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We describe how the technique of Fourier acceleration can be used to alleviate the problem of
critical slowing down when updating gauge field configurations in numerical simulations of a lattice
gauge theory. Problems arise in the non-Abelian theory because of gauge freedom. To solve these

requires both gauge fixing and the addition of a correction term to the updating algorithm. Some
numerical results are presented for SU(3) pure gauge theory on small lattices which indicate that
large-scale calculations in full QCD could be considerably faster using Fourier acceleration.

I. INTRODUCTION

A major problem confronting attempts to do realistic
numerical simulations of QCD using lattice techniques is
that of critical slowing down. Quantities must be calcu-
lated as averages over sets of field configurations and the
value obtained will only be reliable if sufficient uncorre-
lated measurements are made. This becomes more and
more difficult as we approach the continuum limit since
this is a critical point at which correlation lengths on the
lattice diverge and, along with them, the autocorrelation
time (on the computer) of measurements of physical
quantities.

To take advantage of importance sampling of the
Feynman path integral, field configurations on the lattice
must be generated with the probability distribution e
where S is the action. Conventional algorithms produce
these configurations one after another in computer time
by making local changes to the field. The changes tend to
reduce the action but have some noise associated with
them to give quantum fluctuations. When the action only
links fields at nearby points, the effect of changes to the
configuration at one point diffuses across the lattice with
the number of iterations of the updating algorithm. Mea-
surements made on successive configurations will tend to
be correlated if the quantity measured is sensitive to
long-distance fluctuations in the field. Unfortunately, it
is precisely these fluctuations which contain the physics
of interest in the continuum limit. If we decrease the lat-
tice spacing a (for a fixed physical volume), physical
lengths will grow in lattice units (see Fig. 1). This means
that more iterations of the updating algorithm will be re-
quired to obtain uncorrelated measurements of physical
quantities. Since the computational cost of a single itera-
tion also grows at best as the number of lattice sites V,
taking the continuum limit will prove prohibitively ex-
pensive.

Many other iterative algorithms suffer similar prob-
lems. They occur when the change of the system under
one iteration is governed by a matrix which becomes ill
conditioned. The eigenvectors of this matrix evolve sepa-
rately under the algorithm at a rate which is controlled

by their eigenvalues. The eigenvectors with a small eigen-
value lag behind the others and control the effective rate
of change. In physical systems these eigenvectors are
often, at least approximately, the Fourier modes, and it is
possible to identify which momenta are evolving slowly
and holding up the algorithm. If the step size of these
modes can be increased in a way which does not affect
the final result, then critical slowing down can be over-
come. This numerical technique, known as Fourier ac-
celeration, ' has been very successful in speeding up al-
gorithms for the simulation of spin models' ' as well as
in a number of other problems requiring numerical op-
timization.

In this paper we describe its application to lattice
gauge theories and in particular to the case of the gauge
group SU(3), relevant to QCD. We begin in Sec. II by
describing how the acceleration method works when the
updating algorithm is based on a Langevin equation. '

The method is readily adapted for use with updating al-
gorithms based upon molecular dynamics or hybrids of
molecular dynamics and the Langevin equation. We dis-
cuss in Sec. III results for the U(1) group, where the
method is particularly simple. In Sec. IV we show how
the extra problems associated with the non-Abelian na-
ture of SU(3), particularly the requirement of gauge
fixing, can be overcome. Finally, in Sec. V we present
some preliminary results which give encouraging indica-
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FIG. 1. Physical lengths grow in lattice units as the lattice
spacing decreases.
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tions of the effectiveness of Fourier acceleration for fu-
ture simulations of QCD with small lattice spacing. Our
results are based on a simulation of the pure gauge theory
but we discuss their relevance to a full calculation includ-
ing dynamical quarks in the conclusions.

be calculated in a similar fashion. For example, the auto-
correlation function of the propagator decays as
exp[ —2er(p +m )].

Equation (2.7) shows that, for stability of the algo-
rithm,

II. THE LANGEVIN EQUATION AND FOURIER
ACCELERATION

l
2

pmax + (2.9)

y(n +1)(
)
—y(n)( ) f [y(n) (n)]

where

(2.1)

(2.2)

e is the Langevin time step and g is a noise term drawn
independently from a Gaussian distribution for each x
and n:

( g'"'(x)2)( '(y) )„=25„5(x—y) . (2.3)

For a free scalar theory with the usual local quadratic ac-
tion Eq. (2.1) can be written in momentum space as

(t) '"+"(p)=P '"'(p) —e(p'+m ')P '"'(p)+ &e 21 '"'(p),

(2 4}

where p are the eigenvalues of —8 . It is quite clear now
that, as a result of updating the fields locally, the Fourier
modes with small values of p have a small effective time
step and will hold up the algorithm.

We can put this argument on a more quantitative foot-
ing by solving Eq. (2.4):

n

0'"'(p)=«X [1—e(p'+m')]" '~" "(p}
i=~

with P' '(p)=0 . (2.5)

The autocorrelation function of the fields in Langevin
time steps is given by

( y (n)(
p)y

(n +r)(p) ) ( y (n)(p) ) 2

pp(r) =
( [y (n)(p)]2) (y (n)(p) )2

(2.6)

Assuming ergodicity, the averages over n can be replaced
by averages over 2) at each time. Then, using Eq. (2.5),

p~(~) = [1 e(p +m —
)]' .

As e~O and ~~ Oc with ev fixed we obtain

(2.7)

p]( ~)-exp[ er(p +m ) ] . — (2.8)

The autocorrelation function of products of the fields can

We use Langevin updating ' to generate a set of gauge
fields on the links of the lattice with probability distribu-
tion e . The entire lattice is updated simultaneously so
that a Fourier transform of the updating step is possible
and Fourier acceleration can be applied.

To review critical slowing down and Fourier accelera-
tion it is easiest to focus on the scalar theory. Each
configuration is generated from the previous one using a
discrete Langevin equation, which in this case is

i.e., that the maximum time step is dictated by the
highest-momentum modes. The lowest-momentum
modes then have an autocorrelation time, from Eq. (2.8),

2 2
pmax+

c(pmin )
2 2 c(pmax }

p min +~ (2.10)

When the field (t) is defined on a finite lattice of space-
time points the lattice spacing a appears in combination
with dimensionful quantities in Eqs. (2.4) —(2.10). The
operator —8 a has a bounded discrete spectrum. We
use skew-periodic boundary conditions for which

Ivr
p a =4+ sin, l=O, . . . , L 1—II (2.11)

in d dimensions, but our conclusions are independent of
this choice. Clearly p,„a is roughly constant on large
lattices so if we make the lattice spacing smaller keeping
the physical volume of the lattice (La) fixed then

1
&c(pm(n }"

a
(2.12)

This is critical slowing down.
An alternative, but entirely equivalent point of view is

that obtained from the Fokker-Planck equation. ' This
equation describes the approach of the probability distri-
bution P[U] to the equilibrium e after many Langevin
time steps. To leading order in e the change of the prob-
ability distribution after one time step is given by

AP 5 5S 5P
e „5$(x) 5(t. (x) 5$(x)

(2.13)

By writing P =exp( —Sl2)% this can be transformed to

= —H%,
E

(2.14)

where the eigenvalues of the Fokker-Planck Hamiltonian
H control the convergence of the probability distribution.
)I) relaxes eventually to the ground state [exp( —S/2)]
but this will take a large number of steps if the first excit-
ed state has a small eigenvalue. For the free scalar theory
on a lattice described above the eigenvalues of H are in an
harmonic-oscillator-like sequence with separation
p a +rn a . The time constant for thermalization of P
is controlled by the size of (p;„a +m a )

' and will
again diverge as a~0. So, as expected, this thermaliza-
tion time is related to the decorrelation time for the fields
since they both reflect the rate at which configurations
evolve.

As stressed in the Introduction, critical slowing down
for this theory will occur in any updating algorithm
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(t)'"+ "(x)=(t) " (x) F'—e(p)F
5y(n)(x )

&e(—p) FT)(")(x) (2.15)

where F represents a Fourier transform and

e(p,„a +m a )
e(p) =

pa+ma (2.16)

For more complicated theories with interactions the op-
timal form of e(p) may require modification from the one
based on the free field propagator.

The accelerated algorithm is equivalent to introducing
a time step which is nonlocal in position space, E' y.

e„=g e')'(" ~)e(p) . (2.17)

which changes the fields locally. The arguments above
are not specific to the Langevin formalism —it simply re-
veals the mechanism at work very clearly and suggests a
method to rectify the problem.

Fourier acceleration works by allowing the slow Inodes
at low momentum to take large steps. We introduce a
momentum-dependent time step where the step size is
chosen to be, for example, inversely proportional to
p a +m a . In the case of the free scalar field above, all
Fourier modes would now evolve at the same rate and
critical slowing down would be cured. The updating al-
gorithm becomes

whole field.
The free Abelian theory has the Langevin equation

A '"+"(x)= A '"'(x)+e[a'A ("'(x)—a a, A ',"'(x)]

+&e g(")(x) (3.1)

with

(q„'"'(x)g„'(x')) =25„„5 „5 (x —x'),
which, in momentum space, becomes

A „'"+"(p)=A „' '(p) &(p—'5„„p~—„)A „'"'(p)

+Qe ~ (n)(p) (3.2)

(3.3)

This means that the physical and unphysical modes do
not interfere with each other on updating. This is true
even if e becomes nonlocal as e(p).

To see what form e(p) should take it is simplest to split
into 3 and A„where

A „(p)= 5„„— A „(p),
p

(3.4)

The appearance of the singular matrix p 5„„—p~„ is evi-
dence of the gauge symmetry. However, the force term
in the Langevin equation is invariant under a gauge
transformation

A study of the Fokker-Planck equation readily shows
that the algorithm yields an equilibrium probability dis-
tribution for the fields which, as before, is e to leading
order in e. The cost of one iteration of the algorithm will
have a piece proportional to VlnV from a fast Fourier
transform (FFT) and an additional part proportional to V

from the rest of the calculation [provided e(p) is diagonal
in momentum space]. Which dominates at a given value

of V will depend to some extent on the computer used.
The number of iterations required for a given accuracy is

now independent of V if critical slowing down is cured so
either dependence is to be preferred to the VL growth in
the unaccelerated algorithm as the continuum limit is
taken as fixed physical volume.

This algorithm was applied successfully to the two-
dimensional XY model in Ref. 1 and subsequently to vari-
ous field theories in Refs. 3 and 4.

III. SIMULATION OF ABELIAN GAUGE THEORIES

The application of Fourier acceleration to gauge
theories is complicated by the additional gauge symmetry
which obscures the relationship between momentum and
wavelength. We might wonder how to identify and ac-
celerate the long-distance physical modes which cause a
critical slowing down of gauge-invariant quantities. For
the Abeliaa theory no such separation of the field com-
ponents turns out to be necessary" because the unphysi-
cal modes are decoupled from the physical ones. We sim-

ply have to work out what momentum-dependent time
step would suit the physical modes and apply this to the

A „(p)= ", A„(p) . (3.5)

Then

A T(n+1)(p) A T(n)(p) ep2A T(n)(p)+ +e ~ T(n)(p)
P P P P

(3.6)

with

(,'q„"")(p)g,'. ( )(p')) =2 5„„—", 5'(p+p')5„
p

(3.7)

and

with

A L(n+1)(p) —A L(n)(p)+ Qe g L(n)(p)
P P P

(3.&)

(
—L(n)( )- (mL)(

) ) 2
"

54(p +p )5
p

(3.9)

1
g (p) (x

p
(3.10)

Equation (3.8) shows that the unphysical longitudinal
modes undergo a random walk in gauge space. The phys-
ical transverse modes on the other hand do yield conver-
gent expectation values. By solving equations similar to
Eqs. (2.4) —(2.8) it is clear that the decorrelation time of
modes of momentum p is given by
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The gauge-invariant quantities that we measure will be
related to A„(x), so to avoid critical slowing down for
these observables we should take

tice. The mean value of g(p) measured over many itera-
tions can then be calculated. To leading order in e we
have

2

E(p) = e for p&0 .
P

(3.11)
3 0(y(p))= p (3.19)

A more useful example to study numerically is a U(1)
gauge theory on a lattice. We take the action to be

The autocorrelation function in Langevin time steps is
given by

S = —P g cos(8~„q),
plaq

(3.12) Pr(r)=exP( —2er)8P tI )

so that the decorrelation time in sweeps is

(3.20)

where 8„~, is the sum around a plaquette of angular vari-
ables which sit on the links of the lattice: r, (y(p) )= 1

2ePp'a ' (3.21)

8 „=8„(x)+8„(x+)M) —8„(x+9)—8„(x) (3.13)

5S
58„(x) (9

)
DO (x)

sin(8~), q), (3.14)

where the sum is now over all plaquettes of both orienta-
tions which start on the link 8„(x). This is gauge invari-
ant under

8„(x)~8g(x)=8„(x)+P(x)—(t)(x +P), (3.15)

the discretized version of Eq. (3.3). As discussed above,
no gauge fixing is required to implement Fourier ac-
celeration in this case, because mixing force terms from
different sites in a nonlocal step will not a6'ect the behav-
ior of the force term under gauge transformations.

For large p we expect this theory to behave in a similar
way to the noncompact electrodynamics discussed above,
with A =0. We can therefore test numerically the ideas
of Fourier acceleration in a setting where correlation
lengths can be calculated analytically.

As an observable whose correlation length we will mea-
sure we consider the quantity

y(p)= /DE(p)Dp( —p), (3.16)

where D„(p) is the Fourier transform of the gradient of
the action [Eq. (3.14)] divided by the coupling constant

D„(x)=
8) DO (x)

sin(8~), q) . (3.17)

and the sum over 8 ], includes all distinct plaquettes of
one orientation. The gradient of the action in the
Langevin equation for the 0 field is then

dependent for fixed p only on the product PE
For the accelerated algorithm with e(p)=Ep, „a /

p a (the p =0 mode is left unaccelerated) we should find

r, (y(p)) = 1

2ePp, „a
(3.22)

I I ) I I I I
i
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O
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independent ofp.
Results on 2 lattices at P=1.5, @=0.02 confirm this

picture (Fig. 2). The range of nonzero momenta on such
a small lattice is not large, varying from p a =4.0 to
p a =12.2. Nevertheless it is suScient to demonstrate
the principles of critical slowing down and the efticacy of
Fourier acceleration.

The decorrelation time of g(p) was measured in vari-
ous ways. With such a simple theory we were able to do
200000 sweeps through the lattice, measuring y(p) at
every sweep, and to get an accurate picture of the auto-
correlation function pr(r), at least out to distances r of
about 20 sweeps. In this region pr(r) as well approximat-
ed in all cases by an exponential exp( sir;). T—hus r,

Note that g(p) is gauge invariant and y(0)=0. In the
large-P limit D„(p) will change from one configuration to
the next under the Langevin algorithm in a very similar
way to that in which 8(p) changes. For the unaccelerated
algorithm

o i t a t t s I t t

15

D'"+ (x) D (x)— PF[iIt 6~(n)(x) +2D n)( ))]x
P P P ~ P

+&~[a„~.q'.")(x)—a'Z„'")(x)],
(3.18)

dropping factors of cos(8 „)which tend to 1 in this lim-
it. 6 represents the finite-difference operator on the lat-

FIG. 2. Correlation times for y(p) [Eq. (3.16)] plotted against

p a2 for a U(1) gauge theory on a 2 lattice at P=1.5, e=0.02.
The correlation time is defined from the slope of the logarithm
of the autocorrelation function; ~—without Fourier accelera-
tion; 0 —with Fourier acceleration, e(p) =ep, „a'/p a '.
196608 sweeps were done without acceleration and 98304
sweeps were done with acceleration, measuring y(p) every
sweep.
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could be taken either from the slope of lnp vs ~ or from
the point where p=e ', interpolating in ~.

We also attempted to extract v, from the integrated
autocorrelation function, defining

I

lim j p~(~)dr .
~'~ oo 0

(3.23)

This gave poor results with no very clear plateau as a
function of ~', so that a value for ~, compatible with
those above was obtained with large errors. The problem
is that p~(r) is extremely difficult to measure, especially
where it is small. Even with 200000 measurements, pz(r}
was not smooth beyond a few times r, ( =20 sweeps) but
developed oscillations of order the size of the signal.
These oscillations lasted for up to 1000 sweeps so they
had a large effect in the integrated autocorrelation func-
tion even though pr(r) was less than 0.01 at these values
of r. To measure pr(r} accurately at time separation r re-
quires measurements over many times ~ sweeps. If ~ is so
large that pr(r) is small this is neither feasible nor neces-
sarily desirable. We concluded that the decorrelation
time was more sensibly measured from the autocorrela-
tion function itself, without integrating it. When p(r) is
not a good exponential, the more usual case, the simplest
and perhaps more meaningful definition of v, is that
point at which p( r ) has dropped to some acceptably small
level.

For y(p) we obtained decorrelation times with the
unaccelerated algorithm which varied from 5 sweeps at
low momentum to 1.5 sweeps at high momentum, in
rough agreement with Eq. (3.21). With Fourier accelera-
tion, all modes of g(p) had correlation times of =1.5
sweeps as expected. This behavior is shown in Fig. 2.

The improvement provided by Fourier acceleration for
a given observable will depend on which momentum
modes of the field it couples to most strongly. Measure-
ments of the plaquette on the same lattice as above gave
an acceleration factor of =1.5 from an unaccelerated
correlation length of 3.5 sweeps to an accelerated one of
2.3.

We see from the example above the Fourier accelera-
tion would enable results to be obtained in up to three
times fewer sweeps on the 2 lattice (of course, a much
larger factor would be expected on larger lattices}. It
remains to check that the mean values of observables
thus obtained are the same as for the uncorrelated case.
A complication here is that expectation values obtained
with a Langevin algorithm depend on the step size e.
This is because the equilibrium action differs from that
which would be obtained from a Metropolis algorithm by
terms which start at 0 (e).

For the unaccelerated algorithm it is possible to show
that the O(e) corrections simply amount to a renormal-
ization of the field and coupling constants. ' We therefore
expect them to be independent of the physical size of the
lattice. This is important since if the step size had to de-
crease as the volume increased it would be disastrous for
the use of the algorithm in the long term as we attempt to
approach the continuum and (physical) infinite-volume
limits. We performed a numerical test by measuring the
plaquette very accurately at @=1.5 on 2, 4, and 8 lat-

tices as a function of e. The slopes of the curves obtained
were consistent with the hypothesis that the 0 (e) correc-
tions are the same for all the different lattice sizes (al-
though the e=O value for the plaquette were clearly
different). This makes it clear that the step size chosen
for the simulation does not have to depend on the physi-
cal volume. This must also be checked for the accelerat-
ed algorithm since any volume dependence could wipe
out the benefit to be gained from acceleration.

In fact the unaccelerated algorithm shows a very un-
balanced distribution of O(e) corrections. They are con-
centrated in the high-momentum modes since these are
the ones which change rapidly from iteration to iteration
and are sensitive to the step size. The effective step size
in the unaccelerated algorithm is very small for the low-
momentum modes and so the errors in these modes are
unnecessarily small, given the much larger errors in the
high-momentum modes. In the accelerated algorithm the
corrections are more evenly distributed over the different
modes so that those at low momentum now match those
at high momentum. We might thus expect the O(e)
corrections to observables to be rather larger with
Fourier acceleration than without but only by a factor of
about 2 independently of the lattice size. This is borne
out by numerical tests in which the plaquette was mea-
sured on various size lattices as in the previous paragraph
but now with Fourier acceleration. When the value of
the plaquette was plotted versus e, the slope of the curves
increased with the number of lattice sites initially and
then leveled off. It varied from 1.44 on the 2 lattice to
2.12 on the 4 lattice and 2.24 on the 8 lattice. This
compares with a slope of 1.08 in the unaccelerated case.

For the Fourier accelerated algorithm it is no longer
possible to calculate the e=O value for observables such
as Wilson loops by a simple rescaling. If this value is re-
quired it must be obtained by numerical extrapolation.
For the plaquette calculation described above, the extra-
polated values for the plaquette with and without Fourier
acceleration agreed, as they must, on all the different
volumes. The e=O value varied from 0.813 on 8 to
0.825 on 2 .

The U(1) theory investigated above is not in a physical-
ly very interesting region. As discussed earlier, it is
behaving essentially as a free theory because the length
scale on which there are interactions between the modes
is much larger than the size of the lattice. It is an in-
teresting question how well Fourier acceleration will
work on larger lattices at smaller values of P, in particu-
lar close to the phase transition at P=1.0. Work in Ref.
4 indicates that Fourier acceleration will work close to a
phase transition where the behavior is far from that of a
free theory. We have tackled instead the problem of crit-
ical slowing down in non-Abelian gauge theories, relevant
to QCD.

IV. SIMULATION OF NON-ABELIAN
GAUGE THEORIES

The ordinary Langevin equation for updating non-
Abelian gauge fields in a numerical simulation takes the
form
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U[n+]]=e —~f ~U[n]
7 (4.1)

where the gauge fields U are elements of the appropriate
Lie group with generators T, ( where [T, , Tj.]=ic; k Tk
and tr(T, T )=5, . /2). The force term f by analogy with
Eq. (2.2) is given by

(n) (n)fj px
=e(3j px ~ e 'rjj px (4.2)

lipx 9jvy ~g 5ij 5)xv5xy5nm (4.3)

In the case of the standard action for SU(j())'c} gauge
theories, that is,

in the unaccelerated case. The derivative represents
differentiation with respect to U„(x) within the group
manifold [defined such that f (e' '

U) =f ( U)+5'8;f
+0 (5 )]. The noise term rj obeys

Using a local updating algorithm such as Eq. (4.5) we
again expect to see critical slowing down on taking the
continuum limit, and again we seek a cure using Fourier
acceleration. As usual, an accelerated algorithm is ob-
tained by replacing the step size e by a nonlocal matrix

defined as the Fourier transform of an appropriate
function e(p), of momentum p. Here, however, the algo-
rithm is complicated by the need to preserve local gauge
invariance. The steps involved in proceeding from one
gauge-field configuration to the next are as follows.

(a) Fix the gauge to a smooth gauge (e.g., Landau
gauge). Gauge fixing is essential since Fourier accelera-
tion uses momentum to resolve the different modes of the
gauge field, and momentum, being gauge dependent for a
charged particle, is meaningless in the absence of gauge
fixing. The effect of gauge fixing is to replace the gauge
field by another physically equivalent gauge field:

S[U]=— g Tr(U „+U „),
C plaq

(4.4)
U„(x)~ Ug (x) —=GU(x) U„(x)GUt(x +)M), (4.8)

U(n+))( )
—e P U(n)( )p

F„(x)=e D„(x) eH—„(x) .
C

(4.5)

where U ], is the product of link variables U„ forming a
plaquette, the Langevin equation can be written in the
form

where the gauge transformation matrix is a function of
position and a functional of the original gauge field
configuration.

(b) Generate an anti-Hermitian noise matrix H„(x) as
specified by Eq. (4.7).

(c) Compute Fg (x) but with e replaced by e„:

D„(x) is the field derivative of the action F'(x)= g e„, D'„(y) Qe„yH„—(y) (4.9)

plaq p

1

plaq plaq ~ ( plaq plaq )
C

(4.6)

and H„(x) is an anti-Hermitian noise matrix satisfying

(H"(x)) =0,
(4.7)

(H„' (x)H; (y) ) = — 5,d5b,
— 5,), 5,d 5„y5„, .

C

where D„(y) is calculated with the gauge-fixed
configuration U . As usual, fast Fourier transforms must
be used if this step is to be cost effective. To compute the
first terin in Fg [Eq. (4.9)] we Fourier transforin Dg(x)
into p space, multiply each matrix Dg (p) by e(p), and
finally transform the product e(p)Dg (p) back to coordi-
nate space. In forming the second term of F we multi-P
ply H„(p) by &e(p) rather than e(p).

(d) A correction term

F„(x)= g e H„(y) Ga(x) g [e—„yG a(y)H„(y)GUa(y)]GUa(x)
1

25
(4.10)

must be added to Fg to compensate for the field depen-
dence implicit (through the gauge fixing) in the step-size
matrix. The configuration U is computed from U,

H (x)6U„(x)=e " Us(x), (4.1 1)

and G & is the gauge transformation that fixes U to the

same gauge as U [see step {a)]. Parameter 5 inust be
chosen sufficiently small that the finite step-size errors in-
dicated by F„(x) are of order e, but not so small that
F„(x) is significantly larger than Fg(x}. The choice
5 =&e is optimal in this regard. Note that the number of
Fourier transforms can be reduced by combining the
evaluation of F„and F„.

(e) Finally exp[ Fg (x) F„(x)] is c—alculated—(for ex-
ample, by expanding to an appropriate power), and ap-

plied to U to obtain a new configuration.
Now let us describe why the algorithm takes this form.

The additional complication in the non-Abelian gauge
theory is that the force term is not gauge invariant. In-
stead, from Eq. (4.6), it transforms under a gauge trans-
formation [Eq. (4.8)) as

F„(x)~G(x)F„(x)G{x), (4.12)

where G (x) belongs to the gauge group and sits at the
site x. The force term thus mixes the physical and un-

physical modes of the gauge field on updating. (The
Gaussian noise in F is gauge transformed to Gaussian
noise with the same distribution. )

When the updating is the usual local one in x space the
gauge transformations of the force term are just such as
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to compensate the gauge transformations of the field.
Gauge-equivalent configurations are then updated to
gauge-equivalent configurations since

—Fg (x)Ug(n+1)( )
—e n Ug(n)(x)

P P
—G(x)F (x)G (x)=e " G(x)U„'"'(x)G (x +)M)

F (x)
( )= G (x)e " U„'")(x)G "(x +(M )

= G (x)U„'"+"(x)G (x +p) . (4.13)

Gauge-invariant quantities will be the same step by step
whether we start from a particular configuration or a
gauge transform of it. Such a gauge-covariant algorithm
ensures that no terms which break local gauge invari-
ance, such as gluon mass terms, can appear in the equilib-
rium action.

This is not so easy to ensure when we introduce a
momentum-dependent time step. If we simply replace e
by e then the Langevin force term becomes nonlocal:

F„(x)~QF„(x,y),

F„(x,y)=e„D„(y) Qe,~H—„(y) .
C

(4.14)

It is no longer gauge covariant since different pieces of

the force term transform differently under a gauge trans-
formation:

QF„(x,y)~ QG(y)F„(x,y)G (y) . (4.15)

Evidently all effects due to the nonlocal components of
this force will be wiped out over many updates as the up-
dates randomize the gauge at remote sites y. One way to
avoid this randomization is to completely specify the
gauge (up to global transformations) at all sites before up-
dating the gauge field. Then, obviously, gauge-invariant
quantities formed from the updated field will be indepen-
dent from which set of gauge-equivalent configurations
we started.

In the case of lattice axial gauges, where V —1 links of
the lattice are gauge transformed to the unit matrix, one
can implement complete gauge fixing by not updating
those links which are set to unity. This is not a good pro-
cedure, however, because the longitudinal infrared singu-
larities characteristic of axial gauges greatly exacerbate
the problem of critical slowing down. ' Our procedure of
alternating gauge-field steps with unconstrained updating
steps does not suffer from this problem. It is clear from
Eq. (4.15) that, for the local updating scheme, updates
and gauge transformations commute, and thus the
gauge-fixing steps can have no effect upon the decorrela-
tion times for gauge-invariant quantities.

In the nonlocal case, the combined gauge fixing and
update step takes the form

U„"+"(x)=exp —g G'"'(y)F„'"'(x,y)G '" (y) G'"'(x) U„'"'(x)G '"'(x +p),
V

(4.16)

(4.17)

where the gauge transformation G'"'(x) completely specifies the gauge of configuration U'"' (and is therefore a func-
tional of U'"'). In fact this nonlocal update, although gauge invariant, is not correct. To see why, we replace the up-
date equation (4.16) by

U(n+1)(x) Gt(n (x)exp —g g «'(y)F n'(x y)gt'n'(y) g'n'(x)U n'(x)
P p 7 P

y

1(p y g t ( n )
(x )g ( n )

(y )F( n )
( x y )g ( n )

(y )g ( n )
(x ) U ( n )

(x )

—if'"'(x).TU( + )(x)=e-'f. "'U{ )(x)
P P (4.18)

which differs from the original update only by a gauge
transformation, and is thus equivalent for gauge-
invariant quantities. Rewriting this equation in the form

I

The field dependence in e~" [U] changes the equilibrium
probability distribution of the configurations generated
by Langevin updates. This is evident from the Fokker-
Planck equation for the probability distribution. This has
the form, to leading order in e,

we see that the step-size matrix now depends in effect on
the field, through the gauge-fixing inatrices G (x): a, P

(4.22)

f,„(x)=g [e„"B(,„S—Qe„'" i)k (y)],
k, y

where

dy[U]:2Tr[GU(x)T'GU(x)GU(y)T GU(y)]e y

is a functional of the gauge field and where

~jk Gkl ~jl

k,y

(4.19)

(4.20)

(4.21)

where indices a and P each represent a color, site, and
direction index. The Fokker-Planck equation implies
that P ~e, the desired result, provided that e is field
independent. For e[U] in Eq. (4.20), however, there is an
additional term (B~ &)P and the distribution is
changed. ' This extra term is a leading-order effect and
we have observed it numerically. We measured
Re(plaquette) and Re(Wilson line) at /3=0. 0 using the
force term above and found that they did not vanish as
p —+O.
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One way to correct for this complication is to change
the force term in the Langevin equation. Schematically,
the correct Fokker-Planck equation results if e gP is re-
placed by e PP —8@ & in the Langevin force term. A
direct calculation of Bg & is quite costly for most choices
of gauge fixing. However, a simple stochastic estimator
can be used for this term. For example, fj„(x) in Eq.
(4.19) can be augmented by

whose stochastic average is just what is needed (provided
5-&e):

(f,„)= —g Bk„~e'„~+0(5 e) .
k, y

(4.24)

This is the correction term specified in the general updat-
ing procedure given above. ' We have checked that the
correct e~O results for Re(plaquette) and Re(Wilson
line) at P=O.O are now obtained numerically when this
correction term is included.

The correction term adds significantly to the computa-
tional overhead for an update. The storage requirements
are doubled (relative to the local algorithm) and the time
required for an update is longer (four times longer in our
not-too-highly-optimized code). However, these costs are
roughly constant as the lattice volume grows and P in-
creases, while the benefit should grow quadratically with
the correlation length. There exists gauges for which the
correction term vanishes —axial gauges, for exarnple-
but we have yet to find one that performs well for current
lattice sizes and parameters. In any case the overhead in-
curred for Fourier acceleration of gauge-field updates is
negligible once dynamical quarks are included.

Recently a gauge-invariant acceleration scheme has
been developed and tested on the hybrid updating algo-
rithm. ' This scheme avoids the use of gauge fixing and
the consequent correction term by using an acceleration
factor which is the inverse of a covariant derivative. This
has the the disadvantage of requiring a numerical inver-
sion, a calculation which will suffer from critical slowing
down as we approach the continuum limit, although
perhaps not as badly as the updating algorithm it is try-
ing to cure. Our algorithm, on the other hand, can com-
pletely remove the critical slowing down associated with
the continuum limit once the lattice spacing is small
enough (i.e., once P is large enough). Regrettably, neither
algorithm can deal with the critical slowing down that re-
sults when the quark mass is taken to zero. The gauge
fixing required in our algorithm is easily implemented.
Indeed, apart from its use in the updating of the gauge
field, gauge fixing may be seen as necessary for the ac-
celeration of the inversion of the fermion matrix which is
required for a simulation of full QCD.

V. SOME RESULTS WITH SU(3) GAUGE THEORY

To decide what gauge to use for Fourier acceleration of
the updating algorithm we studied the effect of different

f „(x)=. g [e~~(e '"'
U)rjk„(y) e~~—( U)r)k„(y)]

k, y

(4.23)

gauges on Fourier acceleration of the inversion of the fer-
mion matrix. (This work is described in Ref. 6.) The two
problems are very similar, requiring an optimization in a
space of many dimensions, and it is much faster to mea-
sure the decay of the residue on a few configurations than
to measure decorrelation times over many thousands of
sweeps.

Axial gauges did not produce good results in a Fourier
accelerated inversion, at least with configurations
thermalized at values of P around 6.0. For the A =0
gauge this is because there can be large fluctuations in the
field for large values of k if (k ) is small. We were un-
able to find a simple form of e(p) which would correct for
this. We also tried more sophisticated axial gauges in
which the maximal tree on which the gauge condition is
imposed was more uniformly spread throughout the lat-
tice. The performance of these gauges was a consider-
able improvement over the lattice temporal gauge on an
8 lattice but was still not good enough to be worthwhile.
Perhaps on larger lattices at higher values of P these
gauges will prove useful for Fourier acceleration.

A gauge which worked very well was the lattice Lan-
dau gauge in which, by an iterative process, the average
value over the lattice of the trace of the link field is max-
imized. At this point the lattice version of 8"A„=O is
obeyed. The method for implementing this gauge is also
an optimization procedure, which again suffers from crit-
ical slowing down. We found that a Fourier accelerated
steepest-descent algorithm moved toward Landau gauge
very rapidly. ' Usually only about ten iterations of the al-
gorithm were required to raise the average trace of the
link field to a sufficient value for maximal acceleration of
the fermion matrix inversion.

For the updating algorithm we require, as previously
explained, a complete gauge fixing to be done at each
step. To attain 8"A„=O within machine precision is too
time consuming and the gauge fixing provided by a few
iterations of the Landau gauge-fixing algorithm, although
suScient to give a smooth enough field for Fourier ac-
celeration, is certainly not complete. We therefore define
a new gauge, the AL gauge which consists of an axial
gauge fixing following by a given number of iterations of
the Landau gauge-fixing algorithm. This provides a com-
plete gauge fixing and also gives a smooth field
configuration. The axial gauge used was either the

=0 gauge, in which case -10 iterations of Landau
gauge fixing were required, or a blocked axial gauge for
which rather fewer subsequent iterations were needed.

The first test of the accelerated updating algorithm was
undertaken on a small 2 lattice at a very weak coupling,
P= 10.0. Under these conditions, critical slowing down is
very clear and we expect Fourier acceleration to work
well, as it did in the Abelian theory, with the very simple
form for e(p) given by Eq. (3.11), e(p)=Ep, „a /p a
(for pWO). The results bear this out (Fig. 3). As an ob-
servable we measure the correlation function of the gra-
dient of the action. By analogy with Eqs. (3.16) and
(3.17) this is given by

(5.1)



FOURIER ACCELERATION IN LATTICE. . . . III. 1961

with

D„,(x)=Tr[T~D„(x)] . (5.2)

D (x) is not gauge invariant and was measured in the
same AL gauge as was used when Fourier accelerating
the update step. This AI. gauge consisted of the lattice
temporal gauge followed by 50 hits of the Z3-invariant
version of the Landau gauge-fixing algorithm described in
Ref. 5. At these values of P (above the deconfinement
phase transition) we use the Z3-invariant gauge fixing to
make sure that all terms in the equilibrium action are Z3
invariant and no Z3 phase is favored over the others.

Figure 3 shows clearly the presence of critical slowing
down for the unaccelerated algorithm and its successful
treatment by Fourier acceleration. The correlation times
plotted correspond to the number of sweeps separation
for the autocorrelation function to drop to a value of 0.1.
This criterion was chosen as a reasonable one when the
autocorrelation function was not a good exponential.
The values obtained agree approximately with the expect-
ed behavior of an Abelian theory with coupling P/6 [see
Eq. (3.21)], except at p=0. Since y(0) is not zero in the
non-Abelian theory it does have a correlation time which
seems to be similar to the correlation time for the lowest
nonzero momentum. To obtain good measurements of
the autocorrelation function required 50000 sweeps of
the unaccelerated algorithm and 18000 sweeps with ac-
celeration, measuring g(p) at every sweep. A similar au-
tocorrelation time is measured for the plaquette and this
is accelerated from 17 sweeps to 12 sweeps. The correla-
tion time for the Wilson line is enormous (several
thousand sweeps) without acceleration and with accelera-

tion it is still too large to measure accurately with this
amount of data.

Moving to stronger couplings, similar to those in use to
today's practical calculations, we find, not unexpectedly,
that the pattern of critical slowing down is much less
clear as the different momentum modes interact. Fourier
acceleration is correspondingly less effective.

Figure 4 shows results at @=5.8 (Ref. 16) for the corre-
lation times of g(p) with and without Fourier accelera-
tion. Without Fourier acceleration there is a clear
difference in correlation times for different momenta al-
though it is not as large as at P=10.0 and the relation-
ship between correlation times and momenta is not as
smooth. This is presumably because y(p) has a more
complicated effective updating equation than Eq. (3.18)
now. With Fourier acceleration we found that taking
e(p)=op, „a /p a as before did not work in this case.
Forcing this degree of acceleration on the low-
mornentum modes caused instability. Autocorrelation
times became very long and the mean value for observ-
ables were very different from the unaccelerated values.
Instead we used

(5.3)
pa +A.

which provides a mass term A, to limit the acceleration at
low momentum. This mass may represent some physical
scale on which the interactions between modes is large.
The algorithm now worked perfectly well with A, =4.0.
Acceleration factors were not as large as at P=10.0 but
the correlation times which were largest were substantial-
ly reduced. The correlation time of the plaquette (-40
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FIG. 3. Correlation times for y(p) [Eq. (5.2)] plotted against
p'a' for an SU(3) gauge theory on a 2' lattice at P= 10.0,
@=0.01. The correlation time is defined as the number of
sweeps for the autocorrelation function to drop to a value of 0.1;
~—without Fourier acceleration; C) —with Fourier accelera-
tion, e(p) =up, „a /p a'. 50000 sweeps were done without ac-
celeration and 18000 sweeps with acceleration, measuring g(p)
every sweep.

FIG. 4. Correlation times for y(p) [Eq. (5.2)] plotted against

p a for an SU(3) gauge theory on a 2 lattice at f3=5.9083,
a=0.01724. The correlation time is defined as the number of
sweeps for the autocorrelation function to drop to a value of 0.1;—without Fourier acceleration; 0 —with Fourier accelera-
tion, e(p) =ep, „a'-+4.0/p a +4.0. 50000 sweeps were done
without acceleration and 38 000 sweeps with acceleration,
measuring g(p) every sweep.
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sweeps) is not altered significantly by acceleration. It is
possible that better performance could be obtained with a
more complicated function for e(p).

y(p) is not a particularly useful quantity to measure al-
though it has the advantage that, in the limit of weak
coupling, its correlation times can be compared to analyt-
ic calculations. Instead, gauge-invariant quantities such
as Wilson loops are measured in practical calculations. It
is not clear a priori what correlation times to expect for
these variables or how the times will depend on the size
of the loops since they have both ultraviolet (perimeter)
and infrared (area) components.

Measurements at P=5.8 (Ref. 16) on a 4 lattice
showed that correlation times for various square Wilson
loops were long but little acceleration could be achieved
since the mass cutoff A, required in the acceleration fac-
tor e(p) was 6.0. The acceleration did not work with a
mass cutoff of 4.0 as in the 2 case. This presumably
rejects the fact that there are smaller nonzero momenta
on a 4 lattice than a 2 one.

At P=6.2 (Ref. 17) the different loops have more wide-
ly separated correlation times and acceleration can be
achieved with a mass cutoff of 4.0 in e(p). Figure 5
shows the results. 70000 sweeps were performed with
the unaccelerated algorithm, measuring square Wilson
loops of side 1, 2, and 3 lattice units every sweep. 30000
sweeps were carried out with the Fourier accelerated al-
gorithrn. The gauge fixing used there consisted of the lat-
tice temporal gauge followed by 10 iterations of the Z3
invariant Landau gauge fixing. All the loops show short-
er correlation times with acceleration but the largest gain

is for the 3 X3 loop which is accelerated by a factor of 3.
The correlation time of the Wilson line (both the real part
and the magnitude) is substantially reduced by accelera-
tion from over a thousand sweeps to several hundred
sweeps.

The mean values obtained for the Wilson loops differ
between the unaccelerated and accelerated algorithms, as
expected at finite e. The difference is at most 0.02, con-
sistent with the accelerated algorithm having slightly
larger 0 (e) corrections to the effective action.

The results described above all indicate that the
Fourier-accelerated algorithm does work and can give a
considerable gain in speed. The algorithm needs to be
tested at weak coupling on larger lattices to demonstrate
its full potential. To measure correlation functions sensi-
bly requires, however, a huge amount of data, far more
than is normally collected in a practical calculation and
so far we have been unable to do this. One shortcut is the
possibility of measuring thermalization or cooling times
rather than correlation times. We have tested this by
looking at the gluon propagator in the AL gauge on 8

lattices. We cool the configuration from a thermalized
one at some value of P and measure the rate of decay of
the propagator as a function of momentum. One might
hope that a "cooling time" could be defined that would
be related in some way to the decorrelation time. Unfor-
tunately this does not seem to be true. The fact that
some components of the field are decaying faster than
others seems to lead to odd feedback effects. The low-
momentum components of the gluon propagator actually
increase with time as the cooling goes on. More work
needs to be done before this method can be used to assess
correlation times.
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FIG. 5. Correlation times for square Wilson loops of size
1 X 1, 2 X 2, and 3 X 3 for an SU(3) gauge theory on a 4 lattice at
P=6.2, a=0.0161. The correlation time is defined as the num-

ber of sweeps for the autocorrelation function to drop to a value
of 0.1; —without Fourier acceleration; 0—with Fourier ac-
celeration, e(p)=ep, „a +4.0/p a +4.0. 70000 sweeps were
done without acceleration and 30000 sweeps with acceleration,
measuring Wilson loops at every sweep.

VI. CONCLUSIONS

We have extended the use of Fourier acceleration, de-
scribed for the XY model in Ref. 1, to lattice gauge
theories. For a U(1) gauge theory this is straightforward
and we find that the acceleration works exactly as expect-
ed at weak coupling. The behavior at stronger couplings
near the phase transition needs to be investigated but we
would anticipate that a considerable gain in speed could
be made using Fourier acceleration in useful calculations.
The O(e) corrections for the accelerated algorithm are
shown to be comparable with those of the unaccelerated
algorithm.

For non-Abelian gauge theories, there are complica-
tions. It is necessary to transform the configurations to a
smooth gauge to prevent gauge artifacts from affecting
the correlation time of gauge-invariant quantities. This
introduces an extra term in the effective action at leading
order which must be explicitly removed by the numerical
simulation of a correction term. We have shown that,
once this is done, the algorithm works as expected. We
have tested it on relatively small lattices at weak cou-
plings and found a gain on speed. It seems possible to
calculate Wilson loops at P=6.2 with a factor of 3 fewer
sweeps. The acceleration factor in momentum space
must be modified from the naive form inversely propor-
tional to the square of the rnornentur. A mass term is
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necessary to limit the acceleration of low momenta and
this restricts the gains that can be made. If this mass
represents a physical interaction length in lattice units
then it should get smaller as P is increased.

The price to be paid for this acceleration is the over-
head for gauge fixing, Fourier transforming and adding
the correction term to the Langevin force. Of these the
last one is the most significant. We have tested the algo-
rithm by simulations in pure gauge QCD since we believe
that this can answer the question of whether Fourier ac-
celeration will work. The overheads must be thought of,
however, in the context of a realistic calculation on large
lattices at weak coupling and including dynamical
quarks. The cost of including dynamical quarks is so
large that any extra calculation required in the pure
gauge part of the simulation will be completely negligible.
If the gauge field can be made to decorrelate more quick-
ly, however, it will cut down the number of sweeps of the
whole algorithm required. Thus, although it is probably
true that a pure gauge calculation would find negligible
benefit from Fourier acceleration (unless it was on such a
large lattice that the acceleration could gain a factor
much larger than 4 to overcome the overheads), there is
no doubt that a simulation of full QCD could be speeded
up. The most significant numerical cost in including
dynamical quarks is the calculation of the inverse of the
fermion matrix. This can also be accelerated in momen-
tum space provided a smooth gauge fixing has been ap-

plied. The cost of the inversion can be cut by a factor of
about 3 on 8 lattices at values of P around 6.0. This fac-
tor will then apply to the cost of one sweep of the full al-
gorithm. Combining this factor of 3 with a factor of 3
fewer sweeps from Fourier acceleration of the updating
algorithm could lead to a factor of 10 gain in speed for a
simulation of full QCD.

We conclude that Fourier acceleration can provide
gains in speed when updating gauge fields with a
Langevin equation. We believe it can also be successfully
applied to the molecular-dynamics —Langevin-hybrid al-
gorithm, ' where significant gains have already been
made with spin models. ' The more recent hybrid
Monte Carlo' algorithm also shows acceleration for spin
models which we believe can be extended to the simula-
tion of gauge theories.
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