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The double covers Pin(s, t) and Pin(t, s) of the orthonormal groups O(s, t) and O(t, s), respectively,
are not necessarily isomorphic. They are locally isomorphic but, in general, not globally so. We
compute the vacuum expectation values of several quantized fermionic currents on a nonorientable
spacetime (Klein bottle X lR ) for both groups. They are strikingly different.

I. INTRODUCTION

A. Two pin groups

Introduction Th. e finite group generated by the gam-
ma matrices that satisfy the equation

r.rp+rpr. = Ir—.rp1=2n. pI

with (q p) =diag(1, . . . , 1, —1) (1.1)

and the finite group generated by the gamma matrices
that satisfy the equation

Yp+ re 29 pi

with (ri p) =diag(1, —1, . . . ,
—1) (1.2)

are not, in general, isomorphic. For example, the group
(+I,+r) with r~= —I is isomorphic to Z&, and the
group (+3., +r ) with r = I is isomorphic to Zz XZ2.

It follows that the real Clifford algebra C (s, t) generat-
edby the y 's with

double covers of the orientation-preserving groups
SO(n —1, 1) and SO(l, n 1),—respectively; Pin(n
—1, 1)= I and Pin( l, n —1):—f' are the double covers of
O(n —1, 1) and O(l, n —1), respectively. The in-
teresting fact is that, although O(n —1, 1) and 0( l, n —1)
are ismorphic and Spin(n —l, l) and Spin(l, n —1) are
isomorphic, Pin(n —1, 1) and Pin(l, n —1) are not neces-
sarily isomorphic. They are locally isomorphic, as im-
plied by the isomorphism of Spin(n —1, 1) with
Spin(l, n —1), but they are not necessarily globally iso-
morphic. To exhibit differences between the two Pin
groups, it is sufficient to consider their subgroups Pin~
which double cover orthochronous transformations.
Time reversal does not bring any new physics in the ex-
ample that we investigate.

Some properties of I and f' (Refs. 4—7). First, we note
that the sets of Hermitian conjugate matrices I+r I,
r =r, and complex-conjugate matrices I r'), satis-

fy the same algebra (1.1) as the set t+r ). For n even,
there is only one irreducible faithful representation of the
gamma matrices, of dimension 2"; hence, there exist
matrices H+ and C+ such that

(rl p)=diag(1, . . . , 1, —1, . . . , —1)

is not, in general, isomorphic to the real Clifford algebra
C (t, s) generated by the r 's with

H+ yH+= y
—1

C+'y C+=+y* .

(1.3)

(1.4)

rl p=diag(1, . . . , 1, —1, . . . , —1).

The Pin groups (defined in Sec. I B ) Pin(s, t) C C(s, t) and
Pin(t, s)CC(t, s), which double cover O(s, t) and O(t, s),
are nest, in general, isomorphic. The groups being
different, the Fermi fields f and f acted upon by Pin(s, t)
or Pin(t, s), respectively, are different.

In this paper we make an explicit calculation of simple
physical quantities, fermionic currents, and compare the
results obtained when using Fermi fields P and g. We
have chosen to compute vacuum expectation values of
fermionic currents on R2X Klein bottle for the following
reasons: (i) The Klein bottle admits both kinds of Fermi
fields (ii) the Klein bottle forces one to construct Fermi
fields with nontrivial transformation laws on at least one
of the overlaps of the coordinate patches; (iii) calculations
by DeWitt, Hart, and Isham of the vacuum expectation
values of the energy-momentum stress tensor on a Klein
bottle can be used in part, as well as several equations ob-
tained previously by DeWitt.

The setup We call Spin(n —. 1, 1) and Spin(l, n —1) the

+ ~ n (, n —3)/2
rory re —2 (1.5)

where the different signs correspond to different represen-
tations, it is sufficient to check whether the similarity
transformations (1.3) and (1.4) have solutions for
r =r„,given by (1.5). We obtain readily

H+ y„,H+= —y„
—1 (1.6)

Hence, for n odd, there exists only one solution, namely,
H, to obtain the Hermitian conjugate gamma matrices.
We shall henceforth use the letter g to label H, since, as
can be anticipated, it will be used in Sec. I C to construct
covariant pinors (copinors) from contravariant pinors
and hence will play the role of a metric:

For n odd, there are two inequivalent irreducible faithful
representations of the gamma matrices, of dimension
2'" ",and there may not exist matrices H+ and C+
satisfying those similarity transformations. Given the
fact that, for n odd, the gamma matrices can be con-
structed from the gamma matrices for n —1 by adding
the matrix
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With y„, given by (1.5), we obtain readily

C
—1 C —

( 1)"("—3)/2

y„' ] for n =3 mod4,
—y„*

&
for n =1mod4 .

Hence, the only solutions of (1.8) are

C+ for n =3mod4,

C for n =1mod4 .

(1.7)

(1.8)

(1.9a)

(1.9b)

The Pin(s, t) group I (s, t} is the subset of invertible ele-
ments ABC(s, t) such that

Ay A '=yttO~ (s, t),
Norm(A) =+1,

(1.14a)

(1.14b)

Ps, t)~O(s, t) by +A~(O~ ) . (1.15)

where (O~ }(s,t)EO(s, t) and where the norm is defined

by N(A)=A'A, where r: A~A' is an anti-involution.
For instance, if A=y - . y, then A'=y . - - y
Equation (1.14) defines a 2-to-1 homomorphism:

A similar study can be made for the group f'. One ob-
tains

~ + yn —1~+ yn —1

( 1)~(» —~)&2
yn —1 + yn —1

(1.10)

But it follows from the definitions of H+, 8+, C+, C z
that

P~ =H+, C'+ =C p (1.12)

and the choices (1.7) and (1.9) are valid for both I and f'.
The groups I and f' are isomorphic for n =2 mod 8.
Proof. It can be shown by explicit construction of the

gamma matrices that for n =2, 3,4 mod 8, the y may
be chosen real and the y imaginary, for n =8,9, 10mod
8, the y may be chosen imaginary and the y real.
Hence, for n =2 mod 8, the y and the y may be chosen
all real or all imaginary.

For n =5,6,7 mod 8, neither set can be chosen all real
or all imaginary. For n =2, 3,4mod 8, C+C+ =1, for
n =6,7, 8 mod 8, C+ C+ = —1. Recall that C+ is not an
acceptable choice for n =1 mod 4. For n =0, 1,2 mod 8,
C C* =1, for n =4, 5, 6mod 8, C C* = —1. Recall
that C is not an acceptable choice for n =3 mod 4.

8. The Pin groups as double covers
of O(s, t) and O(t, s), s+t =n

Pin groups are subsets of Clifford algebras. We shall
consider Clifford algebras C(s, t) ouer the reals, whose
symbols y~ (neither real nor complex) satisfy

ty, ypJ =2rt ti(s, t}l,
s copies t copies

rt &(s, t) =diag(1, . . . , 1, —1, . . . , —1) .
(1.13)

We choose to work with real Clifford algebras because
the n-dimensional subset C'(s, t) of C(s, t) generated by
[y„.. . , y„l is isomorphic to the Riemannian space
(R",i))—here spacetime is assumed to be real. We shall
work with real or complex representations of real Clifford
algebras.

There are two nonequivalent algebraic definitions of
the Pin groups: the original one and the twisted one.
We recall briefly both definitions to justify our choosing
the original one, in spite of the advantages of the twisted
one and its growing popularity.

(i) The standard definition; I (s, t)

The drawback of this definition is that the homomor-
phism & is not surjective when s+t =n is odd. Indeed,
there is then no A corresponding to (O~ )

=diag(l, . . . , 1, —1, 1, . . . , 1) with the minus entry at
any position along the diagonal. When n is odd, the sign
change of an odd number of gamma matrices cannot be
effected by an equivalence transformation.

(ii) The twisted definition; I (s, t).
The (twisted) Pin(s, t) group I (s, t) is the subset of ele-

ments AG C(s, t) such that

a(A)y A '=y&O~, (s, t),
Norm(A) =+1,

(1.16a)

(1.16b)

where a is the canonical automorphism of C(s, t} such
that

a(y, )= —y, . (1.17)

p(A)y [p(A)] '=yt3O~ (s, t) . (1.18)

As already noted, this equation has no solution in odd di-
mensions. In even dimensions,

T

A if A is even,
p(A) =

eA if A is odd, e=y yn, (1.19)

also known as the orientation matrix, solves (1.18). In
addition,

p(y )p(y )=y if n =Omod4,

p(y )p(y )= —y if n =2mod4.

(1.20)

(1.21)

Equation (1.16) defines a 2-to-1 homomorphism

I (s, t)~O(s, t) by +A~(O~~),

which is surjective in all dimensions. Moreover, & maps

y into the diagonal matrix, which reverses the direc-
tion of the a axis, a bookkeeping simplification. The
drawback of this definition is the fact that the Lorentz in-
variance of the Dirac equation requires the gamma ma-
trices to satisfy the similarity transformation (1.14a).

(iii) Comparison of I (s, t) and I (s, t) (Ref. 10).
The desire to work with the twisted Pin groups and to

preserve the Lorentz invariance of the Dirac equation
suggests the use of a twisted representation of the Pin
group

p: I ~%, p(x)Eql,
such that
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Hence, if n =0 mod 4. p(A) defined an isomorphism be-
tween I (s, t) and I'(s, t); if n =2mod 4, p(A) defines an
isomorphism between f'(t, s) and I'(s, t), where f'(t, s) is
the Pin group constructed with y:

and

P rt is a covariant pinor field (copinor)

1' sty y& rsvp is a tensor field .

(1.29)

Iy, ytij =2' tt(t, s)X,
1 copies s copies

If M is any matrix

I"

0(n —1, 1) = 0( l, n —1)
(1.22)

Space Inuersion. For n even, i.e., for odd space dimen-
sions, space inversion in I can be defined by

[ri &(t,s)]=diag(1, . . . , 1, —1, . . . , —1) .

In conclusion, for our purpose it is preferable to work
with the usual definition (1.14). Also, we need not keep t
aribtrary and we shall go back to the groups I' and f' in-
troduced in the first section with t = 1, s =n —1,

and (assuming all indices distinct)

V =Prig—is imaginary,

V, :—P rly, g is real,

V tt= arty —rise is real,

V tiz
=pity —y&yzg is real,

V itrs
=griy —yt3yrysg is imaginary, etc.

(1.30)

(1.31)

ProP '=ro

Py, P '= —y„a=1, . . . , n —1

and space inversion in f' can be defined by

PyoP ='yo

a=1, . . . , n —1.
It is easy to check that

P =+yQ and P = kyQ

solve these equations. Note that

P2= —I and P ~= I

C. Pinor fields

(1.23}

(1.24)

(1.25)

(1.26)

A similar discussion for the quantitites with a caret
gives (recall that ri=8+ =H =rt)

f trig i—s imaginary,

P' —= g rir",P is imaginary,

0'
&
=g "riy,r&g is real,

f trty y&y——~f is real,

f'
& s f trty r—&r rsvp is imaginary, etc.

(1.32)

Charge Conjugate Cu-rrents When .n+1 mod 4, we
can define the charge-conjugate pinor field of g(x}by

=C+P (1.33)

or when n A3 mod 4 by

(1.34)

Remark. If g satisfies the equation

[y (B~+iqA~) —m]/=0,
c+ c

then P
+ and g satisfy

c+
[y (t} iqA )

—m]i—}j +=0,

[y (r} iqA )+m]P —=0 .

(1.35)

(1.36)

An antiparticle is usually defined as a solution of (1.35).
See, for instance, Ref. 12 or 13. It is straightforward but
somewhat tedious to check case by case that

Pinor fields are sections of a supervector bundle" asso-
ciated with a principal Pin bundle by a representation of
the Pin group defining'the principal bundle. Since it is
desirable, in several respects, to consider classical physics
as the limit of quantum physics, we choose representa-
tions of the Pin groups on supervector spaces. A pinor
field f(x) is a section of a supervector bundle associated
with a I bundle; a pinor field g(x) is a section of a super-
vector bundle associated with a f' bundle. The com-
ponents of (super)classical pinor fields are a numbers; one
can choose the pinor fields either to be c type (i.e., the
basis of the typical fiber consists of a-type vectors) or to
be a type (i.e., the basis of the typical fiber consists of c-
type vectors). We make the latter choice.

Tensor Fields Constructed from Pinor Fields Let f be.
a contravariant pinor, i.e., I acts on g by

and let q be defined (1.21) by

Vcr I ~a

(1.27)

(1.28}

and

C gC

(1.37)

(1.38}

then, under the action of the subgroup I ~CI, which
double covers orthochronous transformations,

C+ C+
Labeling V —,V —,. . . , the charge-conjugate currents
of V, V, . . . , it follows from (1.37) and (1.38) that
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C+
Vp = —Vp,

c
Vp =Vp,

C+ C
V + —V, V = —V,

C+ cV+= —V, V = —V

The vacuum expectation value of the chronological prod-
uct is given by

(2.4)(g(x)g (x)) = iG—(x,x'),
(1.39) where G is the Feynman Green's function satisfying

C+
V-~r = V-W

c+V py~
= V py~,

c

c
etc. , V

& &
= —V

& &, etc.
y +m G(x,x')= —I5(x,x') .

Bx
(2.&)

Self Cha-rge Conj-ugate Fields (Maj orana Fields) Se.lf-
charge-conjugate fields satisfy, by definition, the equation

The Feynman Green's function can be represented in the
form

(1.40)
G (x,x') = i —

y
—m Q(x, x')ri

X
(2.6)

which implies

C+C+ =I . (1.41)

where Q(x, x') is the solution of the Klein-Gordon equa-
tion

Hence, Majorana fields cannot be defined for
n =5,6,7mod 8. For n =2, 3,4mod 8, a Majorana field

satisfies

(1.42)

and the following currents constructed with Majorana
fields vanish:

(CI —m )Q(x, x') = —'L5(x, x')

such that, for m =0 and Minkowskian spacetime,

Q(x, x') —= Qo(x, x') = l 1

(2m) (x x') +—is
Let M be an arbitrary matrix:

(y ~My) = tr[~M&—yq )]-

(2.7)

(2.8)

V =0, V p=O.
For n =0, 1,2 mod 8, a Majorana field satisfies

and

(1.43) =i tr[rtMG(x, x)]

=tr M y —m Q(x, x')
x

X =X
(2.9)

V=O, V =0, V pqg=O .

Remark 1. In quantum theory, the vanishing currents
are replaced by zero-point constants.

Remark 2. For n =2 mod 8, there exist two distinct
definitions for Majorana fields.

II. QUANTIZED FKRMIONIC CURRENTS
ON R2X KLKIN BOTTLE

A. The setup

We shall work with the real representation of I (3, 1)
and the imaginary representation of f'(1,3). We shall

construct fermionic currents on I XK, one of the sim-

plest nonorientable flat spacetimes. To obtain this topol-

ogy, we identify, in a Cartesian coordinate system, the
points

(x',x', x', x') with (x',x', x'+ma, ( —1) «'+nb}

(2.1)
for all m, n =. . . , —2, —1,0, 1,2, . . . .

B. The Case [y,ysj =2g &I, (g s}=diag( —1, 1, 1, 1)

A Majorana field g is an a-number-valued pinor field
with the real Lagrangian

L = ,'ig rt y —+m
Bx

Henceforth we consider massless fields. With the repre-
sentation (2.1) of R XK, the direction of the local
three-axis is reversed every time the coordinate x is in-
creased by an amount a. The elements of the Pin group
that double cover the inversion of the 3-axis are

P=+y y, y, P =I . (2.10}

Both choices are possible; we consider first P=yoy, y2.
The Fermi field on R XK then satisfies the periodicity
condition

f(x,x', x,x )

= (yoy, y z) f(x,x ', x +2ma, ( —
) x + nb ) .

(2.11)
It has been shown that the renormalized vacuum expec-
tation value of the chronological product (2.4) is

(g(x}f (x'})„,„= iG„„(x,x')—
= —g'Go(x', x ',x', x';x', x',

m, n

Xx' +ma, ( —1)"x' +nb)

X(y2 yi yo ) (2.12)

where g' „denotes the sum over all values of m and n

except m =0, n =0. It follows from (2.8) and (2.7) that

It obeys the Dirac equation

c}
ig y +m /=0 .

Bx

(f(x)P (x'))„„=y Q„„(x,x')7)
Bx

(2.3)
where

(2.13)
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g„„(x,x')=g' Qo(xo, x', xi,x', x'O, x', x'+ma, ( —1) x'+nb)(yiiy, y, )

m, n

1 1
(2m) „—(x —x' } +(x' —x'} +(x —x' +2ma) +(x —x' +nb)

yOy ly2

„—(x —x' ) +(x' —x') +[x —x' +(2m+1)a] +(x +x' +nb}

Working out the derivatives of Q„,„(x,x'), one finds

and

Q„„(x,x')=0 for a =0, 1,2,
x

(2.14)

i Q„„(x,x'}
ax3

i, nb 2x +nb
2 yoy1yZ2ni ~ „(4m a +n b ) ~ [(2m+1) a +(2x +nb) ]

=iyoyiyzF(x ), (2.15)

where

F( ')=- ', y 2x +nb
2ir „[(2m+1)2a +(2x +nb) ]

The vanishing of the derivatives of Q„„with respect to x
and x ' at the coincidence point x =x' can be seen at a
glance. The vanishing of the derivative with respect to
x comes from the cancellation of pairs of terms in the m
series.

Remark. For a Mobius band of infinite width, i.e., for
b = 00, one can show that

F(x )= 1 8 1 exes
tanh

32ira rix x a

For finite b a plot of F(x ) appears in Fig. 1. It follows
from (2.9) and (2.13)—(2.15) that

F{x')

&iq qq&„-„=o,

&4 ny 0&...=0

lG[ap}4&ren 0~ G[ap] 7[yaryp] r

qy, y &-„„= 4F(x'—),
&V-m, y &„.=o

(2.16)

Ef we had chosen P = yoy1y2 instead of P =yoy, y2,
the sign of the nonvanishing current would have been
changed. These two choices correspond to two diferent
Pin structures built with the group I (3, 1). Indeed, Pin
structures are, by definition, a pair

(Principal Pin bundle, &)

where ft is a 2-to-1 bundle homomorphism.

Principal Pin(s, t) bundle~Principal O(s, t) bundle .

The obstruction to constructing a Pin bundle that double
covers a frame bundle is given by' a linear combination
of second Stiefel-Whitney classes and cup products of
first Stiefel-Whitney classes of the Pin bundle —the linear
combination being a function of s and t, di8'erent in gen-
eral for Pin(s, t), and Pin(t, s) bundles. The number of
Pin structures (the number of inequivalent bundle
homomorphisms %) is equal to the number of elements
of the first Stiefel-Whitney class. The assignments
P = —yoy, y2 or P=yoy, y2 correspond to two di8'erent

covers of O(3, 1) by I (3, 1)—hence to two diff'erent

choices of %. These are the only two possible choices for
JV.

Remark. We could consider a complex field f built out
of two real fields $„$2.

1p= ~ (g, +i g2)
2

FIG. 1. The function F(x ). and a Lagrangian
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L=igrl y +ma

Bx

y +m
2 =1 2 ~X

C. The case [y, g'Ii] =2g iil,
(g &) =diag(1, —1, —1, —1)

This case requires the use of a complex field g. Because
of the above remark the computation proceeds along the
same lines as before, but with the operator

Then

(Q rIMQ) =tr M y
—m g(x, x')a

Bx X =X

VOV1V2

now replaced by

0 and Q„,„are the same as before. The previous equa-

tions remain valid if P is replaced everywhere by g .

~OV13 2 ~ VOV172 (2. 17)

The renormalized Green's function 9„,„is replaced by

(
—1)

(2n) „—(x —x' ) +(x' —x') +(x —x' +2ma) +(x —x' +nb)

(
—1)

o oi i iz 2 2 , (
—i roy ir2) . (2.18)

~ „—(x —x' ) +(x' —x') +[x —x' +(2m + l)a] +(x +x' +nb)

The alternating sign in the m series is responsible for the
nonvanishing of the derivative of Q„„(x,x') with respect
to x at the coincidence point x =x' and for the vanish-
ing, in this case, of the derivative with respect to x,

, Q„,„(x,x') =0 for a =0, 1,3,Bx'

P(x )= l

4ma

7TX
cosh

For finite b, a plot of F(x ) appears in Fig. 2. Finally,

Remark. For a Mobius band of infinite width, i.e.,
b = (x), one can show that

2 Q„,„(x,x')
C)x

where

X =X
ror ir—P'«'»

„,„=0,

F 3 1 + + ( —1) (2m+1)a
7r =p„= „[(2m+1) a +(2x +nb) ]

( P &C[p~)g)„=2F(x )

the other components vanish, (2.19)

A
F(x')

If We had ChOSen P = y'Oy]y2 inStead Of P=y Oy1y2, the
sign of the non vanishing current would have been
changed. Again, these two choices corres ond to two
different Pin structures built with the group (1,3).

The only nonvanishing I current (2.16) is pseudosca-
lar; the only nonvanishing f' current (2.19) is the (0, 1)
component of a tensor.

III. CONCLUSION

We chose the Pin groups 1 and f' to be defined by (1.1)
and (1.2). We could equally well have chosen them to be
defined by

b!2
x' Iy, y&]

= —2g &I, y&Pi ( nts, )

Iy, y&I
= —2il &I, y' EPin(t, s),

(3.1)

(3.2)

FIG. 2. The function F(x').
and the final results would have been interchanged; what-
ever has been said for Pin(s, t) would have applied to
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Pin(t, s) and vice versa.
In conclusion, the choice of Pin groups depend jointly

on the choice of the overall sign of the metric [(1.1) vs
(1.2)] and the choice of Clifford algebra [(1.1), (1.2) vs
(3.1), (3.2)]. For some systems (see, for instance, Ref. 1),
the choice of the metric alone dictates the choice of the
group, but this is not true in general. %hat is true in gen-
eral is that the choice of Pin group, Pin(s, t), vs Pin(t, s) is
physically relevant for systems in which space or time in-
versions play a role.
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