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The bounce and its negative eigenvalue: A new approach
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We derive an exact expression for the static bounce solution for kP' theory with broken symme-

try. We also propose a new approach to compute a nontrivial real contribution to the generating
functional around a classical bounce-type solution avoiding problems due to the presence of a nega-
tive eigenvalue. We get this by using the arbitrariness in the mass scale of Wick ordering for the
A,t)) model in dimension d = 1+ 1.

I. INTRODUCTION

The problem of the contribution of classical static solu-
tions to the generating functional in field theories has
been extensively studied. ' In particular, the classical
solutions associated to negative eigenvalues (bounce-type
solutions) has been studied over the last two decades.

As bouncelike solutions are classically unstable (be-
cause of the presence of a negative eigenvalue), the usual
treatments lead to a complex contribution to the generat-
ing functional.

Another important point that has been discussed a lot
in the literature is the convexity of the effective potential
in the quantum field theory of the double-well potential.
The solution of this problem has been suggested by Calla-
way and Maloof, through a Maxwell construction of the
effective potential. The Maxwell construction was ob-
tained by Fujimoto, O'Raifeartaigh, and Parravicini and
Bender and Cooper by summing over the contributions
from the degenerate minima of the potential in an in-
coherent way. This is well justified when the separation
between the actual minima is sufficient to guarantee the
independence of their contributions. However, when the
overlapping between the two Gaussian approximations
around the two minima are not small, this approach
clearly fails and we might try to use nonconstant classical
solutions which interpolate between the two minima. We
are interested in looking for solutions that give informa-
tion from one minimum and the other when we do not
have an exact degeneracy of the potential. This is a way
that one minimum can get information about the location
of the other. The solution that gives this behavior is the
bounce-type solution. This kind of solution has been con-
sidered as a small correction to the kink solution. '

However, the fact that the bounce has a negative eigen-
value in the Schrodinger equivalent problem indicates

that this is not the case.
In this paper we derive an exact expression for our

bounce solution of the double-well potential of the model
with negative squared mass, in the presence of a con-

stant external current J. There is a critical current J,
such that for currents smaller than this one we have two
minima and the bounce solution stays most of the time in
the relative minimum, goes to the other side of the bar-
rier and returns. We have been able to find an exact alge-
braic solution for 0 &J (J, . Another point is to calcu-
late the contribution around this classical solution and to
show that the presence of the negative eigenvalue in the
Schrodinger equivalent problem gives a nontrivial real
contribution to the generating functional. This has been
done already for the kink as well as for kink-antikink pair
solutions.

In Sec. II we present the model we consider in this pa-
per and derive the exact algebraic expression for our
bounce-type solution. We show that the bounce solution
in this model can be written as a superposition of a kink
and an antikink in a background constant field.

In Sec. III we point out that any contribution to the
partition function must be real and this is assured by the

term. To neglect the contributions from the cubic
and quartic terms is only possible if the quadratic term
has no negative eigenvalue. To solve this problem, we
propose a new approach, by using the arbitrariness in the
mass scale of Wick ordering. In Sec. III we also calculate
the contribution from the bounce solution to the generat-
ing functional. The fact that this quantity is an intensive
one allows one to show that only the contributions com-
ing from the negative eigenvalue and the continuum spec-
trum of the Schrodinger equivalent problem are relevant.

In Sec. IV we present the conclusions of our work.
In the Appendix we study the asymptotic behavior of

the wave functions of the Schrodinger equivalent prob-
lem.
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II. AN EXACT CLASSICAL STATIC
SOLUTION —THE BOUNCE

Let us consider a classical two-dimensional Euclidean
field theory with a Lagrangian density of the form

X[/, J]= —
—,'(r}„P) —8(P),

where

(2.1)

8(P) = —(P' —a')' —JP
4

(2.1a)

is a potential depending on the external constant current
J)0.

We are looking for a static solution. The static solu-
tions must satisfy the equation

the potential barrier associated with the other maximum
and returns in the remote future to the original one.
These characteristics will be made more clear below.

In fact, because of the particular form of the potential—8(P) the problem has algebraic exact solutions, and the
integral (2.4) can be calculated in a simple way at least
in the three cases E = —8((()

& ), E = —8((()2), or
E = —8(P3), when the total energy is one of the potential
extrema.

As mentioned before, there exists a value of J, J=J,
for which the minimum of 8(P) at P=P, becomes an
inflection point. We shall call P, and Pz, respectively, the
smaller and the greater of the two maxima of —8(P) (see
Fig. 1). For 0 &J & J, the two maxima are present and
are given by

=gP(x)[P'(x) —a ]—J =8'(P),
dx

(2.2) 2Q—cos
3

8+ 2m.

3

8(P)=E,—
which is equivalent to

2
1 d(t (x)
2 dx

(2.3)

and

2a 8—cos
3

(2.5)

where E is the an arbitrary constant.
The formal solution of (2.2) is given by

1 f P(x)

&2 "&o v'E+8((()')
(2.4)

where the critical" value of the external current is

32J, = ga
3 3

(2.6}

with the initial condition Po=P(xo).
We see from (2.3} that this problem is formally

equivalent to the one-dimensional motion of a particle of
unit mass, with total energy E subject to a potential
—8(P), where the x coordinate plays the role of time and
P(x) the role of position.

There is a particular value J =J„see the discussion
below, for which JE (

—J„J,), the potential —8(P) has
two maxima (see Fig. 1). From now on we are consider-
ing the case 0 J (J, .

We are looking for a static solution having a finite en-

ergy such that starting in the remote past from the local
(nonabsolute) maximum of —8((t ) it suffers reflection on

and the angle 0 is defined by

1tan8= —(J —J )'
C (2.7)

=X X0 (2.8}

Now, to obtain a solution of the field equation for any
0&J &J„that is, to calculate the integral in (2.4) in the
case we are interested in, we take the limiting case
E = —8(P&), and we rewrite the potential 8(P) as a poly-
nomial in (P —P, ). After this is done, Eq. (2.4) takes the
form

P(x) dP'
v 2 &o (p' —p))[A +8($' p))+C($' —$)) ]—

where

O~J ~ Jc 3 =—(3gf —a') =
—,
'8"(P, ), B =gP), (2.9)

and

0 j2

C=-g
4

We remark that A )0 for any value of JE [0,J, ), since it
is the second derivative of 8(P) respective to P at P=P,
and P& is by definition a minimum of 8(P).

The integral in (2.8) is easily calculated, and it gives,
after some rearrangements,

FIG. l. The shape of the minus potential function 8(P) for
JE (O,J, }. We draw the line for the energy E = —8(P, ), and P
is the "position" where the unit particle reflects on the other
side of the barrier. P** is the position of the unit particle when
the motion is unbounded.

P(x) =P, +
—+2A (x —xo)

4ANe

(Ne ' 8)' 4AC- ——+2A (x —x )
(2.10)

where x is an arbitrary constant which reflects the
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translational invariance of the solution and P2 (a 2 (2.12)

[2&A [A+a(y, —y, )+C(y, —y, )2]'"
0 1

+8(go —P, )+2A I .

We note that lim + „qY(x)=P, .

(2.10a)

Wz2+4AC —B'=O, (2.11)

where z =exp[ —&2A (x —xo)], which for having a pos-
sible solution (z ~ 0) gives, after using (2.9), the condition

To see if there is any restriction to the value of X, we
impose the condition dP(x)/dx=O, and this gives the
quadratic equation 1 &4ACx = arctanh

2A —B
(2.13)

it is possible after some algebraic manipulations to
rewrite (2.10) in the more convenient form

which is always true.
So, we conclude that we have only one point x where

the derivative d$(x)/dx vanishes, and this fact is in
dependent of the chosen value of X. So, let us choose
dP/dx=0 for x =xo, which corresponds to set
N ='t/B 4A—C. Then, defining a point x by the rela-
tion

P(x) =P, +—1 tanh

' 1/2 1/2
A A

2
(x+x —x ) —tanh — (x —x —x )0 0 (2.14)

1 1 J——ln +const .
2v'2g a

(2.15)

This is a solution of the bounce type, ' which starts at
P=P, for x ~ —~, goes up to P=P* for x =xo [see Fig.
1 and remember that we are working in the case
E = —8(P, )], and goes backwards to P=P, for x ~+ ce.
For this model, the bounce can be written exactly as a su-
perposition of a constant and of a kink and an antikink
centered, respectively, at —x+x0 and x+x0.

Next, we study the behavior of the solution (2.14) for
small values of J, obtaining a divergent behavior for X in
the limit J~O+:

lim P(x)=a .
J 0

This contradicts the usual belief that the bounce solu-
tion can be constructed by making small corrections to
the kink configuration. '

From (2.15) we see that as J becomes smaller and
smaller the separation between the kink and antikink
components of the solution (2.14), D =2x, grows
indefinitely.

Next we calculate the classical action associated to the
solution (2.14), considering the system enclosed in a rec-
tangular box of sides 1.and T:

This behavior points out that the bounce solution is not
analytic in J and if we take the limit J~0 we cannot re-
cover the kink or the antikink configuration. Actually
the limit J~O+ gives

where the factor T comes from the integration over the t
variable, since as P(x) is a static solution, the integrand of
the action does not depend on t. We get

S =LT8(P, )+ f dx cosh
8C —L/2 2

1/2
TA2 4 A

(x —xo+x) + dx cosh
8C —L/2 2

1/2
I

. 1/2

(x —xo+x ) cosh — (x —xo —x )
A

(2. 17)

We see from (2.17) that, apart from a constant propor-
tional to g(P, ), the action is composed of two terms (the
first two integrals) which give, respectively, the action of
the kink and antikink components of (2.14), and a third
integral in (2.17) which corresponds to the overlap of the
kink and antikink components.

The first term has a volume type of divergence and it is
exactly equal to the action of the constant configuration

The other terms in (2.17) have only a superficial
divergence.

This volume divergence is responsible for the nonzero

contribution to the free energy coming from a single
bounce. Differently, in the case of a kink (antikink) we
have to consider the approximation of a dilute gas of
such configurations to get a nonzero contribution even at
the classical level.

III. THE CONTRIBUTION OF THE BOUNCE TO
THE GENERATING FUNCTIONAL —A NEW APPROACH

In this section we evaluate the one-loop contribution to
the generating functional corning from the classical solu-
tion obtained in the preceding section and its neighbor-



1942 C. A. BONATO, M. T. THOMAZ, AND A. P. C. MALBOUISSON 41

hood. The problem is treated in dimension d =2(1+1).
In this case, the superficial degree of divergence D for any
graph is given by D =2—2 V, where V is the number of
vertices (remember that divergent graphs have D ~0).
The only possible divergent graphs are those with V=1
(tad poles), which are excluded by Wick ordering of the
products of fields operators, corresponding to the renor-
malization of the ground-state energy. "

The calculations will be done inside a two-dimensional
box A of volume I.XT with periodic boundary condi-
tions and at the end we take the limit I., T~ ~. Because
of the use of the periodic boundary condition in a rec-
tangular box centered at the origin of coordinates, we
must set the value of the constant x0=0 in the bounce
solution P(x). Thus, the partition function in Euclidean
space is (we are using the shorthand notation d V =dx dt
and d V' =dy dt '

)

—1 a
(3.3)

Because of the existence of this negative eigenvalue,
the quartic term of the exponent of (3.1} cannot be just
thrown away, unless we conveniently modify the quadra-
tic part, in order to assure that its spectrum is positive
definite. We show in the following that this may be done
by changing the mass scale in Wick ordering.

For this purpose let us recall some formulas for chang-
ing the scale m o to another one m (Ref. 11):

with A and x given, respectively, by (2.9) and (2.13).
Since the zero eigenvalue of this Schrodinger operator

is given by the derivative of P(x), which has a node, then
we have a negative eigenvalue E, (the ground state of
operator 6). It is straightforward to compute E, in the
lowest order in J (Ref. 12):

ZA[J]=N ' f2)/exp —f dV:—,'(B„(t)

+ —(P —a ) —JP: & (31)
0

:P (x): 2= P(x.): 2 bC—(mo, m ),
0

:P (x): 2 =.(t (x): 2
—3b C(ma, m )P(x),

0

(3.4a)

(3.4b)

with the normalization constant given by

N= f%/exp —f dV: —,'(B„P):, , (3.1a)

where mo is an arbitrary mass scale introduced for Wick
ordering of the products of operators, since the quadratic
term in the field coming from the potential (2.1a) has a
negative coefficient which cannot be interpreted as a
squared mass parameter.

Our aim is to calculate the contribution coming from
the classical solution (bounce), obtained in Sec. II, and its
neighborhood to intensive quantities, such as the generat-
ing functional F[J]= lim~ „(1/A)lnZ„[J] for small
J&0. We are interested in studying this quantity, once it
gives information about symmetry breaking, and we are
able to derive expressions in closed forms.

The usual way to treat the quantum correction from
the bounce is to neglect the cubic and quartic terms in
the potential 8(P) expanded around the bounce solution
[see Eq. (2.1a)]. In practice, this amounts to obtaining
the spectrum of the operator 8= —

—,'[8 —8"(P(x))]
which in the case of an expansion around the bounce
solution has a negative eigenvalue in addition to the zero
mode. The contribution from the zero eigenvalue is
known in the literature. '

In our case, the operator 8 is given by

and

:)4(x): &=..P (x): &
—6b, C(mo, m ):P (x):

0

+3[DC(mo, m )] (3.4c)

where EC(mo, m )=ln(mo/m )/(4m).
To proceed further we expand P(x) around P(x),

P(x, t) =P(x)+rI(x, t), (3.5)

Z„[J]=N 'e ~)f2)riexp —f dV:—'(B„g)

+ —[3$(x}—a ]rl
2

+gg(x)ri +—g:
0

and the partition function (2.1) may be rewritten in the
form

0= —
—,'a'+ V(x),

where

1/2
A

(x —x)
2

1/2

+sech
2

(x+x)

3V(x) = A 1 ——sech
2

(3.2)

(3.6)

and $[$(x)] is the classical action of the bounce solution
(x).
We can neglect the cubic and quartic terms that appear

in expression (3.6) only if the quadratic term is positive
definite. This can be done by exploiting the arbitrariness
in the scale of Wick ordering. Therefore, we perform a
change of mass scale modem, which gives, from (3.4)
and (3.6),
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Z [J]=N 'e (~("'}exp g 2 m
ln

(Sm) mo

2

A exp f dV ln A(P)
4m m Q2

2
mQ

2

X f2)g exp —f 1V:—,'(B„g) + A (P)— ln
m

$(x)ln
4~ 2 rt+gP(x}rt + —g4:, . , (3.7)

m Q
4 m

A(P)= [3P (x, t) —a ]; (3.8)

where we have introduced, for any configuration P(x, t),
the notation

To treat the linear term in the exponent of (3.7), we
make the change of variables

rt(x, t) =g(x, t) f —1V'8' '(x, t;y, t')F (y),

in particular, we have A (P, ) = A. Then, we may circum-
vent the negative eigenvalue problem by imposing that
the operator

with

2

F (y ) = — ln
2 (()(y),

4m
(3.12a)

2
mQ

28'= —8 +2A (P)— ln
4m

(3.9) and 8' ', the operator inverse of 8', is given in terms of
the energy eigenfunctions of operator 8', that is,

has a positive spectrum. This may be accomplished by
the condition

1 2am
(x, t) = —y„(x)e, co =, m EZ,

3 2

ln
8n. IE, I

.
mQ

(3.10)

by the formula

(3.13)

where E, is the negative eigenvalue given by formula
(3.3) for small J. Thus, if we choose rn such that

(x, t)5„'(y, t'}8' '(x, t;y, t') = g
n, m nm

(3.14)

m mQexp E8m

3g
(3.11)

the operator (3.9) has no negative eigenvalue. If the strict
equality is taken in (3.10) or (3.11), the operator 8' will
have a zero eigenvalue, but to avoid this we may take
m =moexp[(8n/3g)(E

~

—.5)], with 5)0 and small,
and, put 5=0 at the end of the computation. From now
on, we take for simplicity the equality sign in (3.10} and
(3.11).

Now we may neglect the cubic and quartic terms in the
exponent of the functional integral (3.7), since the qua-
dratic piece corresponding to the operator 8' in (3.9) is
well defined.

where we are summing the discrete and continuum part
of the spectrum. En are the energy eigenvalues, that is,
E„=e„+(2@mIT), and e„being the eigenvalues satis-

fying the Schrodinger equation

d2
+2A($)+2IE, I y„(x)=e„g„(x) .

dx
(3.15)

For later convenience, let us introduce a function
ef (x) such that the Schrodinger equation associated with
the operator —

—,'8 +of(x) has the same number of
bound states as the operator 8'.

Then, inserting the change of variables (3.12) in (3.7),
the partition function may be written as

ZA[J]= lim N' 'e (~}exp —
2

ln
3g

A —+ oo (8n. )'
q~Q

m 1 m
A exp ln f dVA(P)

mQ 4' mQ A

Xexp —f dV dV'F(x)8' '(x, t;y, t')F(y) f2)((x, t)exp —f dV: ,'g(x, t)8'g(x, —t):
2 A, A' A

(3.16)

where

N'(e, f;A)= f2)(exp —f dV:[ 2(d„g) +Ef (—x)g ]:
A

(3.168)

We proceed now to calculate the contribution from the bounce and its neighborhood to the generating functional:

F[J)= lim lnZ„[J] .
1

L, T-~ LT
(3.17)

From (3.16), (3.16a), and (3.17) we obtain, by rewriting the Wick-ordered product in terms of simple products of
fields,
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F[J]= lim
L, 7~oo

2

S[P]— ln
(Sn) mo

2

+ ln
2

VA + VA +E
&

C2

+ —f dV dV'F(x)8' '(x, t;y, t')F(y) ——ln
1 1 1 1 det'(8'/2)

LT 2 w, w'
' ' ' LT 2 det[ —,'()2+ef (x)]

(3.18)

where

0 1 d k
m (2~)2 k2+m2 (3.19)

Keeping only terms that give a nonvanishing contribution at the limit L ~~, T~ 00, we find, after some manipula-
tions,

F[J]=—8(P, )—(Z, )2 2IZ &I&

2g g

+ lim —,
' V V'F x ' ' x, &;y, &' yI,T~ oo LT A, A'

0

+ dV A x +E ] C 2
—

—,'ln
A det[ —i) +2ef (x)]

(3.20)

Let us call, for short, I the last two terms between the large square brackets in Eq. (3.20). To calculate its contribu-
tion in the limit A~ ~, some preliminaries are needed: we assume that the function f (x) is such that
lim~„~ „f(x)=

—,', and moreover that the operator d +2ef —(x) has the same number of bound states as the operator
8, which will be denoted by A,„, all of them being greater than zero. We use the finite-volume (discrete) version of
(3.19):

00 00

C i= g g (k+tv+m )LT I

where

coI=, n, l =0,+1,+2, . . . .
2mn 2nI

(3.21)

(3.22)

Keeping in mind that the relevant contribution from the coefficient of C 2 in (3.20) is the one that cancels the diver-

gences in the quotient of the determinants and also that since F [J] is an intensive quantity, only the continuum spec-
trum contributes. It is not diScult to get the following expression for I:

1 1 1I = lim —M02
„co +k(+mp~0

N

ln
n =0 I = —oo

E'~ +NI2

X„+~2,
ln

pg
= —oo I= —oo

M2 +k +~2

e+k +co

where

I,'=A /+ E, /=,'a"(y, ) (+ E, ( . (3.23a)

In the limit A~ ~ (3.23) becomes, after some calcula-
tions and changes of variables,

Again, in an analogous manner as for the preceding
calculation of the quantity I, only the continuous part of
the spectrum of the operator 8' contributes. Neverthe-
less, it is important to point out that the presence of the
term (3.25) in formula (3.20) is due to the existence of the
negative eigenvalue of the operator 8 given by (3.2). Us-
ing (3.13) and (3.14) we may write (3.25) in the form

MOI=— 1 —ln
8m.

MO

m
(3.24)

Coming back to the formula (3.20) let us evaluate the
contribution

Q =—lim
1 . 1

2L, T-~ LT
n, m

2
dVF x „xt

(3.26)

Q:— lim —J dV dV'F(x)8' '(x, t;y, t')F(y) .1 1

I., T~oo LT 2 A A'

(3.25)

where the summation goes over both discrete and con-
tinuous eigenstates, and ~here we have used the fact that
the function F(x) defined by (3.12a) is real.

Let us look at separately in (3.26) the contributions
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from the discrete and the continuum parts of the spec-
trum of the operator —d /dx +2[A (P)+ IE

& I]. Us-

ing (3.13), it is easy to see that the contribution of the
discrete spectrum expression (3.26) is given by

where if periodic boundary conditions are taken we have
that, for k„defined by k„=lim „~ „k„(x),

2~n 26' 2~n 25'

N 2

Q =—lim —g f dx F(x}y„(x)
2 L~oo L „& —L/2

(3.27) n =0, +1,+2, . . . , (3.29)

where N is the number of (bound) states. But, since g„(x)
is a bound eigenstate and F(x) goes to a constant as
IxI ~~, the modulus of the integral in (3.27) is a finite
quantity. Then, taking into account that N is finite, we
conclude that (3.27) vanishes, which means that the
discrete part of the spectrum of the operator—d /dx +2[ A (P)+ IE

~ I ] gives no contribution to Q.
In the Appendix we discuss the form of the wave func-

tions associated with the continuous part of the operator—d /dx +2[A (P)+IE, I]. They may be chosen with
definite parity, normalized, and have the form

and 5'(5') is the phase shift depending on n, f„(x) and
g„(x) being bounded functions in the interval
x E [ L /—2, L /2 ].

Now, going back to the expression (3.26) for Q, we can
calculate the contribution from the continuum part of the
spectrum.

We restrict ourselves to the wave functions of even
parity, since F(x) is an even function. Let us take a fixed
arbitrary M, such that M &&1 and let —x, +x be the
minima of the potential A(P(x))+ IE, I. For x »Mx,
we get, from the Appendix,

y„(x)= —f„(x)cos[k„(x)x—5'„]1

L
(3.28a)

= 1
y„(x)= —cos(k„x —5'„), x »Mx .

L
(3.30)

or

g„(x)= —g„(x)sin[k„(x)x —5'„],1

L
(3.28b)

Inserting (3.30) in (3.26), using the fact that the function
F(x}tends exponentially to a constant Fo as IxI ~~, we
obtain, retaining only the terms that give nonvanishing
contributions as A~ ~,

1 . 1 1 2 L/2 L/2
Q =—lim —g FD f y„(x)dx +2 Re Fo f dx [F(x) Fo]y„(x)—f y„(x)dx2L-~ L E„o —L/2 —L/2

(3.31)

Let us examine the integral I„=f ', &zy„(x)dx. We
have, since y„(x) is an even function,

L/2I„=2f y„(x)dx

=2 f™g„(x)dx+ f y„(x)dx
0 Mx

where M and x have been defined previously. Estimates
for the integrals that appear in (3.32) are

0
(3.37)

F[J]=—

Replacing (3.37) and (3.24) in (3.20) and using (3.10)
with the equality sign, we finally get

2IE gl'@',

6g 8"($,)+2 E
~"(y, }+2IE,I

f y„(x)dx —Sup[f (x)](Mx )=O(L 'i') (3.33)
MX 1

0
" v'L

and, using the boundary condition sin(k„L/2 —5'„)=0,
we have

y„(x)dx =O(L '~
) for nWO (k„&0) . (3.34)

Mx

For n=0 (ko=0), we have

0"(P,)+2 E
X 1 —ln

2mo

This expression is valid for JE (O,J, ).

IV. CONCLUSIONS

(3.38)

L/2
y„(x)dx = cosfio .

Mx 2
(3.35)

Inserting (3.35), (3.34), and (3.33) in (3.32) and in (3.31),
we obtain

1 FoQ= — cos 5O,
2 Eoo

(3.36)

or, from (3.12a) and (3.23a), and using the fact that 5O=O
is an acceptable solution for the phase shift problem (cf.
the Appendix), we have then that

We have shown that despite the fact that the bounce
solution is unstable at the classical level it gives a real
contribution to the generating functional for the model
we are considering. Of course, we can imagine other pos-
sibilities for handling the negative eigenvalue in the path
integral, which possibly wi11 lead to a better approxima-
tion scheme to the complete integral.

To make contact with other ways of computing ap-
proximations to the generating functional we can com-
pute the vacuum expectation value of the field (P) at
zero external current J=O. This is obtained by
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((t),,= lim
dF [J]

J~O

which grves, using (3.40}and (3.3},

72&3 —3 2ga
8~a 0

(4.1)

Of course, using J& 0 instead of a positive Jwill lead to

If we perform this computation by using an expansion
around the minima P( or Pz of the classical potential
(2.1a) we obtain

and for small a Eq. (4.4) tends to drag the vacuum expec-
tation closer to a zero value.

Of course, in oder for this to be effective we must have
a ratio 2ga/mo & 1 which is natural if we interpret the
Lagrangian density (2.1) as a zero mass theory with a
quartic and a negative quadratic interaction terms.
Therefore, the Wick-ordering scale mO should be con-
sistently a small parameter [it cannot be exactly zero be-
cause this would lead to a (infrared) divergence].

Hence, we have a possible mechanism for symmetry
restoration which results from the fact that we are begin-
ning with a tunneling classical field configuration between
the two classical minima.

(P&, = —a — ln
3 2ga

0 8+a m20
(4.2)
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for the absolute minimum Pz.
Comparing (4.1) with (4.2) and (4.3) we see that our re-

sult contains an additional term

72&3 2ga'
ln

8ma
(4.4)

which is a quantum correction to the classical value —a
and it is originated by the negative eigenvalue associated
to the bounce solution. The term (4.4} has an opposite
sign relative to the usual quantum correction

3 2ga
ln

8~a m2
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APPENDIX: WAVE FUNCTIONS OF THE CONTINUOUS
SPECTRUM OF THE OPERATOR:

—d /dx +2[A (Q}+IE, I]

We must investigate the Schrodinger equation

from (2.14) and (3.8) we have the explicit expression for
the potential:

V(x) = ~ (P)+ IE I

= A 1 ——sech
3 2—1 2

' 1/2

(x +x ) +sech
2

' 1/2

(A2)

(A5)(Z) eikz g a e
—z(n +s)

n=0
where A and x are given by (2.9) and (2.13). The points
x =+x are the minima of V(x) and A + IE, I its
asymptotic value.

We are interested in studying the wave function in the
asymptotic region, for e„&Ma [see Eq. (3.25a)) and for
Ix I

»Mx, M » 1. We make a change of variables, s (s —1)—(2ik —1)s + —k'=0,
4

(A6)

z =&23 x, A,„=—(e„—MD),=2 (A3)
which yields

and define a new variable co=e '; by equating coefficients
we obtain the condition

and write the hyperbolic functions in its exponential
form. Using (A2} and (A3}, Equation (Al) becomes s =ik+i

4

' 1/2

(A7)

d y„(z) —6
cjz

—(z+z) —(z —z)
+ X (z}

(1+e—(z+z))2 (1+e—(z —z))2 Thus, going back to the variable x, the wave functions
may be written in the form

y„(z) . (A4)

In the region x &x, we expand (A4) in power series,
rewrite the wave function as

+i /k x(x)=e g a „exp( —2n&A/2x), x &X,
n=0

(A8)
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where km ~m MO
We have an analogous formula for x & —x:

+ ii/k x
(x)=e g a „exp( —2n& A /2x), x & —x .

n=0

(Aga)

coefficients noted a „and a „, respectively, which give
two possible sets of eigenfunctions:

g—(x)=e g a —„exp( 2n+A/2x), x &x
n=0

(A9)

The potential in the Schrodinger operator
—d /dx +2V(x) is even. Therefore, we may choose the
eigenfunctions y„(x) with a definite parity. There are
two possible expansions of the type (A5) with the

I

and analogously for x & —x. We need only the even
wave functions. These can be written as a particular su-
perposition of y (x) and y (x) in the regions x & —x
and x &x; that is, (i) for x &x,

y'"'"(x)=cos(Qk x) g
n=0

(ii} for x & —x,

exp( 2n—&A/2x)+sin(Qk x) g
n=0

+
mn mn

exp( 2n—& A /2x); (A9a)

+
g'"'"(x)=cos(Qk x) g

0 2

—+
exp(2n&A/2x)+sin(Qk x) g

0 2
exp(2n ~/ A /2x ), (A9b)

and

y'"'"(x)=cos(Qk x —5 ), x »Mx (A10)

since the coefficients satisfy the conditions a +„=a+„and
a rnn amn

In order to obtain the asymptotic behavior of the wave
functions, we keep only the oscillatory terms

5 =arccos
a 0+a

2
(A 1 1)

k
2mm 25m

L L
nCZ . (A12}

Using the periodic boundary conditions, we obtain
2

y'"'"(x) =cos(Qk x +5 ), x « —Mx,

where

(A10a) Finally, we remark that using the expressions of
y'"'"(x) [cf. (A9a) and (A9b)j, 5o=0 is an acceptable solu-

tion.
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