
PHYSICAL REVIEW D VOLUME 41, NUMBER 6 15 MARCH 1990

Convexity property of the variational approximations to the efFective potential
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The convexity property of the variational approximations to the effective potential is analyzed
both in quantum mechanics and in A,P field theory. A simple calculational scheme, based on the
generalization of the Gaussian functionals subspace, allows one to reproduce this fundamental

feature of the exact effective potential to a very high degree of accuracy. A criterion to clarify the
occurrence of spontaneous symmetry breaking in the presence of a flat effective potential is pro-
posed.

I. INTRODUCTION

Effective-potential techniques are very useful tools to
investigate the occurrence of nonperturbative phenome-
na, such as spontaneous symmetry breaking, both in
quantum mechanics and quantum field theory. Two basi-
cally different approaches to the calculation of the
effective potential exist. The first one, based on a semi-
classical approximation, the loop expansion, ' can be ap-
plied in the presence of classically stable configurations
and in a situation where quantum fluctuations are
"small. " This approach, essentially of perturbative na-
ture, does not enjoy any stability property. As shown in
Ref. 2 for A,P theory and in Ref. 3 for Yang-Mills
theories, the one-loop effective potential is obtained by
minimizing the expectation value of the shifted, linear-
ized Hamiltonian in a Gaussian state. Now, the linear-
ized Hamiltonian may exhibit well-known pathologies,
such as unboundedness from below, which show up in the
appearance of unphysical imaginary parts, and there is no
guarantee, in principle, that, by increasing the accuracy
in A', one also gets a better estimate of the ground-state
energy.

The above arguments suggest that the second ap-
proach, based on the variational method, is clearly ad-
vantageous and necessary in those cases in which quan-
tum fluctuations can sizably change the naive expecta-
tions based on the classical potential. Clearly, in this
second framework, both the estimate of the ground-state
energy and the general validity of the various statements
concerning the occurrence of the spontaneous symmetry
breaking strongly depend on the subspace explored in the
variational procedure. For instance, as discussed in Refs.
4 and 5, in the Gaussian approximation, spontaneous
symmetry breaking is discovered as a sensible
phenomenon in pure A,P theory. The statement, being
of variational nature, implies that, within the subspace of
normalized Gaussian states, the symmetric state with
( P ) =0, the perturbative vacuum, is not the lowest.

No definite statement, however, can be drawn concern-
ing the possible existence -of symmetric, non-Gaussian
states of still lower energy. In particular the property of
the exact effective potential, its convexity, ' is not
recovered in its Gaussian approximation. The question

then naturally arises of finding variational approxima-
tions that enjoy this fundamental property and, at the
same time, allow one to understand spontaneous symrne-
try breaking.

In this paper we shall address, in Sec. II, the question
of the convexity of the variational approximations to the
effective potential in the case of the double-well potential
of quantum mechanics. In Sec. III we shall discuss the
case of quantum field theory.

II. DOUBLE-WELL POTENTIAL

In this section we shall consider the quantum anhar-
monic oscillator whose Hamiltonian is

——'kix +—x
2m ' 4~

with A, )0. The efFective potential is defined as

V(x ) =min(&) ( g~H ~ g),

(2.1)

(2.2)

where [1(] is the set of normalized quantum states for
which

&t(~x ~1() =x . (2.3)

We shall (i) summarize the main features of the single-
Gaussian approximation to the effective potential, then
(ii) discuss the results obtained by using, as a trial state,
the linear superposition of two Gaussian wave functions.

A. Single Gaussian

In this approximation we calculate the energy expecta-
tion value among the normalized Gaussian functions

P(x )=, —exp
1 1 (x —x)

2' (2A)

Introducing the dimensionless variables

which satisfy Eq. (2.3); they depend on two variational
parameters x and o., so we have

(2.5)
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1/2

we have

1

A,A

3nrrtin '

1/2

(2.6)

E(x,o )= Z(f, g),k
(2.7) -1.0—

where

2

Z(f,g)= — f'+ —f' (1 —,'f')+——.(2.8)
4 2 24 4g '

32g

The Gaussian effective potential is obtained by minimiz-
ing Z(f,g ) with respect to g. From the equation
BZ/Bg =0 we get

-1.5-

g = —1+ 'f+-
4g

(2.9)
FIG. 1. The symmetrical functions Z(f) (solid line) and

Z(f ) (dashed line) are plotted at @=0.1 for positive f. Beyond
the minimum of Z(f } the two functions become equal.

(2.10)

and setting g (f ) as the solution of the Eq. (2.9), we define

Vo
~ f =Z(f g(f»

k'

By using Eq. (2.9) we find

de 2 2 k=f[g'—(f) ,'f'] &——
From this derivative we see that VG has extrema at

=0

(2.11)

(2.12)

and at those values f for which

g'(f)= 'f'- (2.13)

The equation for f can be written, using again Eq. (2.9),

show that the Gaussian potential in the weak-coupling
limit (e ((1)has two nonsymmetrical absolute minima at
+If I

located near the minima of the classical potential
set in a dimensionless form (If,=+&6), while f=0 and

+I flier are a local minimum and local maxima, respec-
tively.

We notice that in the weak-coupling regime the single-
Gaussian approximation to the effective potential gives,
at the absolute minima, a reliable value of the ground-
state energy. This happens since the shift of the energy
levels in the two wells due to the tunneling is exponential-
ly small:

(2.14) AE
E

1-exp (2.18)

and the value of Z(f ) at f=f is

z(f ) = —
—,'+-,' If I' —

—,', If I' . (2.15)

However the single-Gaussian approximation, at least for
small e, does not enjoy the fundamental property of con-
vexity for each value of x (see Fig. 1).

We can easily get solutions of Eq. (2.14) for small e:

Ijl =
I o(~)I,

Ijl.=&6—
I
o(e)

I
.

(2.16)

B. Double Gaussian

A natural way to go beyond the single-Gaussian results
is to consider, as a trial wave function, the superposition

The values of Z(f ) at the extrema (2.12) and (2.16), g(x ) = ga, ( ox, ,x, )+a2gz(x, crz, xz), (2.19)

z(lf I
)= —-', + lo(e)l,

z(lf I~ ) )z(0)= —
—,'+ lo(e) I,

(2.17)
where g, and gz have the form of (2.4) and a, and a2 are
real parameters. The energy expectation value, using
again Eqs. (2.6), is now



1950 V. BRANCHINA, P. CASTORINA, AND D. ZAPPALA

&]&zT 3e +6eg+gE(f],fz g] gz ~] ~z)=
&

~]Z(f],g])+]zzZ(fz, gz)+ eg ]gz(1 —r) —e—X+
g1+g2 12 g, +gz

(2.20)

where

g]gz (fl fz)'7—
g1+g2

(f]g] +fzgz)'x=
g1+g2

1/2

g1+g2
exp

2

(2.21)

u1+u2+2CZ1u2T =1 . (2.22)

Moreover we want to express the effective potential
uniquely as a function of X, the coordinate expectation
value for g(x ). Since in our case it is

1/2

Now we have to optimize six variational parameters, but
we can eliminate one of them (az) by using the normali-
zation condition for g(x ):

The weak-coupling analysis performed so far shows
that, to a very high accuracy, the exact effective potential
can be reproduced by exploring our limited subspace.
The effective potential, in this regime, is flat within the
region enclosed by the classical minima, the energy gain
due to the tunneling being exponentially small. Strictly
speaking, the absolute minimum should be at x =0 but
the difference is out of reach of our numerical analysis.
In this sense one can conclude that there is no spontane-
ous symmetry breaking; however, our analysis of an al-
most flat effective potential could have some relevance in
the quantum-field-theoretical case where, as we shall see
in Sec. III, the effective potential is exactly flat in the
infinite-volume limit, and one needs some further indica-
tions to understand, in this case, the occurrence of spon-
taneous symmetry breaking.

Indeed a simple argument to weight degenerate quan-
tum states is to calculate the density probability for the
various configurations. In our case one has to compute

(2.26)

with

=—y+ —a —a + (1—a —a },(2.23}2 2 g1 g2 2 2
1 2 + 1 1

where f„(x) is the optimal wave function at which

and

x =(1T„ixiy„& .

(2.27)

(2.28)

we can use Eqs. (2.22) and (2.23) to write

k Z(f, w, g, ,g, a, ) . (2.24)

The above procedure is the variational counterpart of the
intuitive statement that in the weak-coupling regime
(e((1), the system possesses two very different time
scales, exponentially [exp(1/e)] decoupled, related to the
tunneling probability. For a=0. 1 we find

From Eqs. (2.20) and (2.23) follows that Z is symmetr]-
cal in the sense that if, with f fixed (f=f '

), we
get a minimum of Z for the configuration

[f]',f gz;, gz, a a]z], then, at f= f', we obtain t—he
same value of Z for [ fz, f;,gz, g a]z,—a—' ].]

We obtain the effective potential VDo(f) in this ap-
proxirnation by a numerical minimization of Z with
respect to w, g]gz, a], keeping fixed f:

1/2

X=+2.4X

1/2

X =+2.OX

1/2

X =+I.OX

W(x ) =0. 1486 X
1/2

W(x }=5.9 X 10 ' X

' 1/2

W(x ) =2.0780X

1/2

VDo(f )= Z(f, w(f ),g, (f ),gz(f ),a](f )) .
k

(2.25)
X =0, W(x ) =5.7 X 10 X

1/2

For small e, VDG is convex since it has a single well shape
with a flat central region. In Fig. 1 Z(f ), for @=0.1, is
shown. In this case we find the value

Z = —1.429 604634 009(693 )

with the interval

—2.427 545 935 4( 337)(f (2.427 545 935 4( 337) .

The above results show, essentially, that only the pure
Gaussian configurations have a nonvanishing probability
density.

By increasing e, our double-Gaussian approximation to
the effective potential is no longer convex downward.

At @=1we obtain
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x =+2.1710X, VDo(X) = —0.8419 X
with

(3.9)

k
x =0, VDG(x ) = —0.8354 X

where the two absolute minima are obtained by superim-
posing two closely located, asymmetric Gaussians, one of
which is centered near the minima of the classical poten-
tial. In this case, due to strong tunneling, one can im-
prove upon the x =0 configuration, which is always ob-
tained by combining two symmetric Gaussians.

In our opinion, this is an interesting feature showing
that in the strong-coupling case one has to enlarge the
variational subspace in order to recover the convexity
property of the effective potential. This can be obtained
in a systematic way by taking suitable combinations of
the absolute minima in which the superposition
coefficients become additional variational parameters.

III. QUANTUM FIELD THEORY

Let us now consider the simple case of a self-
interacting, real, scalar field governed by the Lagrangian
density

(3.1)

where U(P) is a fourth-order polynomial in P, i.e.,

II(F ) being the solution of the equation BE /BQ =0.
As shown in Ref. 4, the requirement of zero renormal-

ized mass in the perturbative vacuum, i.e.,

Q(0) =0, (3.10)

implies the existence of two degenerate Gaussian rninirna
+F satisfying the self-consistency equation

0 (F)= F—
3

and one obtains

(3.11)

II F
VG (+F ) = VG (0)—

128m
(3.12)

It is clear that the Gaussian approximation does not
yield a convex effective potential and therefore one
should not consider it, inside the region enclosed by the
absolute minima, as a good approximation. As in the
case of quantum mechanics, it is not difficult to improve
on this situation

Let us denote by 4+[/] and 4 [P] the two Gaussian
wave functionals corresponding, respectively, to the two
absolute minima +F and —F, and construct the new
class of states (a and P being real numbers)

U(Q)= —,'ms/ + —,P2 2 ~ 4 (3.2) 'p~l 4]=a++ [0]+0+ [0]- (3.13)

and A, )0. The corresponding Hamiltonian density opera-
tor

where the index F denotes the field expectation value

(3.14)

&=—,'m + —,'(VP} + U(P) (3.3) The norm of this class of states is

can be variationally evaluated within the class of normal-
ized Gaussian wave functionals, '

+G[P]=(DetG) ' exp —
—,
' f d xf d y[P(x) F]— with

(3.15)

(3.16)

X G '(x, y)[P(y) —F]

(3.4)

and one finds

7 =exp —,'F fd'x f d y—G '(x, y) (3.17)

depending on the two parameters F and 0, respectively,
associated to the field expectation value

(3.5)

or, recalling Eq. (3.7},

'T=exp[ VF A(F)], — (3.18)

and to the mass of the fluctuation

(+Glg(x)$(y)l+G) =F +G(x, y),
with

(3.6)

V being the quantization volume. Therefore when
V~ ~, 7 ~0 and each of the states [(3.13)] has the same
energy as the Gaussian minima but field expectation
value

d 3k I V(X—y)
G(x, y)= (2')' 2(k'+II')'" (3.7} F=(a P)F— (3.19)

The effective potential VG(F), in the Gaussian approxi-
mation, is obtained by minimizing the energy density
with respect to 0, i.e.,

and now

a+@ =1. (3.20)

E(F,Q(F))= f d x VG(F), Therefore the energy density, evaluated within the class
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of states [(3.13)], is exactly flat in the region

—I ~F+F . (3.21)

One may wonder, in this situation, about the meaning of

spontaneous symmetry breaking. Again, just like in the
quantum-mechanical case, let us compute the probability
of the various degenerate quantum configurations [(3.21)]
enclosed by the Gaussian minima. We find

(F—F ) VQ(F ) (F+F ) VQ(F )
FWF = 4 F —aexp

2
+ exp

2

2

(3.22)

and, when V~~, only for F=F, (P=O), or
F= F, (a—=0), the probability is not vanishing.

Similar considerations can be extended to the continu-
ous symmetry case, as for the O(N) theory considered in
Ref. 16, with the obvious modification that the flat region
is now enclosed by a (N 1)-dim—ensional boundary. This
case, as discussed in Ref. 16, is particularly interesting
since, for large N, the Gaussian potential becomes an ex-
cellent approximation to the exact effective potential (at
the minima), as can be deduced from the existence of
N 1 massl—ess bosons (when N~ ~ ), in agreement with
the Goldstone theorem.

This concludes our brief discussion of field theory. The
essential point is that a very good approximation to the
exact effective potential can be easily constructed starting
from the single-Gaussian approximation both in quantum

mechanics, in the weak-coupling regime, and in quantum
field theory.

By the way our field-theoretical analysis is restricted to
translationally invariant configurations, where the total
volume of the system plays an essential role in suppress-
ing the quantum superposition. This last effect is expect-
ed to play an important role, however, when dealing with
solitonlike, finite-energy classical configurations depend-
ing on a continuous parameter. Work is in progress in
this direction.
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