tities that are needed and the validity of this approximation is given. The variational vacuum we
use is the product of single-plaquette wave functions. The gauge group we consider here is SU(2),
but the method is valid for any gauge theory. We apply this method to calculate the 0" * glueball
mass, and, in addition, the results of the string tension (scaling is observed) and its roughening tran-

sition are presented.

I. INTRODUCTION

It is strongly believed among physicists that quantum
chromodynamics is the underlying theory of strong in-
teractions. This theory exhibits two distinctive features.
At short distances it is asymptotically free;' the effective
coupling constant is small, and thus the interactions can
be analyzed using perturbative methods. This feature has
made possible the explanation of the approximate scaling
seen in deep-inelastic scattering of leptons on hadrons,’
and many other confirmations of perturbative QCD cal-
culations at high energy. On the other hand, the theory
exhibits confinement.!> At large distances, the effective
coupling is large which prohibits the use of perturbation
theory. Several nonperturbative approaches have been
utilized to study this complicated low-energy region of
the theory, among the most successful is lattice gauge
theory.® Two different methods are used in lattice gauge
theory. (a) Numerical simulation. Various Monte Carlo
techniques have provided many indispensable results,*
partially clarifying the dynamics of the theory, and giving
numerical values of different physical quantities. Howev-
er, these studies cannot yield an understanding of the im-
portant field configurations that contribute to the physics
of the problem at hand, such as the vacuum structure
which is believed to be responsible for confinement and
chiral-symmetry breaking. In addition, inclusion of the
dynamical fermions and problems related to finite-size
effects require prohibitively long CPU time, which some-
times forces severe approximations.’ (b) Analytical
methods. These are divided into two categories: (i)
strong-coupling expansion® (SCE) and (ii) variational
methods in the Hamiltonian formulation.”® In the form-
er, one starts in the strong-coupling regions and develops
a perturbation expansion in 1/g; then the Padé approxi-
mation techniques are utilized to extrapolate to the
weak-coupling region. Although this method has re-
vealed several important results and provided the test
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ground for other techniques, it becomes questionable in
the weak-coupling region. Moreover, the existence of
transitions such as the roughening transition prevents
this method from making reliable conclusions beyond the
transition coupling. On the other hand, variational tech-
niques in the Hamiltonian formulation of lattice field
theories avoid these drawbacks; they are suitable to study
the dynamics over the whole range of the coupling con-
stant (even in the presence of transitions), they provide
considerable information about the important gauge field
configurations, thus a better understanding of the physi-
cal phenomena, and at least for the gauge sector (as will
be shown in this paper) analytical solutions are possible.
The variational methods however have their own prob-
lems. They can only predict estimates of the various
physical quantities (uncontrollable errors) and they are
very complex. The first of these problems can be circum-
vented by changing the trial variational wave functions to
include higher correlations. The second problem has
driven some researchers to perform the calculations in
2+1 dimensions.”® This is because, in 2+ 1 dimensions,
one can transform the multidimensional integrals in link
space to an integral in plaquette space, and the Jacobian
of the transformation is the identity (this transformation
is needed since the trial wave functions are functions of
the various plaquettes). Thus the different matrix ele-
ments involved become essentially one-dimensional in-
tegrals.

In 341 dimensions, however, the Jacobian of the
transformation is the lattice Bianchi identities, which set
in correlations (actually, the major source of plaquette
correlations comes from the Bianchi identity) between
the different plaquettes and thus prevents an exact solu-
tion.

In this paper, we will present an analytic variational
method in 3+ 1 dimensions for Hamiltonian SU(2) lattice
gauge theory.® This work is based on Batrouni’s mean-
plaquette method'® and Robson’s plaquette space integra-
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tion.!" The trial ground state used is the product of

single-plaquette wave functions, and the Bianchi identi-
ties are expanded in terms of characters of the group rep-
resentations. A systematic study of the number of Bian-
chi identities needed and the convergence of the above
expansion will be given in Sec. II. In Sec. III we present
the analytic solution and apply it particularly to calculate
the ground-state energy density, the string tension, and
the roughening transition. In Sec. IV we apply this
method also to calculate the 07 * glueball mass and final-
ly Sec. V is devoted to conclusion and discussion.

II. SYSTEMATIC STUDY OF PLAQUETTE SPACE
INTEGRATION

In this section we will review the transformation from
link space to plaquette space, and then present a detailed
analysis of the number of Bianchi identities that are
sufficient for convergence. Although the work done here
is in the Hamiltonian formalism for SU(2) lattice gauge
theory, these techniques are easily extendable to the La-
grangian formalism and to any gauge group. The
Kogut-Susskind Hamiltonian'? for the SU(2) gauge group
is
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where a is the lattice spacing, g is the bare coupling con-
stant, U, is a SU(2) matrix associated with the plaquette
p, and E[ is the color-electric-field operator which
satisfies
,ra
[Elg’ Uk']=8kk'7Uk > (22)
where 7° are the Pauli matrices.

For the trial ground-state wave function, we use the
product of single-plaquette wave functions

®y=exp (A 3 trU, ]= I1 exp(AtrU,) , (2.3)
) P

where A is a variational parameter. This wave function is
exact in the strong-coupling region and it has been ar-
gued that it is reasonable in the intermediate coupling
since the magnetic fluctuations of the ground state are
quite localized."?

Since the physically relevant states are those which are
gauge invariant, the various observables are functions of
the traces of the different kinds of plaquettes. Therefore
when calculating the different physical quantities, one
needs to evaluate integrals of the form

[ by w'w,ow,wu,)
[ipuw'w, wu,)

where O(U,) is the physical observable in question and
[DU,] is the Haar measure in link space. This integral
form is quite similar to those evaluated in the Lagrangian
formulation of lattice gauge theory, except for the fact
that the Haar measure here is defined over the three spa-
tial coordinates rather than the four Euclidean space and

(o(u,)=

) (2.4)
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time coordinates. A transformation from link space to
plaquette space is clearly desirable, since it renders the in-
tegrand above to depend on the same variables. The first
step toward this was taken by Halpern,'* who construct-
ed a unique inversion 4 (F) for the potential 4, in terms
of the field strength F,, using a completely fixed axial-
like gauge in continuum gauge theories with F,, con-
strained to satisfy the Bianchi identities

I,=D"F,,=0 (2.5)

(it was pointed out by Halpern that the third Bianchi
identity need not be satisfied at all points but only at a
point z=z,), where F, =1€,,,sF*" is the dual field
strength (when fixing the gauge, A4, has two degrees of
freedom, while F,, has six degrees of freedom, thus the
four Bianchi identities are needed for a unique inversion).
Therefore in general

[D4,18(CFG)f (F,,)= [ [DF,,J8LI(F,)If (F,,),

(2.6)

where 6(CFG) is a product of 6 functions which fixes the
gauge, and 8[/(F,, )] is the & function which imposes the
Bianchi-identity constraint.

The lattice version of this method was worked out by
Batrouni,'* who transformed the measure in Eq. (2.4)
from link variables to plaquette variables, with the Jaco-
bian of the transformation being the lattice Bianchi iden-
tities. Thus

[ v, w'w, 0w, wu,)

(o(u,))=

? JELATARAY /N
[pu, 111 8(P.— 100", )0 (U, W(U,)
[pu 18P, — 19U, WU,
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where 8(P,—1) is the 8 function of the non-Abelian lat-
tice Bianchi identitiy for a given cube C. Under ap-
propriate change of variables, these identities can be
Abelianized (i.e., put in a form similar to those of Abelian
gauge groups) with the result that

6
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8(P,—1)—>8(P,—1)=5 , 2.8)

where (7p( i) are the six plaquettes forming the cube C
and the orientation is assumed to be taken into account
properly. Notice that in Eq. (2.7) the Haar measure is
defined in three spatial dimensions, so that the above
Jacobian is the three spatial components of the lattice Bi-
anchi identities in the Hamiltonian formalism.

The above “Abelianizing” transformation cannot be
carried out over the entire lattice, but over a finite large
region of it. This is not a severe drawback since, as dis-
cussed earlier, the vacuum magnetic fluctuations are
quite localized, thus it suffices to work in a local region
where the Bianchi identities are Abelianized and to
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neglect the non-Abelianized identities since they usually
occur in several lattice spacing units away from the local
region (we shall justify this assumption below). This
property permits the use of a small number of the Bian-
chi identities (small number of boxes), which in turn
makes the calculation manageable. Robson!! used this
fact and used a character expansion of the identities and
of the wave function to obtain an analytical method.
Here we shall modify this method using the mean-
plaquette approximation of Batrouni'® for the gauge
group SU(2), and compare its convergence to that of
Robson. The SU(2) group structure is simple. Matrix
elements of SU(2) can be parametrized as

L
2

where 7 are the Pauli matrices and n is a three-
dimensional unit vector. The character of the jth repre-
sentation, denoted by x;(U, ), is

U, =cos | & | —in-rsin : (2.9)

j sin[(j +1)p]
> exp(imp)=———z—p—-

x;j(U,)= (2.10a)
m=-—j vl
sin | 2
with the properties
depXj(Up Xi(U,)=8;, (orthonormality),
(2.10b)
itk
Xi(Ux(U)= 3 xm(U,). (2.10c)
=1j—kl

The trace of a plaquette is taken in the fundamental rep-
resentation. Thus

trU, =¥, »(U,)=2cos [% 2.11)

Inspecting Eq. (2.7), one can see that in the second equali-
ty the Haar measure and the wave functional are both in-
variant under the similarity transformations

'
U,—-vu, v,
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where V' E€SU(2). Using this, the Abelianized Bianchi
identities can be written as a series of separable products
(using a character expansion for the identities and the
Gross-Witten trick):

8(P,—1) —2(2 +1) ﬁxj(U,,,), J=0,11,...
1 6
:H_?m ir=11Xj(Upi)
J=L1,3,.... @12

The plaquette space integration method can be summa-
rized as follows: starting with Eq. (2.7), keep a few num-
ber of Bianchi identities and character expand each of
them as done in Eq. (2.12). A similar expansion is used
for the trial vacuum and then the integration is carried
out. We will first examine the expectation value for an
elementary plaquette, using the trial vacuum (2.3):

JEOLATALY WU, [T 8(P, —

[1pU, W', wwu,) 18P, —1)

Xl/z(U

(trUp>*

(2.13)

The questions to be addressed now are as follows. Ac-
cording to the above discussion, it suffices to include only
a few number of Bianchi identities in order to obtain the
correct value for (2.13). But how many identities are
sufficient? Also if one uses Eq. (2.12) to expand these
identities, at which value of j should one truncate?

To answer these questions, we start first with two Bian-
chi identities and study the convergence of the expansion
(2.12), then the number of identities is increased to twelve
and a similar convergence test is applied. Finally we use
the mean-plaquette method for the above two cases and
we compare to known Monte Carlo simulations for the
12 Bianchi identities case. Keeping two Bianchi identi-
ties [Fig. 1(a)] in Eq. (2.13) we have

11 1 6
J @Y, |33 s g 4, U X0, Uy, | T, Uy, Hx,z o) |40, ) 1T exp2nteU, )
<tl’UP>_ 12 0 " . m=1
v, (U, i, (U, ) (U, (u,) Hexp(zxtru )
f [H %E (2j;+D* (2j,+1)* X' T Xy’ Oy I<I_=Iz)(1l o ‘}LXJZ o ] m=1

To evaluate the right-hand side of Eq. (2.14) notice that,

apart from the measure and the factor exp(2A trUp ), the
m

numerator and the denominator are powers of the
different characters, and thus different powers of trU,.

On the other hand, notice that, in 2+ 1 dimensions,

dep(trUp Jexp(2A trU,,)

(t,)=(try,) =

[ dU,exp(2r trU,)
=3 T an 2.15)

(2.14)

[

where I, (41) are the modified Bessel functions of order n.
Differentiating this continuously with respect to 2A, one
obtains the expectation values of the various powers of
trU,. Itis therefore straightforward (but cumbersome) to
evaluate Eq. (2.14); this is done in Appendix A.

To study the convergence when j is truncated at some
value, we define the quantity B:

(0(U,))p—(0(U,)),p

B
(o (U,))ap ’

(2.16)

where the subscripts 2D and 3D denote the expectation
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(a) (b)

FIG. 1. A plaquette with (a) two Bianchi identities and (b)
with twelve identities.

values in 2 and 3 dimensions, respectively.

It is clear from Eq. (2.16) that B signifies the effects of
the Bianchi identities; therefore, we can study the conver-
gence of the expansion (2.12) in j by calculating B for
different j values (for a fixed number of identities). B vs A
is plotted in Fig. 2(a) for different j values, where one can
see clearly convergence occurring at j=1 for most of the
A range (this range corresponds to 0.1 <1/2g2=<0.5). A
similar curve is shown in Fig. 2(b), where 12 Bianchi
identities are included [Fig. 1(b)]. Again here one can see
that convergence is excellent for j=1 in the interesting
region of the coupling constant. Shown in Fig. 3 is a
comparison for j=1 for the two B curves in Figs. 2(a) and
2(b) (i.e., for 2 and 12 identities, respectively, and also 12
identities using the mean-plaquette approximation; see
below). Clearly the difference is pronounced, and the
question of a sufficient number of identities is yet to be
settled. Instead of increasing the number of identities we
shall now apply the mean-plaquette approximation and
compare it directly to our previous Monte Carlo calcula-
tions.'® The mean-plaquette approximation'® is obtained
by replacing the surface plaquettes in Eq. (2.13) by their
expectation values:

X;j(U,)=U,;[$trU, 1> U, [1{trU,) ],
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FIG. 2. (a) The B curves of the expectation value of a pla-
quette with two Bianchi identities. (b) The same but with 12
identities included.

where U,; is the Chebyshev polynomial of the second
kind, and the integration in (2.13) is done then only over
the internal plaquettes. The result of this calculation is,
for the two-box approximation,

’

|
1 5 5 .
U3; (LP(AM)U3; (LP(M)IN(jy,jysA)
j,%(z]l+1)4(2]2+1)4 2j V2 2j,\2 J15J2
P(A)= 1
U3, (LPOOU3; (AP(A)IM (j3,jas))
1-321'4(21'3+1>4<2j4+1>4 20 s T3
where
Jyti,
M(j,j»A)= 3 2k +1)y (41)
k=1j,—Jj,l
and
I\t j+k

NGpnjinA=3 3 s

J k=liy=iyl lp=1j—kl

and, for the 12-box approximation,

(2j + 1), (4108, 3

(2.17)
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1 1
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Rj,inMPM]= 22 213[ P(M]Uzj [3P(MIN[j1,i3AIN i jaA] - (2.18)

We leave the derivation of Egs. (2.17) and (2.18) to Appendix A as well.

Using Eq. (2.17) for the expectation value of trU,, B is plotted in Fig. 4 for different j values and using 12 Bianchi
identities, where again convergence is seen to occur at j=1. Figure 3 compares the different B curves including two
identities, 12 identities, and 12 identities using the mean-plaquette approximation. It is clear that the latter approxima-
tion is better than the other two (remember that B indicates the difference between the expectation values in 3+ 1 and
2+1 dimensions). To confirm this, we compare in Table I the expectation value of an elementary plaquette using 12 Bi-
anchi identities in the mean-plaquette approximation with our Monte Carlo result.!® We also compared these results
with the exact calculation of Chin et al.!” (not shown in the table); the agreement in both cases is excellent.

We have carried out this analysis one step further, by looking at the expectation value of a planar extended plaquette
containing two elementary plaquettes. In this case the proper number of identities is four for the first approximation
(two on the top and two on the bottom to cover the two elementary plaquettes), and then 20 identities to cover the
above four. For the 20 Bianchi identities, the expectation value of the extended plaquette using the mean-plaquette ap-
proximation is

(tr(U, U, )

2333 ([I Q)+ 1" MUj MM s jas MING G o AN U MIS 00 d 10 d s M POOIQ L 1520 d v das A POV
N SR Ul I
2 4 )
2333 [ I1 2) +‘1)— NUdo AN i AN d 0 A N das MS g d 3 d s M PO s Jasd3sjan ks POA)]
ARV
(2.19)
where

s Ul [4P(V)]

——  |N[j,k,A
ky kg ,I=I\ (2ki+1)4 vk Al

SljvsipiziasrP(M]=3
K

1k

2
XN[j2’k2’)"]N[j3’k37A]N[j47k4’}‘]N[kl’k2’)"]
XN[k3yk4’}"]N[kl’k39k]N[k27k4y)\-] ’

2 ngl[—é-P()b)]
TluinhPM]=3 3 | 11

- ok |NUnkoAIN G ko AN TRy kg 2]
1 Ky =1 i

and

Q[j],jz,j3,j4,)\.,P(}\.)]=T[j1,jz,A,P(}»)]T[j3,j4,}\-,P()»)]T[j],j3,)\,P()\)]T[j2,j4,}»,P()\.)] .
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FIG. 3. A comparison between the B curves of 2 and 12 iden-
tities, and 12 identities with the mean-plaquette approximation.

In this case we also find that j=1 is the appropriate
cutoff in (2.20). Figure 5 shows the B curve for the cases
of four Bianchi identities without using the mean-
plaquette approximation, 20 identities without using the
mean-plaquette approximation, and 20 identities with the
mean-plaquette approximation. A similar behavior to
that of the expectation value of an elementary plaquette
is seen here, which indicates that the latter approxima-
tion (20 identities with the mean-plaquette approxima-
tion) is sufficient. This has also been confirmed by com-
paring it to our Monte Carlo calculation.'®

Let us now summarize this section and discuss a few
important points. The expectation value of any plaquette
can be calculated to a very good accuracy by covering
that plaquette with Bianchi identities (two in the case of
an elementary plaquette and four for the planar extended
plaquette discussed above). These identities (boxes) in
turn should also be covered completely with Bianchi
identities (thus resulting in 12 identities for the elementa-
ry plaquette and 20 identities for the planar extended pla-
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FIG. 4. The B curves for 12 identities using mean-plaquette
approximation.

quette). The mean-plaquette approximation is then uti-
lized by which all the surface plaquettes are replaced by
their expectation values and the integration is only car-
ried out for the internal plaquettes (this results in a self-
consistent solution for the expectation values). We have
shown in the various examples worked out here that it
suffices to truncate the character expansion of the identi-
ties at the adjoint representation for SU(2). The excellent
agreement with Monte Carlo calculations shows that
neglecting the non-Abelianized Bianchi identities is
justifiable, and that in turn is more evidence of the local
nature of the ground-state magnetic fluctuations.

Finally, examining all the B curves presented in this
section one can see a clear systematic behavior of B as a
function of the variational parameter. At small A (strong
coupling) it approaches zero as it should, since in this re-
gion plaquette disorder dominates (here the correlations
set in by the Bianchi identities vanish; this agrees with
Batrouni’s'® conclusion that the strong-coupling expan-
sion can be seen as a gradual restoration of the Bianchi

TABLE 1. A comparison between the results of our analytic method and the Monte Carlo simula-

tion reported in Ref. 16.

2A Analytical calculation Monte Carlo simulation
0.197(1) 0.195871 0.1964(08)
0.262(1) 0.259291 0.2592(08)
0.326(1) 0.320871 0.3194(08)
0.393(2) 0.384 410 0.3848(08)
0.453(2) 0.440293 0.4404(08)
0.516(4) 0.498 193 0.4970(10)
0.583(4) 0.558514 0.5572(12)
0.646(3) 0.614 177 0.6116(12)
0.699(3) 0.660 372 0.6632(12)
0.763(4) 0.715391 0.7140(14)
0.893(8) 0.824 369 0.8148(14)
0.996(5) 0.907 089 0.9056(16)
1.091(7) 0.980752 0.9810(16)
1.186(7) 1.050616 1.0516(24)
1.385(5) 1.181302 1.1830(10)
1.554(5) 1.272 673 1.2770(10)




41 ANALYTIC VARIATIONAL METHOD FOR HAMILTONIAN . ..

B T I T { T I T ‘ T | T l T [ ﬁ‘ T T l T [ T I T ‘ T [ T [
0.21F 20-Bianchs identities —
o with mean plaquettes 20~B|anch| identities Zl
- without n_plaquettes 3
F -
017 =
:_ 4-Bianchi identities —:
0.13 F without mean plaquettes =
E 3
0.09:—— -E
= =
0.05— —
0.00[ -3
P A O VI I N S I IS T SN N PO P
0.1 04 07 1.0 1.3

A
FIG. 5. The different B curves for an extended plaquette de-
scribed in the text.

identities). As A increases (intermediate coupling), the B
curves rise rapidly (signaling correlations due to the Bian-
chi identities) until they reach a maximum which is fol-
lowed by a decline at about A=0.9 (or 1/2g*=0.38) in
the weak-coupling region. This last fall off indicates a
poor trial vacuum in the weak-coupling region; a problem
which has been reported by several authors.”!® Never-
theless, from the B curves presented here one may con-
clude that the trial vacuum may be adequate in the scal-
ing region (intermediate coupling). This problem will
arise later in the next sections and we will have more to
say about it there.

III. APPLICATIONS
A. The static quark-antiquark potential

In this section we will apply the methods developed in
the previous section to various physical quantities. We
start with the static quark-antiquark potential. Some of
the results of these calculations have been reported else-
where;!” however, here we shall display the details of the
calculations.

The emergence of the flux-tube picture, as a physical
picture of confinement (i.e., the flux between a quark and
an antiquark is confined in a tube) has triggered several
studies to understand their dynamics. Analysis of the dy-
namics of structureless tubes (strings) in the long-
wavelength regime revealed that the heavy-quark poten-
tial has, in addition to the linear confining term, power
corrections (due to the zero-mass fluctuations of the
string),

V(R)=aR +B+yR'+0(R7?),
where y is a universal constant depending only on the
space-time dimension. Another important result due to
these massless modes is that the string is delocalized
(roughens in the long-wavelength limit). On the lattice,
Kogut et al.? investigated the heavy-quark potential and
the string dynamics by considering off-axis strings. Their
study has yielded the following results: (a) The off-axis
strings are rough for all couplings (i.e., the string experi-
ences unbounded transverse fluctuations); (b) similar to
the continuum case, the potential has power corrections
due to the absence of a mass gap in the string’s spectrum,
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and the Coulomb term has a universal coefficient; and (c)
roughening occurs when the kink mass (the energy
difference between a straight string and a string with a
transverse link) vanishes, at which point the equipoten-
tials are (essentially) spheres. It is important to notice
that these conclusions are drawn from analyzing the off-
axis strings; the on-axis case does not yield, for example,
a smooth crossover to the continuum limit due to the ex-
istence of two different phases: for g > gy the string does
not fluctuate and for g <gp the string fluctuates and
starts resembling its continuous analog. These analyses
were carried out using the strong-coupling expansion.
Another important result of this calculation was that the
roughening transition occurred in the weak-coupling re-
gion, in contrast with the Lagrangian calculations which
predict roughening at intermediate couplings (thus mak-
ing it difficult to predict the continuum physics in the
string sector). Using variational techniques in 2+1 di-
mensions, Tonkin® analyzed the heavy-quark potential
and calculated the string tension using different vacua. It
was shown there that the equipotential surfaces remained
smooth even after the roughening point in contrast to the
strong-coupling results, due to the fact that the vacua uti-
lized in the calculations are nontrivial. Here we shall car-
ry out a similar analysis in 3+ 1 dimensions using the
methods developed in Sec. II.

An operator which describes a heavy quark (g)-
antiquark (g) pair which is invariant under the general-
ized color rotations

S Ef(n)— 3 E{(n)+¥(n) - W(n) (3.1)
k k
is
w*(m[ I U ]\l’(n—i-R), (3.2)
k €path
where the path extends from n to n+R but otherwise ar-
bitrary. Therefore, a gauge-invariant ¢q state in the pure
gluon background can be written as
¥'(n) [ I U ]\wn+R>l¢0>l>F ,

k Epath

(3.3)

where |) is the fermion vacuum, and |¢,) is a pure
gluon vacuum for which we choose the single-plaquette
product of equation (2.3). It is clear from Eq. (3.3) that
the Hilbert space of these states is infinite, so we shall as-
sume the following simplifications [placing g at the origin
and g at the site n=(n,,n,,n,)]; the paths of Eq. (3.3) are
chosen to be the shortest paths connecting the origin o to
n, as suggested from strong-coupling perturbation, and
further we will restrict § to the xy plane. With this
choice for a given path containing n, +n, links, the di-
mension of the subspace is (n, +n,)!/n, !n!. The heavy-
quark potential is the difference between the ground-state
energy with gg pair present and the vacuum energy. Let
the ith state denote the various states of Eq. (3.3):

i) =W'(n,,n,)F,%(0,0)|¢)
Fiz H Uk ,

k € path 1

(3.4)

where U, is the kth link in the path i.
Then we need to calculate {i|H|j) and (i|j). The
magnetic term contribution is
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(i

> (2—trU,) ‘j
)

- 1
AT =2N,((F[F)) =

=< S @2—trU, )>(tr(F,~*Fj)
P

2

L2 (utEE) )—<2trU>(tr(FF))

a (tr(FTF ), 3.5)

where we divided by {,|¢,) for convenience and the expectation values of the various terms are taken with respect to

|$o). The contribution of the electric term is
(i| 3= st )
k a =_3_)\'
(doldo)

where C;;(n,,
Appendix B. Thus

2 9r

CGilaH|j) _ . |3A _ t
AT, N 8¢ 4¢ |P(MCr(FF;)) + 16§

where the first term is just the vacuum contribution.
Thus

R
Vij(ng,n,)= —(tr(FF )

16§ %
o U

+ 32§[n +n,+Cy(n,n,) N te(FF;))

(3.8)

are the matrix elements of the static quark potential. The
states of Eq. (3.4) are not orthonormal:

Cilj)
(Woltho)

We need to diagonalize M;; to find the lowest-energy ei-
genvalue. To do so, we use the Schmidt orthogonaliza-
tion method, which gives the orthonormal set

=(trF/F,)=M,; . (3.9)

lk)Y=(SD V%), li), (3.10)
where
s'™Ms=b . (3.11)

S is a transformation which diagonalizes M, and D is the
resulting diagonal matrix. Thus the matrix elements of
the gg potential in this new orthonormal basis are

e =(D 71281, V,.(SD 12, (3.12)

The lowest eigenvalue obtained by diagonalizing (3.12)
yields an upper limit on the ground-state energy of the ¢g
state.

In calculatmg matrix elements of M and ¥, the quanti-
ty {tr(F; F;)) must be evaluated for all i and j. For ex-
ample, when n,=2, n,=1, and C;=1, one needs to
evaluate the expectation value of the diagram shown in
Fig. 6. In general, to obtain these matrix elements we
need to calculate the expectation values of planar extend-
ed plaquettes (planar since ¢g are in the xy plane). Using

R FIF) >+<21ru><tr(F*F)>

+
[nx+ny+C,-j(nx,ny)](tr(F,-Fj)) , (3.6)

n,) is the number of common links between F; and F;. The derivation of Egs. (3.5) and (3.6) is given in

__(tr(FTF ))+—§E[n +n,+Cn,,n,) [(t(FJF)))

(3.7

[

the Gross-Witten trick?! for a generalized extended pla-
quette,

<tr >=—%<H(trUi)>,
2 i=1

the calculation of these terms reduces to calculating the
expectation values of various products of the traces of
elementary plaquettes, which is done using the techniques
developed in Sec. II. The variational parameter A is deter-
mined by minimizing the ground-state energy

v (3.13)
i=1

1 (\I’oiaHN’o> 3}»
="~ = —4£ |P(M)+8 (3.14)
a8 N, (Wol¥,) 3 5| §
which yields
2o 3 | P 3.15
& 128 | 4P'(A) Ml 3.15)

where the P(A) is the expectation value of an elementary
plaquette, which is also calculated using the method de-

FIG. 6. F'F, forn,=2,n,=1,and C;=1.
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scribed in Sec. II. The resulting ground-state energy den-
sity [Eq. (3.14)] is shown in Fig. 7. We have compared
this result with those of Refs. 16 and 17 (Ref. 17 contains
the exact calculation of the ground-state energy using a
Monte Carlo guided random-walk method developed for
quantum many-body problems). The agreement is excel-
lent in both cases (in fact we reproduce the values of Ref.
16 to about 0.1% through out the range of the coupling
constant, and similar deviations from the values of Ref.
17, for which at worst we differ by 2% in the last two cal-
culated energies). In addition, we have compared our
calculation with the mean-field Monte Carlo calcula-
tion,?? and the t-expansion results.?® It is instructive here
to compare our method with the somewhat similar
analysis of Ref. 22. In the mean-field method,?? two ap-
proaches are taken to evaluate the relevant physical
quantities. The first approach entails calculating expecta-
tion values of the relevant operators by directly evaluat-
ing Eq. (2.4) of this paper, using known Monte Carlo
methods. Our calculated energy agrees well with the re-
sulting energy of this approach (in fact, our energy is
lower in the intermediate coupling region). In their
second approach, the mean-link method, the physical
states are taken to be projections on the gauge-invariant
sector of a generalized functional of a product of links
over the whole lattice. This projection entails the intro-
duction of SU(2) rotations on the vertices of the lattice.
The partition function is obtained from the normalization
of this wave function, and the link wave function is then
expanded in characters of the group. The integrals in-
volved are thus carried out in link space, and over the
vertices functions. This method differs in two aspects
from the one presented in this work. First, our integra-
tion is carried out in plaquette variables (rather than
links), the Jacobian of the transformation from link space
to plaquette space is the (nonlocal) Bianchi identities in
Eq. (2.7). Second, we have chosen the well localized vac-
uum of Eq. (2.3) for a trial ground state. The latter as-
pect is what made the Abelianization approximation of
the Bianchi identities valid in the completely fixed axial-
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14 F 3
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FIG. 7. The ground-state energy density as a function of

E=1/2g>
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like gauge (as was shown in Sec. I, the contribution of the
non-Abelianized identities are negligible; a result which is
related to the choice of the vacuum). This in turn
preserved the local nature of our integrals. The Bianchi
identities due to this approximation are then expanded in
group characters of the appropriate plaquettes; thus mak-
ing the analytic solution possible. However, the mean-
link approach of Ref. 22 does not utilize such approxima-
tions; this rendered the symmetry of their partition func-
tion that of a global SU(2), which produced (as expected)
a phase transition in the calculated 8 function. In addi-
tion, because of the large number of configurations need-
ed, the icosahedral subgroup of SU(2) was used, which, as
was shown there, starts deviating from the continuous
SU(2) in the weak-coupling region. The question remains
however that, in our approach, if one uses a different vac-
uum, as possibly required in the deep weak-coupling re-
gion, whether the Abelianization approximation is still
valid. We shall elaborate on this point in the discussion
section. Our calculated energy agrees well with the -
expansion result of Ref. 23 in the intermediate coupling
regime. However, their calculation becomes unreliable in
the weak-coupling regime (£20.5) for the particular
terms in the expansion they have considered; a possible
cure for this problem is to include higher-order terms in
the expansion, which proved to be difficuit.

Using the procedure described above, we calculated the
static quark potential, the results of which are shown in
Fig. 8 for the separations (n, = l,ny=3), (n,=2,n,=2),
(n,=2,n,=3), and (nx=3,ny=3) as a function of
E=1/2g { From the static quark potential, we can locate
the roughening point by studying the equipotential sur-
faces as a function of £ Our calculation! yields
&r =0.26 and the equipotential surfaces remains smooth
up to £=0.32 at which point they start to distort (this is
again due to the breakdown of the trial vacuum we used
in the weak-coupling region). The smoothness of the
equipotentials beyond the roughening transition is a re-
sult of using a nontrivial vacuum (as pointed out by Ton-
kin®), in contrast with SCE calculations. This can be
seen from Eq. (3.3) where in the strong-coupling limit
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FIG. 8. The static potential for the configurations shown.
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(A=0) the vacuum becomes rigid unlike the general case
(A#0) where magnetic fluctuations are permitted, and
gluon condensate is present (gluon loops), thus stabilizing
the behavior of the potential. Our result for £ is con-
sistent with the Lagrangian Monte Carlo calculations of
Ref. 24 (£ in the present calculation is slightly higher
than that of Ref. 24; this however can be understood if
we recall that the coupling constant in the Hamiltonian
formalism is slightly smaller than its counterpart in the
Lagrangian formalism), but £ calculated here is smaller
than SCE value, in agreement with Tonkin’s conclusion.

Another important quantity that can be extracted from
the heavy-quark potential is the string tension, shown in
Fig. 9 along with the expected scaling line. Scaling be-
havior is strongly suggested by the figure yielding

Ay =0.009V0o , (3.16)

where o is the string tension. Using this value with the
predicted string tension in the Lagrangian formalism,?

A; =(0.0119+0.0015)V 5 , (3.17)

we find that

A
H —0.76+0.11,
L

in accordance with Ay /A; =0.84 obtained by Hasen-
fratz and Hasenfratz.® It is interesting to see whether
scaling will be faster if a more complicated vacuum is
used (e.g., two plaquette correlations included). This cal-
culation is presently underway.

B. The glueball mass

The results shown in Sec. IIT A indicate that the trial
vacuum we have chosen is reasonable in the intermediate
coupling region (the scaling region). In this subsection
we turn to investigate the excited states, and in particular
to calculate the 0" glueball mass which represents the
energy difference between the lowest excited state and the
ground state.

Here also we shall use the single-plaquette-product for
the ground-state wave functional, Eq. (2.3), and for the
trial lowest excited state we use a projector including

]

MING C. HUANG AND MOHAMMAD W. KATOOT 4

—

AR R R R R R R A R R R AR RN N

_D
o E
21 o 3
C o 3
r o -
1.8 o 3
r o .
- o -
- o =
15— o -
{Ga — % =
. o 3
1.2 nn -
r o -
09 | 3
;‘ Roughening -
0.6 — transition —
_:__ point s

cbo bbb bbb b bbbt b oy by by bbb b1t
0.11 0.15 0.19 0.23 0.27 0.31
3

FIG. 9. The string tension as a function of the coupling con-
stant. The solid line is the expected asymptotic scaling line.

correlations up to two adjacent plaquettes. The choice of
the latter stems from the fact that simple plaquette pro-
jectors were not sufficient to produce scaling of the glue-
ball mass in recent Monte Carlo studies of SU(N) done
by Chin, Long, and Robson,'? even for N=3.

The excited-state projector is

l¢,)=Fl¢y), F=F—(F), (3.18)

where (F) is the expectation value of F with respect to
the ground state |¢,), and

1
sz/—_ﬁ; Bl§,¢1(P)+Bz%¢2(P2)+33E¢3(P3) )

(3.19)

where 3; are variational parameters, ¢,(P) is the trace of
an elementary plaquette [Fig. 10(a)], #,(P,) is the trace of
an extended planar plaquette shown in Fig. 10(b), and
#3(P3) is the trace of the extended plaquette shown in
Fig. 10(c). The expectation value of F, (F), is included
in (3.18) to ensure orthogonality of |1, to [¢).

The energy of the excited state is derived in Appendix
B, and the result is

(V,laH|W,) (3 3A 1 0., =ts
aEl[‘I’l]—W— 8—§<§trUP>+4§(2—trUP) 8_§—4§ Ea—}\ln<F F)
([EGLLESFFY  (FESIESFY  ([ESFHIESF))
+L22 [EX [~1;\~ 11 [ k~£~k 11 _ [EX ~}{[~k 1 ’ (3.20)
166 44 (F'F) (F'F) (F'F)
which implies [since the first term in (3.20) is the ground-state energy]
- —ga= |3r 4| LB (Bt
Mya=a(E,—E,) 8¢ 13 zalln(F F)
(LE{,[EZ,F'IFY (FYESIESFID E{,FIELF
+L22 [E{ [~Ifr~ 1 [ I:£~k 1] _ ([EZ ~1Ek D G321
166 %' 4 (F'F) (F'F) (F'F)
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(c)

FIG. 10. The operators used in the projector F: (a) an ele-
mentary plaquette, (b) and extended planar plaquette, and (c) an
extended nonplanar plaquette.

If one assumes that the ground state is exact, Eq. (3.21)
reduces to

_ 1 ([F'[aH,F]])

Med =37 FF)
_ 1 ((E{F')E{F)) 322
48 %% (F'F) ' ’

This clearly is the case in the strong-coupling region, but
it may not be true in the weaker-coupling regions; there-
fore, we shall evaluate the glueball mass using Egs. (3.21)
and (3.22). This will be a good test for the validity of the
trial vacuum chosen here.

Using Eq. (3.19), Eq. (3.21) becomes
Mag=—L [l é B*N. B,

g 3 g i VijPj

2 BfDiij S

ij=1

1 3
+_1.6_ > BIO;N;B;

=1
A L0
+ P 4§
X i g | L3 p s
(3.23)
and Eq. (3.22) becomes
3
3 BN
Myag=- 2 : (3.24)
> B!DyB;
i,j=1
where
N,-jz'—(1+5,-,2+38,-’3)
PP ACTHN (EEZ 40P ]> L (329)
k a P
D;j*_—(1+8,-,2+35,-’3)

X [<¢7(0)§¢,(p)>—<¢7(0)><§¢,—<p)> } ,

(3.26)
6 4 %
2;=1% 9 91, (3.27)
5.9 9
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¢,(0) denotes the trace of the ith-type plaquette at a fixed
position and the overall factor (1+6;,+38;3) results from
counting the number of the different types of plaquettes
on a lattice whose total number of plaquettes is N,. The

p
minimization condition, (3/90f3;)(Mga&)=0, yields

det| LN +LOD + % —4£2 %a%D —(M,a§)D|=0
(3.28)
for Eq. (3.23) and
det| LN —(EM,a)D|=0 (3.29)

for Eq. (3.24), the solution of which give the glueball
mass.

Since the electric field operator acts on common links,
the only contributions to the matrix elements of N comes
from connected diagrams, which include adjacent dia-
grams with a common link and overlapped diagrams.
Consider two adjacent plaquettes Upl and Up2 which

have a common link. Then
<§ 3 (B¢, NEfweT, )>

il

74
TUPI tr 5> U,

(2 )
=42(tr(T, U, ) —(trT, trT, )], (3.30)

where we used

)y

a

a a
= , = =288, B )
in the second equality in (3.30). However, using the
Gross-Witten trick,?! Eq. (3.13), Eq. (3.30) vanishes to a
very good approximation (the reason why it does not van-
ish identically is the existence of correlations due to the
Bianchi identities, which nonetheless we verified to be
negligible), thus the major contribution to N comes from
overlapped diagrams shown in Figs. 11(a)-11(d) with
their respective multiplicities.

From Eq. (3.26) it is clear that the matrix elements D;;
signify the correlation effects. In the case where either i
or j equals 1 (i.e., when an elementary plaquette is in-
volved), we have

= 19
D;;=(1+8,,+358,3) ) (6,(0)) (3.31)

When neither i nor j is equal to 1, the situation is a little
more complicated. Notice that we have three types of di-
agrams; disconnected (no common link), connected, and
overlapped. The dominant contribution to correlations
obviously comes from the overlapped diagrams. To
manage the calculation, we introduce the following ap-
proximation: to first order, approximate the correlations
between two extended plaquettes by the correlation be-
tween an elementary plaquette and one extended pla-
quette. For example, this gives, for D,,,
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D,,=2 [<¢2(0) §¢2(p)>—(¢2(0))< % ¢2(p)> ]

~4(6,(0) [<¢2(0)§¢1(p)>—<¢z(0))<2¢1(17)> |
p

~ 19
~4(¢,(0)) > 3 ($,(0))

—plo
:D22 y

where we have used the Gross-Witten trick to get the

Matrix Element Type of Duagrams Number of Diagrams
1
N
N2 4
h £§ 8
(a)
Type of Diagrams Number of Diagrams

Q;é 4
Lﬁ ’
Az |

{c)

second equality.
In general we therefore have

DP'=1(1+8,,+38;3)(1+8;,+38;5)

10
2 9A

19

X {$,(0)) ($;(0))+ >3

(¢;(0))

for i#1 and j#1. (3.32)

Since the overlapped diagrams are the dominant contri-

Type of Diagrams Number of Diagrams

(b)

Type of Diagrams

/

Number of Diagrams

A
<\ N N

NI

-
|

(d)

FIG. 11. The overlapped diagrams contributing to (a) N,;, i=1,2,3; (b) Ny,; (c) N,; and (d) N;;.
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butors to D, we calculate those exactly and add the
difference between their contribution and the approxima-
tion above to Eq. (3.32) (to a large part, the correlations
of the disconnected and connected diagrams come from
the Bianchi identities; this is clearly the case for the
disconnected diagrams), thus

D;=D{”+D}" for i#1 and j#1, (3.33)

where D,-(j” for i#1 and j#1 are displayed in Fig. 12.
The expectation values of the different plaquettes in N
and D can now be calculated using the formulas derived
in Sec. II, and in turn the matrices N; and D;; can now
be substituted in Egs. (3.28) and (3.29) to yield the
different estimates of the glueball mass. Figure 13
displays our results for the glueball mass obtained by
solving Eqs. (3.28) and (3.29) (I and II, respectively) along
with the asymptotic scaling lines (shown also in the inset
is the approximate glueball mass in units of Ay for both
curves). Both curves show an obvious tendency for scal-
ing, especially the solution of Eq. (3.28) (notice that in
both cases, the curves start diverging at £=0.3, indicat-
ing the breakdown of our approximation.) They both
coincide in the strong-coupling region, which agrees with
the fact that the vacuum chosen is exact in that regime
but scaling is faster for curve I, implying that one should
not assume that the ground state given by Eq. (2.3) is ex-
act. The approximate glueball mass obtained for curve I
is in good agreement with present predictions. To
confirm this, we have calculated the ratio R =Mg/V o,
the result of which is shown in Fig. 14. Our calculated R

oy -5 1< [EE < I -
=< gl --<CJCJ>2n
—[4<[:] >[<D >-<D><DD >1)
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*“<Dd@7>‘<gﬂ ~< [0 51
< >te W > < L7 >< /) >0

vl el e
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FIG. 12. The matrix elements D" for i#1 and j#1.
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FIG. 13. The glueball mass. The squares are the result of Eq.
(3.29), and the triangles are those of Eq. (3.30). The solid lines
are the expected asymptotic scaling lines.

displays quite well the expected generic behavior de-
scribed by Chin and Karliner.?® In particular, R starts
from extreme strong coupling with no scaling, then it ex-
hibits constancy over a reasonable range of the coupling
constant at weaker coupling, resulting in the value
R=2.86. At weak couplings the ratio R begins to
diverge due to the fact that our single-plaquette vacuum
is not adequate in this region. [Notice that this is a gen-
eral feature of many SU(N) calculations of R =Mg /V o,
as indicated by Ref. 28 which displayed various results of
this ratio starting at £=1/Ng?=0.1. At £=0.4, R for
SU(5) and SU(6) starts diverging with an identical behav-
ior to that displayed by our calculations. For SU(3), this
divergence starts at £=~0.3. Near this value the ratio R
in the present method starts diverging, indicating the
reasonability of our approximation, since at smaller N
one would expect the need for higher correlations.?’]
The value R=2.86 obtained here agrees well with
R =2.8%0.3 calculated using Euclidean Monte Carlo

simulation of Fukugita et al. 2% Moreover, this is in fair
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FIG. 14. The ratio of the glueball mass [squares from Eq.
(3.29) and triangles from (3.30)] to the string tension
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agreement with the value calculated in Ref. 23 using the
t-expansion method (R =3.51+0.2) and the value ob-
tained by DeGrand and Peterson®® (R =3.410.3). The
difference between our result and the latter two can be at-
tributed to the possibility that a more correlated vacuum
is needed in the intermediate coupling regime. We will
elaborate on this further in the discussion and conclusion
section. Using R =2.86 implies

Mg =2.86Vo ,

in reasonable agreement with the recent estimate of Berg
and Billoire’' V/o =(0.31540.030)M,.
IV. DISCUSSION AND CONCLUSION

We have developed an analytic variational method for
calculating the various physical quantities in Hamiltoni-
an lattice gauge theory, which is based on Batrouni’s
mean-plaquette approximation!> and Robson’s plaquette
space integration.'!

In the course of developing this approach, we have
shown that the effects of the non-Abelianized Bianchi
identities are negligible and that the convergence of the
Bianchi identities’s character expansion is very fast (the B
curves converged always at j=1). We have later, in Sec.
I11, applied this method to the calculation of the off-axis
heavy-quark potential. Several important results were
obtained (see Ref. 19 for details and discussions of these
results): the roughening transition point was calculated
to be £z =0.26; this value lies in a stronger-coupling re-
gion compared to that obtained by strong-coupling tech-
niques and close to the Monte Carlo estimates of Ref. 24.
In addition, the equipotential surfaces obtained remained
smooth up to £=0.32 due to the use of the nontrivial vac-
uum, Eq. (2.3). Finally, scaling for the string tension was
observed, yielding Ay =0.009V o, which was used to cal-
culate the ratio Ay /A, , the value of which agrees well
with that predicted by Hasenfratz and Hasenfratz.?¢

Next; we calculated the glueball mass with and without
the exact ground-state assumption. We have shown there
that this assumption is questionable in the intermediate
coupling region; the glueball mass curves showed a clear
tendency to scaling, and the ratio R =Mg /V o displayed
a reasonable scaling behavior, which in return gave
Mg =2.86V' 0. The ratio R is in good agreement with
previous calculations.??*3! In particular, our R value is
in a satisfactory agreement with the value obtained in
Ref. 30, and with the z-expansion calculations,?® unfor-
tunately however, the series expansion in the latter for
the string tension and the glueball mass separately do not
have enough terms to reliably calculate these quantities,
and thus we could not compare our corresponding re-
sults.

These are by no means our final results, and many
different aspects of this program need to be investigated,
in particular questions related to scaling of the glueball
mass. It is clear from Fig. 13 that the mass gap scaling is
slow. This had the effect of moving the scaling window
of the ratio R toward the strong-coupling region as seen
from Fig. 14. Calculations in 2+ 1 dimensions”? indicate
that the single-plaquette product vacuum [Eq. (2.35)]

may not be adequate in the intermediate coupling region,
thus higher correlations may be needed to overcome the
scaling problem.”? The vacuum chosen in the present
method although variational —hence permitting magnet-
ic fluctuations—has the structure of the strong-coupling
vacuum; this could be responsible for the slow scaling of
the mass gap and the relatively strong scaling of the ratio
R. As pointed out in the Introduction, variational
methods have their own intrinsic errors, e.g., they pro-
vide only bounds on the various quantities under con-
sideration. An alternative to modifying the ground state
is to modify the first excited state to include more corre-
lations for the calculation of the glueball mass, such as
done in Ref. 32, by including correlations up to four ele-
mentary plaquettes. To clearly settle the issue, one has to
perform the required calculations.

Presently, we are in the process of calculating the glue-
ball mass using a variational vacuum which includes
correlations up to two elementary plaquettes, utilizing a
perturbative expansion similar to that of Arisue, Kato,
and Fujiwaru’ (solving the problem nonperturbatively
turned out to be very difficult). In addition, an important
question to be addressed is whether the Abelianization
approximation is valid for this modified vacuum. There
is strong evidence that this is the case (as mentioned in
Sec. I, the expectation value of extended plaquettes using
the method presented here are in accord with our Monte
Carlo results; also as shown in Ref. 15, this transforma-
tion can be done exactly for a 2 X « lattice, and approxi-
mately for a large region of arbitrary lattices); however,
further considerations are needed. Although we have ob-
served scaling of the string tension using the vacuum Eq.
(2.3), it will be interesting to see the effect of this new vac-
uum described above on its scaling behavior and on the
value of V/o. Another interesting effect to be sought is
the value of the roughening point; especially whether this
“improved” vacuum pushes £ closer to the value es-
timated by SCE or further away.
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APPENDIX A

1. The evaluation of Eq. (2.14)

To evaluate the right hand side of Eq. (2.14), notice
that apart from the measure and the factor exp(2Atr Upm ),

the numerator and the denominator are powers of the
different characters. To avoid confusion, we write (2.14)
in the form

23N,
Iy Iy
(trU,))=————
g Z.EDflfz
J1 1y
where
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1 1
(2j;+1D)* (2j,+1)

11
N11]2 f I;I

1
X(trU, ) [] exp(2AtrU, )
m=1

and

b~ f [Hd

4X11(U X!z

1 1
{(2,1+1) (2j,+1)

Multiplying this by

11 11
f[HdUp,_ 1 exp(2Atrl, )

i=1

- 1 11
f lHdUpi II exp(2ktrUpm)

i=1 m=1
we obtain
23N,
iy
(trUp) —_=
22Dj,;
Jy I
where

11

)

1112 J]Jz/f [ll;l

and

Djj, =Dj,jz/f

Then it is clear that (A1) reduces to calculating (2+1)-
dimensional expectation values of the different characters
(and their powers). For example (defining P =trUp),

(A2)

11 11
IIl dUp' Hl exp(2A trUpm ).
1= m=

4Xj1( UP] )Xlz(

6 11
0| 0w || o |
6 11
H I x,(U,) [[ exp(2AtrU, ) .
=2 n=17 =1
(A1)
[
11
N(')o-——Noo/f rz[lexp(zktrUpm)
dU,trU exp(2AtrU,)
— f p P P =<P)' ’
[ dU,exp(2AtrU,)

where primes on the expectation value denote the corre-
sponding quantities in 2+ 1 dimensions; this integral was
given in Eq. (2.15).

Similarly,

Noin :Nm/z/f

= 1(p)(p?)" .

In the same way we can reduce the different terms of N’
and D’ in terms of various (2+ 1)-dimensional matrix ele-
ments of the different powers of the given characters.
Two points remain to be taken care of to complete the
evaluation of (2.14). First, when we have j =1 charac-
ters, these can be rewritten in terms of j =3 characters
using the recursion formulas of Eq. (2.10c). The second
point is that the expectation values of the different
powers of P can be obtained in terms of the expectation
value of P. To see this, notice that

11
I14v,

i=1

11
Hlexp(lk trUp,,,)

azx 9 _(p)= [de trU, trU,exp(2A trU,) [ dU, exp(2A trU, )

- [deptrUpexp(Zl trUp)] ]/

The derivations of { P )’ can be obtained from known re-
cursion formulas of the modified Bessel functions.’® Simi-
larly, the expectation values of higher powers of P can be
obtained. Using the above, one can straightforwardly
(with a bit of algebra) evaluate Eq. (2.14). The result of
this calculation for the upper limit j, =j,=1is

Nip=NyjpotNoiptNp n=
N{=No+No;+Nyp+Nj +Ny,y

ab+-—ac,

256

—21._ _ LT e dh 1)
Zo(c—a)b =17+ g (d —bla*(b — 1)
1 10
+—-1 -
6561 a (b—1)"(e —2¢ +a),

2
[du,trU,exp(2A trU,) | =(P2)'—(P)" .

[

10
a+ﬁa b,

D\, =Dot+ Doyt Dy 1 =
D,=D,y+Dy+Dy,,+D,,,+Dy,

+ L a%b—1)(c —a)

648

=2(b— 1+

1

1. __1)y10
6561 a —(e —2c+a)b—1)

If both Bianchi identities are truncated at j =1, then
N=N,,;,and D =D, ,.

If both Bianchi identities are truncated at j=1, then
N=N,,+N,,and D=D,,,+D,. Here
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1+N 1+N 2. The derivation of Egs. (2.17) and (2.18)
(trUp>3DE(trUP)2D1+D, BE 1+D_],
For two Bianchi identities, we substitute, in Eq. (2.14),
_ (2 (403
a={ul, )yp, b=(tr'U,)yp, ¢=(tr'Up)op X,(U)=Us (342U, — U (31U, ))
d=(tr*U,)p, e=(tr’U,)yp . for each of the surface plaquettes which gives

1
(2; +1)“ (2, +1)* Ul

(trUp>=fd 22

v Iy

(${trU, NU,;, (5{trT, )

1 1
(2 D2+ 1)

Xx;(U, )exp(2AtrU, /fd 7 U3, (3 {teU, Uy, (31T, ) .

Using Egs. (2.10b) and (2.10c), the integration over dU, can be done easily which yield Eq. (2.17). In exactly the same
manner, with a little more algebra, Eq. (2.18) can be obtained.
APPENDIX B

1. Derivation of Eq. (3.6)

The matrix elements of the electric term in the Hamiltonian are

<]22EfEk > Il [HdU, exp |2 |(EZEf)exp %
s s ||+ s s
:_-f [I;[dU,] Efexp 2 Efexp 3 F[F;+exp £y (EZF ) Efexp
+ |Eflexp —i— FT(E F;)exp g— +exp | = (E,fF;r)(E,‘jFi)exp g ]’
(B1)
where

i) =W'(n,,n,)F,%(0,0)| )

and, on the right-hand side, summation is implied for repeated indices. In Eq. (B1) the second equality is obtained us-
ing integration by parts and we have used

(U, 1Y) =exp(S/2), S=2A§,trU, .

For the first term we have

- [HdUl] Efexp |5 | | |Efexp |5 | |F[F; | == (Yol (Efingo) EfIngo)F]F; 99) =1 (Yol (ELE{Ingo)F/Fil 1)
1
+1 N apt a
—z-f [IIIdUI]exP 5 (E{F;)F; |Efexp |
1 S B a S
+5J [IlIdUz ]eXp = |FJ(E¢F,) | Efexp 7” (B2)

which gives, upon substitution in (B1),
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(W0l FJEFELF, 19o) = 1yl ([ E,[EL, STDFF;|4o)

exp

__f [HdUI

(B3)

-/ [IL4v E{F/)\E{F,)exp

Notice that, using integration by parts,

N |

exp;(

exp (E FT)F,- Efexp

s
2

f [Hdul

(EZEQF])Fexp | = (E;:F* ) E{F,)exp

N
2

© |

exp | = exp (B4)

=—%f|[][du, 2f[ndv,

The same procedure can be applied for the third term in Eq. (B3) which yields

[ [rl[dU,

= |FJ(E¢F)

exp Efexp %

= F( EZF;)exp | =

(ESF))VESF,)exp

N |

=__;_f[l*[IdU1]exp ] (B5)
Substituting Eqgs. (B4) and (BS5) in Eq. (B3) finally gives
(Yol FTERELF, 1) = N o (LEL,LES, S1NF]F, 1) + 1o F/LEZ,[E£, F, 11190)

+ ol EL LEL FI1IF, 19o) — Lol LEL FILER, Fil o) - (B6)

f [ I14U, ]exp

It is then straightforward to obtain Eq. (3.6) by working out each term in Eq. (B6) explicitly.
2. Derivation of Eq. (3.20)
The energy of the first excited state is

(1/11|‘1H|¢'1) — (¢1|aH|¢v1>/(¢0|1/10)
(Y19, (il 7Coleg)

ab, = (B7)

where

and

(wlllpl) A
ToaldeY (F'F) . (B9)

Using Eq. (B6), it is straightforward to obtain

| (wl‘ggfzwf ) T

10, (Fip
4§ (¢ lv)) 8§ <Et Up>__ ) akln(F F)
l_éE(F:F) 3 3 (LELLELF NP +(FIEL LB FID 24 (B FELFD
(B10)
Finally, the contribution of the magnetic term is
<¢1‘E(2—-trUp)’¢]> .
P _ . 13 st

P
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