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Bonnor solution in five-dimensional gravity
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From Bonnor's solution of Einstein-Maxwell theory, a new solution to five-dimensional Kaluza-
Klein equations which refers to a massive source carrying a magnetic and an electric dipole is con-

structed.

I. INTRODUCTION

As is well known, in the 1920s, Kaluza and Klein"-
proposed a unified theory of gravitation and elec-
tromagnetism by assuming that the world has four spatial
dimensions, one which is compactified to a circle.

Recently many-dimensional extensions of the Kaluza-
Klein theory have been given in order to achieve a
geometrical unification of all the fundamental interac-
tions. Also, as a matter of fact, searching for exact solu-
tions to the five-dimensional Kaluza-Klein equations has
received new impetus.

In this paper we sha11 use a theorem given by Matos to
obtain the corresponding Bonnor dipole solution for a
Kaluza-Klein field. Matos's proof is highly nontrivial; we
shall prove his theorem in a very simple form in Sec. II.

II. POTENTIAL FORMALISM

We shall work with a variant of the five-dimensional
theory in which it is assumed to admit one non-null Kil-
ling vector field X" and the five-dimensional metric y„,
reads

e & &„ is the five-dimensional Levi-Civita pseudotensor.
The five-dimensional field equations (2), in function of

the potentials (3), can be derived from the Lagrangian

where

dety= —
p =det y33' ' '

F55

The potentials (3) are analogous to the Ernst potentials
(g, 4) and generate a five-dimensional Riemannian poten-
tial space (see Ref. 6).

The Ernst equations for stationary Einstein-Maxwell
fields outside the sources can be deduced from a varia-
tiona1 principle with the Lagrangian

g = +F 2((, +24,4)(('+2%4')+2 F

7@v

I 'gb+I A, Ab I A,

I A b

(see Ref. 7). For electrostatic fields g=g and 4=4 (an
overbar denotes complex conjugation) then the Lagrang-
ian is reduced to

R"'=0
pv (2)

where R „'
' is the five-dimensional Ricci tensor.

Stationary fields admit a second Killing vector field Y"
with Y"Y„&0. In this case, one can define in a covariant
manner five real potentials in the form

=I =X"X„, f= IY"Y„+I '(X"Y—„)

p, V=1, . . . ) 5) a)b =1, . . . , 4,
where A, is the electromagnetic four-potential, g,b is the
space-time metric, and I is the scalar field. Then vacuum
field equations are characterized by

F 2F F'+ 2pF
2 , Q , a (6)

JV=Vfo=const, P=a4, X=b4,
e= —c&b, f=(+4

where a, b, and c are constants on the condition that

(7a)

Now we shall prove the following.
Theorem I. For each electrostatic (magnetostatic) field

of the Einstein-Maxwell theory (g, 4&) (with g=g and
4=4) there is one corresponding field of the five-
dimensional theory by the substitution

(3) ab=2c and & a +A b =4. (7b)

e „=e p ~„X Y~Y~'

where f,g, x, e are the gravitational, electrostatic, magne-
tostatic, and rotational potentials, respectively, and

Proof. It can easily be checked that the substitution
(7a) reduces the Lagrangian (4) to the Lagrangian (6) if
the condition (7b) holds.

In the magnetic case N is imaginary, but theorem 1 can
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be applied in virtue of the invariance of (5) by the trans-
formation @~i4 (Ref. 7).

III. THE BONNOR SOLUTION

2 2 2
dS' ' =et"dz dz+ Y Z stn 8dp~ — dt2

IP2 IY2
'

+I ( A4dt + A3dp+dy) (12)

As a solution of the Einstein-Maxwell equations we
take the Bonnor solution; it reads

Y2P2 dr 2

+d02
Z

where z =p+ig, p=+r 2m—r+e sin8, g=(r
—m)cos8, and y is the fifth coordinate. In order to find
the function k, one has to integrate the differential equa-
tion

+Z — sin 8dg-
P

dt
P
Y

(8a)
2k, = [(lnp) „+—,'TrA ],1

lnp),
(13)

where

P =r —2mr+e cos 8,
b, =(r —m) +o cos 8,
Y=r +e cos 8 0 =e —m

Z =r —2mr+e

(&b)

in Boyer-Lindquist coordinates (X'=r, X =8,X =P,
X4=t). The Ernst and the electromagnetic potentials for
this solution are

4cm e cos 8 2~s
2 2 2

I —
o

(10)

Elements of the matrix y are obtained using (3) and one
finds

P2 Y2Z sjn2g
g44 Y2 g34 g33 p 2

2bmer sin 0 2ame cosO

The five-dimensional metric can be written as

%=iP (2me cos—8) . 2me cos8
Y2 Y2

Using theorem 1, we can easily find the corresponding
five-dimensional potentials, one arrives at

P 2ame cos8 2bme cos8
Y'' Y

'
Y

where the matrix A =y, y '. After the integration and
the choice a =b =&2, c =%0=1, the five-dimensional
metric reads

T

2 2 2
dS(s)2 Y P dr +d8

Q3 Z

'2 2

+Z — sin 8dg — — dt2

P Y

2&2mer sin 8
d

P

2&2me cos8
ddt +dy (14)

This solution has the appearance of the extreme Bonnor
form in four-dimensional Einstein-Maxwell theory.
Bonnor's solution refers to a massive source carrying a
magnetic dipole or (after using a known theorem' ) a
mass distribution carrying an electric dipole. The five-
dimensional solution (14) has both an electric and a mag-
netic dipole and their moments are all the same 2v'2me.
The parameters a and b are arbitrary but are parameters
of electrical charge and magnetic charge, respectively;
unfortunately for the time being we do not have a clear
meaning of c. The parameter m is interpreted as the
mass of the source. It may be easily seen that the metric
(14) is asymptotically flat and for m=O and e=O the
metric becomes flat.
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