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Response function of accelerated monopole detector in R X T' space-time
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The response function of a uniformly accelerated monopole detector interacting with a free scalar
field is studied in R X T' space-time. The response function depends not only on the periodicity
lengths but also on the direction of the acceleration of the detector.

I. INTRODUCTION

Fang et a/. pointed out the possibility that the
Universe is multiply connected. ' Further, the Universe
may consist of the usual four-dimensional space-time and
an extra dimensional compact space, such as M XS',
etc., as in Kaluza-Klein theory. If our Universe is multi-

ply connected, it is interesting to investigate the proper-
ties of the vacuum or to study the periodicity lengths of
the Universe.

It is generally believed that the global structure of
space-times does not crucially affect local quantities. In
fact, the mass spectra of quarkonia calculated on finite
lattices coincide well with experimental results. But
there are some local quantities which depend on the glo-
bal structure of space-times. We are interested in wheth-
er the global structure is estimated by local quantities
only.

In this paper, we consider the possibility that the size
of space-time, or the periodicity length of space-time, can
be observed by the use of a local quantity only.
Throughout this paper, we have restricted ourselves to
R X T space-time, which is one of the simplest models of
Oat, closed, and multiply connected space-time.

When the space-time under consideration has a non-
trivial topology, the vacuum of space-time generally
differs from the one of Minkowski space-time (M ). It is
well known that the quantized fields are modified in the
presence of boundary conditions or periodicities in spa-
tial directions and finite vacuum energies emerge by the
existence of restrictions on field modes. These energies
are well known as the Casimir energies. ' So, the
Casimir energy generally contains the topological quanti-
ty of space-time under consideration. Thus the Casimir

Tpp =
2

lim (t)p()p+t)&c)j )tb(x)P(y)
y~x

(2.1)

We introduce the projection operators P, I and P, by

P, t =g at, IO, L ) &O, Liat, ,
k

(2.2)
&, = fd«'lo) &ola, ,

which project any member of Fock space to one-particle
states. Here lo) and lo, L ) are vacua in M and in
R XS', respectively, and L denotes the periodicity
length. Since we have assumed free scalar theory, the
quantized field P excites the vacuum to the one-particle
state only. Thus the renormalized vacuum expectation
value of Eq. (2. 1) in pseudo-Riemannian space R XS' can
be calculated as

energy is the first candidate to observe the size of space-
time.

In the next section, we consider the Casimir energy in
R XS' and R X T space-times and discuss the observa-
bility of the size of space-time by the Casimir energy. In
Sec. III we study the spectrum that the uniformly ac-
celerated monopole detector measures in R X T space-
time. The last section is devoted to a summary and dis-
cussion.

II. CASIMIR ENERGY IN MULTIPLY
CONNECTED SPACE-TIMES

For the sake of simplicity, we consider the Casimir en-
ergy in the massless free scalar case in flat (1+1)-
dimensional space-time with periodic boundary condition
(R XS') at first. By use of the point-splitting regulariza-
tion method, the (0,0) component of the energy-
momentum tensor can be written as

=-,' »m (~Pg+~t&t)[&O, Lly(x)&(, gg(y) IO, L ) —&Oly(~)&)y(y) I»]y~x
= —(2m )

' f dco co/[exp(Lco) 1]= ~I6L— —
0

as stated in Refs. 9 and 15.
The explicit expressions of the Casimir energies in R X T are found in Refs. 8 and 12 and are given as

(2.3)
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2 (2.4)
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where L, 's are the periodicity lengths of the three-
dimensional torus T . We may expect that the size of
space-time L or L, 's are observable by the use of Eqs.
(2.3) or (2.4), but it is not so easy to observe them because
of the following two reasons.

(l) For a given energy density, there are many sets of
L, 's which reproduce the energy density, so we cannot
know the size of the space-time. Further, we cannot dis-
tinguish whether our space-time is R X T, M X T, or
M'XS'.

(2) It is not so easy to observe the energy density itself,
if the gravitational interaction is switched off.

Analogous to the usual Casimir eff'ect in QED, we can
only observe the difference between the energy density of
the vacuum in the space-time under consideration and
one in any other reference space-time, e.g., Minkowskian
space-time; thus, the presence of the vacuum in the refer-
ence space-time or Minkowskian space-time is explicitly
assumed in the above discussion. If we are truly in
R XS' or R X T, we must set the renormalized vacuum
energy to exactly zero, since the reference frame is the
same space-time under consideration. So we cannot ob-
serve any vacuum energy, if we take no account of the
gravitational interaction, even if we are in the multiply
connected space-time. Even if we can observe the energy
density itself, we cannot know the global structure of
space-time. Thus, we must consider another physical

III. RESPONSE FUNCTION
OF MONOPOI. E DETECTOR

In this section, we consider the transition rate from the
vacuum to excited states in R X T space-time in the case
where the monopole detector is uniformly accelerated.
The result obtained in the specific case where the detector
is accelerated perpendicular to the S' axis in M XS'
space-time is found in Refs. 17 and 18. We start from the
Lagrangian density described by

X = —
—,'P(x)CIP(x) —gm (x)P(x), (3.l)

where m(x) denotes the monopole detector ' and g
stands for the coupling constant and is assumed to be
sufficiently small. We impose a periodic boundary condi-
tion on spatial directions, with a periodicity length L, ,

L2, and L3. We calculate the transition rate from the
lowest-energy state or a vacuum with energy
Eo, l 0, Eo, L ) to some excited state l( with energy
E, lg, E,L). In the lowest order of perturbative approxi-
mation, the transition amplitude A is calculated to be

quantity to observe the size of space-time.
In the next section, we consider the spectrum that the

uniformly accelerated monopole detector measures in
R X T space-time and the observability of the size of
space-time by the use of the spectrum.

A =ig(Q, E, Ll f drm(r)$(x(r))lO, Eo, L)—T!2

=ig(Elm (0)lEO) f dr exp[i(E Eo)r]{l(, Llp(x—(r))lO, L), (3.2)—T/2

where x (r) is the trajectory of detector and r is the proper time of the detector. The response function or transition
rate R per unit time, from the state with energy Eo to any state with energy E in the time interval from —T/2 to T/2
is calculated as

R = lim T 'g g l(Elm( 0) lEO) l f drdr'exp[i(E Eo)(r —r')] f—dp[f](O, Llg(x(r'))lp)(@lg(x(r))lO, L)
E
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P~ oo E

00 exp[ i (E —Eo)(r —r')]—
X g f drdr', (3.3)

[xo(r') —xo(r)] —[x(r') —x(r)+ L„] —ie[xo(r') —xo(r)]

where integration over all possible final states is performed and L„denotes (n, L, , n~Lz, n3L3). Now we assume that
the detector is accelerated uniformly with acceleration a and we have the detector's trajectory as

x (r, n)=(a sinh(r/a), sin(8)cos(P)[a cosh(r/a) —a], sin(8)sin({())[a cosh(r/a) —a], cos(0)[a cosh(r/a) —a]). (3.4)

Then Eq. (3.3) becomes
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where

g=(T —T')/2a, g=(T+T')/2a,

F(n, L, o, p) =n IL, sin(8)cos(p) +n2L2sin(0)sin(p)+n&L&cos(0),

G(n L)=(n L +n L +n L )

(3.6)

(3.7)

The integration with respect to the g can easily be performed. The integrand appearing in Eq. (3.5) has simple poles at

g=g+ 2ij—Ir for j =integer and g= —g, —(2j —1)i Ir for j =integer,

where

F sinh(g)+[F sinh (g)+G ]'
2Q

with residues

a exp[ i (E—Eo)(g—+ 2ij—m. )] a expI +i (E Eo)[(—+ +(2 j—

1)iver]I

and
2[2a sinh(g+) Fsinh—(g)]cosh(g+ } 2[2a sin h(g+) Fsinh—(g)]cosh(g+ }

(3.8)

(3.9)

Using Eqs. (3.8) and (3.9) and symmetry of the integration, we can perform integration (3.5) and obtain, after some cal-
culations,

R= —lim T 'g (4IT ) 'g l(Elm(0)lEO)l g f dg
E pf = oc

a exp[ i (E—Eo)(g» —2ij Ir)]—
X g g ( 22ri)—
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a expI +i (E Eo)[g»+—(2j —1)iIT]I
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~

~

—T/2a 2a sinh( (+ ) Fsinh( g )c—osh( g+ )

(3.10)

In order to evaluate the g integral in Eq. (3.10), we assume it has a Taylor series around F =-0. From the symmetry of
the integration, one can easily find that Eq. (3.10) can be expanded as a power series of F, and we have

2a sin[2a(E Eo )g~ ]dg-
f . . =Io+I2(F/2a) +I4(F/2a) +O((F/2a) ),—T/2a 2a SII111 + F SII111 COSh

where

sin(P) T/2a

2aH(1+H )'

cos(p)Hf (1—2H )(1+H )' —sin(/3)(1+4H +H f +H f ) T/2a
sinh d

2H (1+H')'" —T/2a

I4=[cos(P)Hf (4H f +16H —2H"f +88H —6H f —42H —9)(1+H )' '

+sin(I3)(H f +4H f +2H f +56H f +H f +55H f +144H +3H f +48H +9)]

X[24H'(1+H )'/ ] ' f sinh (g)dg .—T/2a

Here, we set

P=2a(E Eo)arcsinh(H—), H =G/(2a),

and

f =2a(E Eo) . —

(3.11)

(3.12)

(3.13)

Note that Eq. (3.12) depends not only on the periodicity lengths L, 's but also on the direction of the acceleration. The

counterpart of Eq. (3.11) in the case where space-time is M XS' and the direction of the acceleration of the detector is

perpendicular to the S' axis is obtainable as L, and L2 become infinite and 0=~/2, and we have
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00 sin I 2a(E —Eo )arcsinh[nL /(2a) ] J

„2~nL [1+n L /(4a )]' ((exp[2na(E —Eo)]—I]
(3.14)

which has the same expression as the one that appeared
in Refs. 17 and 18. Note that Eq. (3.14) stands for
M"XS' with n ~2 provided that the direction of the
monopole detector is perpendicular to the S' axis.

IV. SUMMARY AND DISCUSSION

In the preceding sections we have seen that the transi-
tion rate Eq. (3.12) contains not only the size of space-
time and the acceleration a of the detector but also the
direction of the acceleration. Thus we can observe, in
principle, the size of space-time, i.e., the periodicity
length L s by the observation of transition rates by the
monopole detectors with different accelerations and
directions.

The effect on the response function due to the presence
of the boundary condition is expected to be extremely
small for enormous L s and/or enormous tz, i.e., ex-
tremely small acceleration. Thus we cannot apply the
above result directly to observe the size of the present-
day Universe, because its periodicity length is estimated
to be of the order of 600 Mpc (Refs. 1 and 2). However,
there is a possibility that our Universe consists of the usu-

al four-dimensional space-time attached by an extra com-
pact space as in the case of Kaluza-Klein theory such as
M XS', etc. If it is true, we expect that we can observe
the trace of the presence of the external space, if we can
accelerate the detector suSciently, since the size of the
external space is expected to be of the order of Lz, the
Planck length.

It can be easily shown that the integrand appearing in
Eq. (3.5) is invariant under time translation in the refer-
ence frame of the detector, i.e., ~~~+const, in the fol-
lowing cases: (1) detector's trajectory is in Minkowski
space-time, i.e., L, 's~ ao limit; (2) detector's trajectory is
in I XS' space-time with the direction of detector's ac-
celeration being perpendicular to S' axis, i.e., L„
Lt~ae and e=rr/2. This means that the monopole
detector is in equilibrium with the scalar field in the cases
mentioned above. On the contrary, the integrand in Eq.
(3.5) is not invariant under time translation in general.
This causes the terms in Eq. (3.12) without a first term to
depend on the time interval T and become infinite when
the T~ ~ limit is taken. It is a future problem to inves-
tigate why the detector is not in equilibrium with the sca-
lar Seld in M XS' space-time in general.
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