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Energy-momentum tensor in scalar QED and the renormalization group
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We consider the renormalization-group equation satisfied by Green's functions of the energy-
momentum tensor in scalar QED. We consider the renormalization-group covariance criterion sug-

gested by Collins and show that this criterion (together with certain boundary conditions) when ap-
plied at a nontrivial fixed point A. *(WD), e* of the theory uniquely determines an energy-momentum
tensor. It is conjectured that this unique energy-momentum tensor may couple to an external gravi-

ty. We also consider the renormalization-group criterion in perturbation series in A. and e and
show that no energy-momentum tensor exists satisfying this criterion. We consider also an addi-
tional form of boundary conditions which determine a unique solution to the renormalization-group
criterion.

I. INTRODUCTION

Energy-momentum tensors in quantum field theories
are important objects and have been studied extensive-
ly. ' " In particular, so is the problem of finiteness and
renormalization of energy-momentum tensors. The prob-
lem of finiteness of an energy-momentum tensor is impor-
tant because the energy-momentum tensor acts as a
source of gravity and external gravity couples to matter
through an energy-momentum tensor. But an energy-
momentum tensor in field theory is not unique. The
energy-momentum tensor 0„,that couples to an external
gravitational field is however restricted by the require-
ment that its physical matrix elements between states of
matter particles

~
A ) and ~B ), viz. , (,B

~ H„, ~
A ) must be

finite. While this restricts 0", it does not uniquely fix it.
In renormalizable theories that do not involve scalar
fields, the situation is simple. Let S[(()] denote the fiat-
space action and let S;„[P,g] denote the minimal Ein-
stein action obtained by the standard prescription of re-
placing ordinary derivatives by covariant derivatives etc.
Then the energy-momentum tensor obtained via

6S;„6I„= v' —g 5g„„ ,
P1' ~Pl'

leads to an energy-momentum tensor with finite Green's
functions and gauge-independent physical matrix ele-
ments and hence this H„may be assumed to couple to a
weak gravitational field.

In theories with scalar fields, the situation is more com-
plicated. The energy-momentum tensor obtained via
S;„does not lead to finite matrix elements. In kP
theory, for example, one needs an improvement term of
the form (a„a„—a rl„„)p (Ref. 2). The question here is
whether the improvement term to be added can be ob-
tained from an action that is a finite function of bare pa-
rameters of the fiat-space theory. In the context of A,P
theory, this means that a finite energy-momentum tensor
should be derivable from an action S which is a finite
function of the bare field P, bare mass mo, and bare cou-

pling Ao (Ref. 9). As is well known the term
(a„a„—riz„a )P in 8„,can be derived from a term in S of
the form ,' fR—Pd "x T.hus one seeks an energy-

momentum tensor

8„„=8C„H, A.hatt
—', e (a„a„—a'g„„)P'((

p
(1.2)

derivable from an action

S[P'Ao mo p g]

=S [P tLo mn g]

mo—
—,'Ho A,tp, ', , e f RP d "xV' —g

p
(1.3)

where Ho(k, , m lp, , )isea finite number at a= 0 This gen-.
eralizes the idea of the Callan, Coleman, and Jackiw

If such a finite energy-momentum tensor exists then flat-
space parameters are sufficient to fix the interaction with
an external gravity. On the other hand, if one needs the
improvement term to be added with divergent coefficients
(involving negative powers of e), then this implies an
infinite renormalization of O„and signals a new parame-
ter in the action (corresponding to the arbitrariness asso-
ciated with an infinite renormalization), thus needing a
new experimental input.

We shall call 8„,of Eq. (1.2) with Ho(kott ', molp, e)
a finite function of A,o, mo at e =0 as obtained via a finite
improvement program of type I. As shown by Collins,
this program does indeed work with a unique Ho(e); a
function of e only. As shown in Ref. 9, Collins's energy-
momentum tensor is a unique energy-momentum tensor
of the form of Eq. (1.2).

An alternative finite improvement program has also
been suggested in which O„has the form '

1

(1.4)
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(CCJ) improvement term in which a finite improvement
coefficient —,

' appeared. As shown by Collins, his energy-
momentum tensor is a unique finite energy-momentum
tensor of this kind also. We shall call this a "finite im-
provement program of type II" and when it succeeds, it
implies that interactions with external gravity are deter-
mined only by flat-space parameters.

The situation in theories with a scalar field and other
fields (gauge fields, fermion fields or extra scalar fields} is
however different. ' ' Either type of improvement pro-
gram has been applied to such theories and it has been
shown that they fail. This implies that the interaction of
such a theory with an external gravity will not be deter-
mined by flat-space parameters but one will need an in-
dependent renormalization fixed by the experimental data
related to the "root-mean-square mass radius of the sca-
lar particle. " This also means that in such theories there
are an infinite number of finite energy-momentum tensors
which will not be distinguished from each other by
theoretical reasons but the correct one is selected only by
experimental input.

The above would be true were it not for the fact that
there is another independent theoretical criterion that 8&„
should satisfy, suggested by Collins. This criterion is
based on the renormalization-group transformation prop-
erties of the matrix elements of 8„„.Stated simply, it re-
quires that the Green's functions of 8„„satisfy a homo-
geneous renormalization-group equation (RGE) with a
zero anomalous dimension for the operator. In other
words an n-point Green's function of 8„„satisfies the
same RGE as the ordinary n-point Green's function; i.e.,
8„ is "RG covariant. " This has the physical conse-
quence that in the ultraviolet (infrared) limit, the Green's
functions for the interaction with an external gravity
scale as the ordinary Green's functions do. Collins has
studied this criterion in the context of A,P theory. Our
aim is to study the same for scalar QED where it becomes
especially important and relevant in view of the lack of
finite improvement programs.

We state our result briefly. We show that the criterion
of "RG covariance" together with the "boundary condi-
tion" that the Green's functions of 8„„areanalytic at the
fixed point of the theory A, (%0) and e' does isolate a
unique energy-momentum tensor. This, then, provides a
theoretical criterion by which an external gravity may
unambiguously couple to matter fields when scalar fields
are involved and, if such is the case, the flat-space param-
eters would indeed fix interactions with external gravity.

We also supplement the discussion by considering cer-
tain other kinds of possible boundary conditions.

II. PRELIMINARY

We shall work with a complex scalar field coupled to
an Abelian gauge field described by the Lagrange density

'F „F""+—,'(D„P)—'(—D"Q)——'m P'P

8„„=—g„+ F„—F„+,' [(D„—Q)'(D„Q) + (D„P)'D„y]

+go[&„(B.A ) A „+B„(B.A ) A „]
—g„„gocY(B.A) A —g„„go(B A)2 . (2.2)

The improved energy-momentum tensor will have the
most general form

8„'„~=8„„—Ho(B„B„—8 g„„)P'P,
with the most general possible Hp.

Ho—=H 0(k, ,e, m /p, g, e) .

(2.3)

(2.4}

As shown in Ref. 3, 8„„is finite to the zeroth and the first
order in q (the momentum entering via 8„„) and has
divergences only in the second order in q. Thus one has

[&8„„)j""=G(X,e', g, e)(a„a„—a'g„„)&|(}'P)"
=G'(X, e', g, e)Z. (a„a„a'g„—„)& y'y)

G(&,—e', g, e)(B„d 8'g„—)(P'P ), (2.5)

where we have used Ref. 7 that (P'((t)"=Z (P*P)
where Z is defined via mp—:m Z and m is the renor-
malized mass.

Here by construction G' and hence G(A, ,e, g, e) has
only poles in e. Thus the energy-momentum tensor

8„'„=8„„—G (k, ,e, (,e)(B„B, Bg„„—)$'P (2.6)

is a finite energy-momentum tensor. But this is not the
only one, for one could always add a term of the form

(2.7)

(with k' finite at e=0) and the resultant energy-
momentum tensor will still be finite. Comparing Eqs.
(2.6) and (2.7) with Eq. (2.4), one finds that

Ho=G(k, ,e,g, e)+k'(A. ,e,m /p, g, e)Z (2.8)

Now

k'(A, ,e, m/p, g, e)=k(A. ,e, m/)M, g'}+O(e) (2.9)

and the last term when substituted in (2.7), its contribu-
tion to the energy-momentum tensor vanishes at n =4.

Thus, if one is only concerned with (8„„)at n =4; we
can, without loss of generality, assume

D„Q=d„Q
—ieo A„p .

We shall work with dimensionally regularized quantities
and shall use the miniinal subtraction (MS) scheme. '~

X of Eq. (2.1}can be generalized to include a minimal
interaction with an external gravity g„„(x) leading to
S;„[P,A„,g„„]. Via Eq. (1.1} this leads us to the
energy-momentum tensor 8„,where

where D„P is the covariant derivative defined by

(2.1) 2

Ho=6(A, ,e,g, e)+k A, , e~, , g' Z
P

(2.10)



41 ENERGY-MOMENTUM TENSOR IN SCALAR QED AND THE. . . 1933

We define the renormalized coupling constant h via Ref.
7:

2 2

k A, ,e, ,( =k A. ,e, , ( +h,
P P

(2.11)

where h is independent of the parameters of the theory
(except p). Thus, we have

e„„", z.-'(a„a,—g„„a')& p*(t &"
41 —n (2.14)

is a finite operator. Comparison of Eqs. (2.3), (2.12), and
(2.14) indicates that

The improvement term g is not necessary' up to O(k ),
O(i, e }, and O(e ). Thus up to these orders, one has
that

2

H O=G(i, ,e, g, e)+ k A, ,e, , g +h Z
p

(2.12) P GZ '+ Z ' =0
4( 1 n)— (2.15)

We now wish to make a contact with the notation of
Ref. 10. There the improvement coefficient was ex-
pressed as

up to O(A. , A,e, e ). Here P stands for the pole part.
Multiplying by 4(1—n) and using the finiteness of k, one
obtains

P[(G+kZ )Z '4(1 —n)+(n —2)Z ']
gimp g

n 2 + g
4( —

) 1— (a„a„—a'g„„)(('y .

(2.13)

=P [4XZ '(e —3)+(2—e)Z ']=0 .
This relation will be useful in Sec. IV.

We define renormalization-group quantities' '
(2.16)

aA,
p =p (A, ,e, e}=p(A,,e )

—Ae= Ae+—p~A. +p2Ae +p~e +"p
p e =P'(A, ,e, e)=P'(A, , e ) —,'ee—= —,'ee+—P'3e +, —

—,'p lnZ =y (k, e )=y,k+y 2e +, (2.17)

p g=y&(X, e )g, Z3 'p Z3=y3(A. , e ), Z 'p Z =y(A, ,e,g),2 —
1

ap ap ap

where Z and Z3 are the wave-function renormalizations
of the scalar and photon fields.

We quote the needed values

pk pl pk9 — 1

8n. 8m

1 1 3
(2.18}

1

48m

Finally, we note that we should, on physical grounds,
require that the physical matrix elements of g„' be in-

dependent of the gauge parameter g. As shown in the
Appendix, this requires that k is g independent. Further-
more as shown in the Appendix, G (A.,e, g, e) is also in-
dependent of g.

III. RG EQUATION SATISFIED BY ( 8„'„~)
AND RG CONDITION ON k

In this section, we shall derive the RG equation
satisfied by the proper vertices of g„' . This RG equation
will generally be an inhomogeneous equation, but it can
be cast in an apparently homogeneous equation in which
an additional term of the kind 58/i3h appears in the
di6'erential operator acting upon a proper vertex of g„„
viz. I „. In order that I „satisfies an ordinary RG-
covariant equation, this term must disappear. This leads
to a constraint in the form of a di8'erential equation to be

r,= r"..' —a,(a,a.—g„.a')r"', (3.1)

where, referring to Eq. (2.3), I "' and I' ' are the un-
renormalized proper vertices of O„„and P P, respectively.
As 0„,and P'P are functions independent of p when bare
quantities are held fixed,

I (])a
Qp bare

I (2)
"ap bare

=0,

=0.
(3.2)

satisfied by k ( A, ,e,m /p ) [Collins has suggested that,
as there are two coupling constants, two mass scales p&
and p2 should be introduced, one for each coupling con-
stant. This yields two di8'erential equations for k. But
this also increases the number of independent variables,
because k now depends on x =

input/p&. Thus one still
has one fewer equation than there are independent vari-
ables A, , e, and x (omitting m). So this does not help. ]
The question of solutions to such an equation satisfied by
k, the "boundary conditions" that are appropriate for the
existence and uniqueness of its solution, are taken up in
the subsequent sections.

The derivation of the RG equation for I, starts as
usual, except now g'„depends explicitly on p when the
improvement coefficient Ho is expressed in terms of bare
parameters. (We shall also allow h to vary with p though
as yet p(ah /ap) is unspecified, but the RG equation for
I „ turns out to be independent of such a term. ) We ex-

press the unrenormalized proper vertices of g as
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This leads us to we can write

'B —] a
PB o b„, B~

(3.5)

(3.3)

']M H (a.a.—a'g„. }

x [z.r]2]] .

thus turning the inhomogeneous term in Eq. (3.3} into an
apparently homogeneous term.

Now consider, for concreteness, a proper vertex with p
photon lines and 2q scalar lines. Then

Noting that I depends on h as

r,.= h (a„a.—g„.a'}z.r"' .
I (,2 )R ZP/2ZqI (, q)

vcr VCT

(3.4)
Equation (3.5} then yields

(3.6)

p +P (A, ,e, e) +P'(A, ,e,e) +gy&(A, ,e ) +2y m' + yi+qy+ p, h „ I' '

=z. '„a +' - ahr"„.

Z ' P (}].,e, e) +P'(A, ,e, e) G —2(h +k)y +p

+ P"(A, , e2, e) +P'(A. ,e, e) +2(y —1)m
2

k r'„~' ~' .
Be am 2 (3.7)

Equation (3.7) simplifies to

2

p +P (}],, e e) +P'(A, e, e) +gy& +2y m + y&+qy +5 A, e, ,e r'~' e'=0 . (3 8)
B]M BA, Be Bg Bm 2 p, Bli

with
T

m
5 A, e, z, e = —Z ' P (A, e, e) +P'(A, e, e) G+2(h+k)y

P (A, ,e, e) +P'(A, ,e, e) +(2y —2)m
2

k .
Be Bm

(3.9)

Now all the terms in the Eq. (3.8) except (possibly) the term 5(a/Bh )I „have a finite limit as e~O. Hence 5 must also
be finite at e=0. Thus putting e=0, Eq. (3.8) reads

—5=0= P +P' +(2y —2)m
z

k —2ky
BA, Be Bm~

+— G (}],, e )=0,B e B (])
2 Be

(3.10)

where k =k +h; 6'" is the coeScient of the simple pole
terins in G(A, ,e, e) and use has been made of the fact
that h is a constant independent of A, , e, m, e.

Equation (3.10) is the condition to be satisfied by k (or
equivalently k) and we wish to seek solutions of Eq. (3.10}

with 5=5(A,,e,m /p, , e=O)
The above equation implies that the proper vertices of

8'„~ are RG covariant iff the coefficient of (B/Bh )I van-
ishes. This requires

I

for k. In general, Eq. (3.10}is a single differential condi-
tion on a function of two independent variables and has
an infinite number of solutions. If we impose a certain
kind of "boundary conditions" there will be either no
solution, a unique solution, or multiple (or infinite) solu-
tions to Eq. (3.10). We wish to discuss physically mean-
ingful "boundary conditions" that yield a unique solution
for Eq. (3.10).

%'e shall briefly comment on the physical significance
of the condition (3.10). In renormalizable theories
without scalar fields, there exist energy-momentum ten-
sors which are (i) finite, (ii) finite functions of bare quan-
tities, (iii) independent of ]M when expressed in terms of
bare quantities, and (iv) carry no parameters in addition
to those of fiat-space action. For such an energy-
momentum tensor, the renormalization-group equation is
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homogeneous and with an operator anomalous dimension
equal to zero. This leads to a certain high-energy behav-
ior for the Green's functions of 8„ that would enter a
gravitational scattering. The condition (3.10) ensures
that the energy-momentum tensor(s) in scalar QED so
obtained leads to a similar RG equation and a similar
high-energy behavior for Green's functions.

Alternatively, we could interpret the condition as fol-
lows. Unlike in the theories without scalar fields, in those
with scalar fields the energy-momentum tensor depends
on an extra parameter h. As shown by Collins, the RG
condition of Eq. (3.10) fixes this arbitrary parameter at
h =0, choosing a particular energy-momentum tensor
from a set of an infinite number of them.

IV. SOLUTION PERTURBATIVE IN A, AND e 2

In this section, we shall attempt the most obvious
boundary condition on k (X,e, m /p ) that (i) it should
have a perturbative expansion in powers of A, and e and
(ii) it should have a finite limit as m~0. Using the
second part of the boundary condition, we shall first sim-
plify Eq. (3.10). It can be rewritten as

~'

2(y —1) k= A, +—e G" ~

3 lnm'

+2ky —P +P' k .
e

Consider the above equation at m =0. By the second
boundary condition the right-hand side has a finite limit
at m =0. If it is not zero, then one has

2(y —1) k = A(A, , e')%0 .m=0

Thus, k-[A (A., e )/2(y —1)]lnm + indicating a
singular behavior at m =0 contradicting the second part
of the boundary condition. Thus one must have
A (A, , e )=0; i.e. ,

fact, obtainable from the finiteness of 5, that
Z '[P (8/M, )+P'(8/Be)]G is finite and, as G has only
poles, it is e independent. Hence it follows that

—Z ' P +P' G= X +— G"'
BA, Be BA, 2 Be

(4.3)

and this has been used. )
We expand

A — A, — eX=X"'+X"'—+5'"' +X', + A""
E' E'

+A"' +A' ' +S"' +S' ' +
g2 2

(4.4)

2 2 2 4 4
Z '=1+ ~+ ~ + )( + +k +k +

E' p E'

A,e A,e+ '''+ +g +
2

(4.5)

k =ko+k, A, +k2e'+ (4.6)

Here, k has been expanded in powers of A. and e, as this
is the "boundary condition" we are trying. Direct calcu-
lation shows that ko =

—,
' =X' '.

Comparing 0 (e ) terms in Eq. (4.2), we obtain

X'"+A, Z"'+ — Z"'=0,
BA, 2 Be BA, 2 Be

X'"=0.
Further, Eq. (4.2) in 0(A, /e) implies

(4.8)

(4.7)

where X'" and Z"' are the coeScient of simple pole
terms in X and Z, respectively.

We seek k of the form of Eq. (4.6), which satisfies Eq.
(4.7). We assume, if possible, that such a k exists. Then
Eq. (4.7) in 0 (A, ) leads to

pi. ~ +pe
BA, Be

—2y k(A, , e )

+e G"'(g e )
B B

BA,

—2X' '+P",X' '=0 .

This, together with Eq. (4.8) implies

X"'=0.

(4.9)

(4.10)

(4.1)

The pole parts in G (A.,e, e) are related to those in Z
via the relation (2.16) up to 0(A, ,Ae, e ). As this rela-
tion contains the combination X=G+kZ it is con-
venient to transform Eq. (4.1) to express it directly in
terms of X rather than G.

When this is done, one obtains
X = ——a.(1)

36

From the RGE satisfied by Z ', one obtains

(4.12)

Now, consider Eq. (2.16) in 0(A, /e) leads to

4aX"'—12k' "'—12 dX"'+4X "'a

+4X 'i'+2d —a=0 . (4.11)

Using Eqs. (4.8), (4.10) and the value X' '=
—,
' leads one to

(P"—Ae) +(P'——,'ee) X+eA, kZ
Be

+ kZ =0 .
2 Be

(In obtaining Eq. (4.2), we have made use of the

a= —,'a(P, +2y, )

and thus one has

X "'=— a(P '+2y
1 m1

(4.13)

(4.14)
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Equation (4.7), in 0 (e ), gives

W'"=0.

Equation (4.2) [or alternately Eq. (2.16) also] implies

w "'=o.

(4.15)

(4.16)

in powers of ()i, —A, '), and (e —e ') and that it is analytic
snm .

We first consider the part of k independent of m. To
show that a unique solution for k(A, , e )

—= k(A, ,e,m =0)
is obtained, we expand

Equation (2.16), in 0 (e /e), yields

4X' 'k —12dX' '+43'"k —123 '"
+4A ' '+2Z —k=0 . (4.17}

In view of Eqs. (4.15) and (4.16) and the value of X' ', this
simplifies to

k(g, e ~= g g k (g ge)m(e2 e—e~)n

m=0 n=O

pi(g e2} g g pA. (g g+ }m(e2 e+2)n
m=1 n=O

2eP'(A, ,e )= g g P'„(A,—A, ') (e —e' )",
m=O n=l

(5.1)

The RGE for Z ' yields

k =
—,
' [p,a+ k (2p3+ 2y 2) ]

so that

A "'=—
—,', [pia+k (2p3+2y 2)],

In a similar manner, Eq. (4.2) yields

,', (P2a—+—2y Ik+2y 2a) .

(4.18)

(4.19)

(4.20)

(4.21)

y (A, , e )= g g y (A, —A, ')t'(e e—* }'t,
p=O q=O

+e
z

G'"(A, , e }—=g(A, , e )
Be

g g „(A,—I,')
m =0 n=0

&&(e2—e' )"

Now, we obtain the relations that must be satisfied by
k, and kz. The crucial point is that there are only two

variables and they must satisfy three equations obtained
from Eq. (4.7) in orders A, , A,e, and e . This requires
that they be consistent. The consistency requires a condi-
tion to be satisfied by calculable coef5cients of the Eq.
(4.25).

Equation (4.7) in 0 (A, ) yields

k i
= — =

—,', (P i +2y i ) . (4.22)

Equation (4.7) in 0 (e ) yields

2a'"
k =—

k p, —+2p3+2y
1 ga (4.23}

Equation (4.7) in 0 (A,e2} yields

k2a+kik = —28'"=
—,', (P2a+2y, k +2y za) . (4.24)

As is easily verified, these equations are consistent iff

We wish to consider the equation

p +2ep'
2

—2y k(A, , e )=g(g, ,e2) .
Be

(5.2)

2rook—oo =Coo .

Assuming that yoo=y (A, '}%0,one has

(5.3)

1 00
k00 = ——

700
(5 4)

Now we proceed by induction. Let us assume that k
for p +q ~ N have been uniquely fixed via Eq. (5.2). We
wish to show that k with p +q =N +1 can be fixed via
Eq. (5.2). To this end, we consider Eq. (5.2) in
0((A,

—
A,
' }P(e —e ' ) } with 0 ~p ~ N + 1, p +q =N + 1.

One has

The proof that a unique solution for k of the form of
the first of Eqs. (5.1) exists is very straightforward.

Consider Eq. (5.2) in 0((A, —k') (e —e ) ). One has

CK

p2a —p, k —p, —2p3a =0 . (4.25} (p»io+qPoi 2roo} pq—
With the values given in Sec. II, it is easily verified that
this condition is not met. Hence, no solution for k at
m =0. Thus, the obvious perturbative boundary condi-
tion yields no solution for k.

V. SOLUTION PERTURBATIVE AROUND
A NONTRIVIAL FIXED POINT e, A, %0

As Collins has commented, it is more natural to im-
pose boundary conditions at a fixed point. We assume
the existence of a nontrivial fixed point A, *AO, e' and re-
quire that the solution for k(A, ,e, m /p ) be perturbative

+terms known or already fixed uniquely=g~~ .

(5.5)

This fixed k uniquely [unless pP~io+qPo, —2y (A.~)=0
accidentally (these conditions cannot be verified as noth-
ing is known about A,

* and p, o, etc. ; but for such a condi-
tion to be satisfied is expected only as an accident)]. As
the above proof is valid for any p, q with p+q =N+1,
0 p q N + 1 kpq for all p +q =N + 1 are determined.
As the assumption made applies to N =0 via Eq. (5.4),
the result is proved by induction, fixing k(A, , e ) uniquely.
Now, let
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2 00

k A, ,e, =k(A, , e )+ g
p n=1

k„(A,, e ) .
p

From Eqs. (3.10) and (4.1), it is easily seen that

P +P' +[(2n —2)y —2n] k„=0, n & 1 .
BA, Be

(5.6)
(3.10). Unlike the boundary condition used in the previ-
ous section the physical significance of these boundary
conditions is, however, not clear.

Perturbatiue expansion in powers of A,. As in the previ-
ous section, we shall first consider k(A, , e ), i.e., the m-
independent part of k (as before, k is assumed to be ana-
lytic at m =0). k(A., e ) satisfies Eq. (5.2). We expand
quantities in this equation in powers of A, :

(5.7}

Following a similar procedure used in obtaining the
unique solution for k(A, ,e2}, one easily sees that the only
perturbative [in (A, —A, '), (e —e' )] solution to Eqs. (5.7)
are

k(A, , e )= g k„(e )A,",
n=0

Pi(g e2) —g gltPi. (e2)
n=0

k„(k,, e )=0, n~ 1 . (5.&) 2eP'(A. , e )= g A, "P'„(e ),
n=0

(6.1)

Hence our boundary conditions fix k(A, ,e,m Ip )

uniquely. y (A, , e )= gA, "y „(e ),
n=0

VI. POSSIBLE ALTERNATE BOUNDARY
CONDITIONS

In this section, we shall explore alternate choices of
boundary conditions that also fix a unique solution to Eq.

I

((A, , e ) = g A, "g „(e ) .
n=0

We compare successive powers of A, in Eq. (5.2). They
yield the set of equations

Po(e )k, (e )+go(e ) ko(e ) —2y o(e )ko(e )=go(e ),
de

2PO(e )kz(e )+terms depending on ko and ki =(i(e ),

(6.2}

(6.3)

(n +1)P (0e )k„+,(e )+terms depending on kz, k„.. . , k„=g„(e ), etc. (6.4)

Now we impose the boundary condition that ko(e ) be
so chosen that it corresponds to that in scalar electro-
dynamics with A. =O. This requires

dependent of g. To show this we note that

Pz(e~) ko(e )
—2y o(e )ko(e )=go(e ) .e 2 2 — 2

de

where
(6.5)

e„"„'=—g„„[z+-,'g, (a ~)2]—p„.p„.
The above equation determines ko(e ) uniquely if we
demand that ko(e ) be a power series in e . This is seen
easily by a series expansion of Eq. (6.5) [as mentioned
below Eq. (5.5), determination of ko(e ) is possible sub-
ject to conditions that 2nP& —2y 2&0 for any n which is
readily verified from Eq. (2.18}.] Then Eqs. (6.3}, (6.4),
etc. determine successively k, , k2, . . . , k„, . . . uniquely,
as Eq. (6.4} is only an algebraic and not a differential con-
straint on k„+,. It should be noted that k„(n ~ 1} are
not analytic at e =0 because Po(e ) starts out as e . This
is as expected since it was shown in Sec. III, that a com-
pletely perturbative solution in powers of A, and e does
not exist.

APPENDIX

In this appendix, we shall show that the physical ma-
trix elements of 8„' " are gauge independent iff k is in-

+ ,
' [(D„P)'(D„—P)+(D„P)'(D„P)],

„"e,'=g, [ a( aa)~„+a„(a ~)~„]
—g„„g,a (a ~ ) ~,—g„„g,(a ~)',

e„".'= G(x, e'—, g, e( }„a,aa'g„„)y—*y,
2

e„'„'= kX, , e, , g (—a„a„—a'g„„)(y*y)" .
p

(A2)

Now 0„'" is a gauge-invariant operator. Hence its physi-
cal matrix elements (barring certain exceptional external
momenta} are g independent. We shall show that Ward-
Takahashi (WT) identities imply that the physical matrix
elements of e„'„' vanish (q&0). We shall also show that
e„'„' does not mix with (a„a —a g„)(p'p}. Hence, from
Eqs. (2.3) and (2.5),
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[ & 8„„&J
'"=G '()(,,e, g', e) (a„a„—a'g„„)& y'y &"

[ &
8( 1)

& I
div (A3)

, &8™&,.„=, &8„".'&,„„
2

k )(,,e,
p

Thus G'()][,,e, g, e) is the renormalization constant of a
gauge-invariant operator 0„'" with another gauge-
invariant operator (a„a„—a g„„)((t)'p) and hence is g
independent. Also Z, the multiplicative renormaliza-
tion constant of a gauge-invariant operator (P"[t}), is also

g independent. Hence G =G'Z is also g independent.
Thus 8„'„' is a gauge-invariant operator with a
independent coefficient and hence has g-independent
physical matrix elements. Thus

x(a„a„—a'g„. )&(( y&;„„=0 (A4)

iff (a/ag)k(A, ,e,m /p, g)=0 proving the result that k
and hence k is g independent.

Finally, we prove the two points regarding 0„'' men-
tioned below Eq. (A2). 8„'„' contributes only when qAO.
Hence, to determine the gauge independence of k, it is
sufficient to consider 8„'„' at q%0. Matrix elements of 8„'„'
can be determined from the WT identity derived in Eq.
(B4) of Ref. 10. It reads

+ I J'(x)ieD()(x)G(xy)()[A (y)]d "x d y+ J J(x")t —)eo)P*(x)G(xy)8[A (y)]d "x d "y)=0 . (A5)

We exhibit the procedure for the first term in 8„'„', viz. , boa„(a A ) A„. A similar procedure works for other terms. We
let 8[ A (y)]=a„[A, (y)e(y)]. After integrating by parts and comparing the coefficient of e(y), we obtain

&g[]a„(a A)A„(y)&= f J ( )xa„a G(( yx)A, (y)d"x+ f J'(x)ieop(x)a„"G(x,y)A, (y)d"x

—f J(x)ieog"(x)a„G(x,y)A, (y)d "x . (A6)

It is easy to verify now that, when the on-shell truncat-
ed Green's functions on the right-hand side are con-
sidered for q&0, they vanish either because e.k =0 for a
physical photon or because of the lack of a pole at the
right position.

Further, following the discussion below Eq. (B6) of
Ref. 10, it is easy to show that a„(a A ) A „cannot mix
with (a„a„—a g&, )p (I) when one notes the general form
of the right-hand side of Eq. (B7) of Ref. 10.
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