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Corrections to the thin-wall approximation in general relativity
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We consider the question of whether the thin-wall formalism of Israel applies to the gravitating
domain walls of a A.P theory. The coupled Einstein-scalar equations that describe the thick gravi-
tating wall are expanded in powers of the thickness of the wall. The solutions of the zeroth-order
equations reproduce the results of the usual Israel thin-wall approximation for domain walls. The
solutions of the first-order equations provide corrections to the expressions for the stress energy of
the wall and to the Israel thin-wall equations. The modified thin-wall equations are then used to
treat the motion of spherical and planar domain walls.

I. INTRODUCTION

There has recently been renewed interest in the proper-
ties of domain walls in general relativity. Most of the
work thus far has used the thin-wall approximation of Is-
rael, ' treating the walls as idealized zero-thickness ob-
jects. However, recent work of Raychaudhuri and Mu-
kherjee has cast some doubt on the applicability of the
thin-wall approximation to domain walls. If the thin-wall
approximation applies to domain walls, then thick
domain walls should have a zero-thickness limit that
reduces to the Israel thin-wall formalism. For instance,
the consistency of the Israel formalism requires that the
stress-energy tensor of a zero-thickness wall have no
components that are normal to the wall; however, the
work of Raychaudhuri and Mukherjee indicates that
thick domain walls do have components that are orthogo-
na1 to the wall. Unless these components vanish in the
zero-thickness limit, the thin-wall approximation is not
applicable to domain walls. It has been shown by Geroch
and Traschen that a regular zero-thickness limit requires
the vanishing of these orthogonal components; but it is
not clear that the equations describing thick domain
walls are compatible with a regular zero-thickness limit.

This potential conAict was resolved by Widrow in the
case of domain walls with planar symmetry. Widrow
treats the Einstein-scalar equations for a gravitating
domain wall assuming that the solution has planar sym-
metry, but places no restrictions on the thickness of the
wall. He then takes the zero-thickness limit of his solu-
tion and shows that the orthogonal components of the
stress-energy tensor become negligible in that limit and
that the solution reduces to the Vilenkin -Ipser-Sikivie
zero-thickness domain-wall solution.

In this paper we treat the gravitating domain walls of a
theory, making no assumption of symmetry for the

solutions. We treat only walls whose thickness is small
compared to their radius of curvature. In such a way, we
hope to address the problem of the zero-thickness limit
for arbitrary domain walls. Section II introduces the no-

tation and the equations for these walls. In Sec. III we
expand the equations in powers of the thickness of the
wa11. We show that the zeroth-order equations reproduce
all the results of the Israel thin-wall formalism for
domain walls including the usual expression for the
domain-wall stress-energy tensor. We then find the first-
order corrections to the stress energy of the wall and to
the wall's equation of motion. Section IV contains a
treatment of spherical and planar walls using the correct-
ed equations of motion. Our conclusions are presented in
Sec. V.

II. EINSTEIN-SCALAR EQUATIONS

In an attempt to model the behavior of a thick domain
wall we will consider the A,P kink, i.e., walls made of a
real scalar field P with the Lagrangian

l. = —
—,'V, pV'p —

A, (p —ri ) (2.1)

where A. and ri are constants (we use units where
G =c =1). From the Lagrangian we have the equation
of motion

V', V'P —4A, P(tI) —
ri ) =0

and the stress-energy tensor

T.b =V.PVb4 ,'g.b F,P—"4—+2'A(0' ri')'1—

(2.2)

(2.3)

(2.4)

cr = —', &2x71', (2.5)

A wall is characterized by the presence of two or more
asymptotic regions in which P attains separate vacuum
expectation values, the boundary between such regions
being the domain wall. For example, in Aat space we
could have p~+ri as z~+ 0o where z is the usual Carte-
sian coordinate. Defining the quantities e and o. for fu-
ture convenience by
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we may write one solution of Eq. (2.2) as

P=gtanh(z/e) .

This solution represents an infinite planar domain wall
centered at z =0. From Eq. (2.3) it follows that the
stress-energy tensor of this solution is

T,b
= —— (g,„V,z—Vbz) . (2.7)

4 ecosh (z/e)

' 'R„=h",h",Rbd+X„K„+KK„2—K,bK", .

From (2.12) we may also deduce

R„n'n'= —X„K K—„K"
and similarly that

abn h R db

(2.13)

(2.14)

V,z =n, ,

hab =gab na nb

K b =h, 'V, nb =V, nb .

(2.8)

(2.9)

(2.10)

We may now write the coupled Einstein-scalar equations
as differential equations for h,b, K,b, and p. (This is
essentially a spacelike analog of the usual "3+1"formal-
ism for Einstein's equation. )

Define D, and ' 'R,b to be, respectively, the derivative
operator and Ricci tensor associated with h,b. From Eqs.
(2.9) and (2.10) it follows that

This shows that o represents the energy per unit area of
the wall and that the stress-energy tensor has no com-
ponents orthogonal to the z =const surfaces. We also see
that the energy density is strongly peaked around z =0,
and has an effective cutoff at z =e. We can thus think of
e as the effective thickness of the wall.

This is the solution for a flat domain wall in fiat space-
time; we however are interested in curved gravitating
walls. In order to investigate these, we will assume that
the radii of curvature of the wall are much larger than its
thickness. We may therefore expect that locally the wall
will resemble the planar nongravitating wall. Let X be
the surface on which /=0. Then we suspect that P and
the metric components are quickly varying in directions
orthogonal to X and slowly varying in directions tangen-
tial to X. Thus we would like to split the field equations
into their components orthogonal and tangential to X.
We use the Gauss-Codazzi formalism to achieve this aim.

Let n' be a unit geodesic vector field orthogonal to X.
We wish to define an analog of the Cartesian coordinate z
for the curved gravitating wall and do so as follows: let z
be the length parameter along the integral curves of n'.
Each z =const surface then has unit normal n„ intrinsic
metric h, b and extrinsic curvature K,b given by

(VdKb VbK d )h

=D,K', —D,K . (2.15)

Finally, from (2.13) and (2.14) we may deduce that

' 'R =R +K K"+K +RE K (2.16)

Having now split the curvature tensor into its perpen-
dicular and parallel components, we may use Einstein's
equation and expression (2.3) for the stress-energy tensor
to find

'Rob+2K„K b KKgb 8mDg/Dbg'

—8m', (P —g ) h, b .

Equation (2.2) becomes

(Pd Qrh+K +D,D'P 4AP(P —ri )=0 . —
az2 az

(2.17)

(2.18)

Equations (2.11), (2.17), and (2.18) are equivalent to the
Einstein-scalar equations.

Define the variable u and the field X by

u:—z/e, (2.19)

(2.20)

Note that for the fiat nongravitating wall, Pirl is a
smooth function of z/e even in the e~0 limit. Since the
curved wall should locally resemble the flat wall, we ex-
pect that X is a smooth function of u even as e~O.
Define the zero thickness limi-t of the wall to be the limit
e~O with o remaining fixed. We assume that X, h,b,
and K,b are smooth functions of u even in the zero-
thickness limit. Writing Eq. (2.11), (2.17), and (2.18) in
terms of e and quantities that are smooth in the zero-
thickness limit we obtain

X„h~b 2Kb, (2.11)

where X„ is the Lie derivative with respect to the vector
field n'.

Now, the Gauss-Codazzi equations for the wall imply

' 'R„=h,h",Rbd —R,b,dn n +KK„—K bK, .

But

Bh,b =2@K,b,
BQ

8ll
= —3m+(X —1) h ab

+e(' 'R,b+2K„K'b —KK,b )

(2.21)

(2.22)

R,b,dn n =n (V, Vd —V„V, )n,

=n V,Kd, —V„K„
=Kd, K, —X„K„;

hence,

(2.12)

BX—2X(X —1)+eK +e D,D'X =0 .
Qg2 QQ

(2.23)

For any quantity S let Sp denote S~, p and let S denote
BS/Be~ —p. Then for small e, S is well approximated by
Sp+eS. By evaluating Eq. (2.21)-(2.23) and their deriva-
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tives at @=0 we hope to obtain approximate equations for
h, b K,b, and X.

III. ZEROTH- AND FIRST-ORDER EQUATIONS

We begin by evaluating Eq. (2.21)—(2.23) at e =0:

Qab =eTab —Shab . (3.9)

Thus S is the part of eT,& proportional to h, b and Q,b is
the remainder. Using Eq. (2.3), we see that in terms of
the wall fields

2

~h Oab =0,
Bu

(3.1)
+(X —1)

du

BKQ b 2 2pro(Xo 1) boob
Bu

0 0
—2X (X —1)=0 .

(3.2)

(3.3)

Q,b
= , on—,nb

——'e AD, X O'X,
'2

dX
du

—(X —1)

(3.10)

Equation (3.1) has solution

ho b(u)=hoa&(0) . (3.4)

Thus, to zeroth order the intrinsic metric is constant
across the wall. This is what we would expect, since in
the zero-thickness limit, the metric is continuous across
the wall ~

Equation (3.3) is solved by

+ —e o D,X D&X ,'D, X—D—'X(2h,b+3n, nb )

+ (n, D&X+n&D, X)
dX
du

(3.1 1)

3 CTS = ——
0 44 cosh4u

(3.12)

Evaluating these quantities at e=O, using Eq. (3.5) we
find

Xp = tanhu . (3.5)
Qoab 0 . (3.13)

This solution has the same form as the flat wall solution
in Eq. (2.6). However, the interpretation is somewhat
different. Though Xp is a function of u alone, this does
not imply any symmetry of the wall. On the contrary,
since the u =0 surface in general has no symmetries, a
field configuration that depends only on u has, in general,
no symmetries. Instead Eq. (3.5) simply expresses the
fact that the curved gravitating wall locally resembles the
flat nongravitating wall.

Using Eq. (3.4) and (3.5) in Eq. (3.2) we find

It then follows that as a distribution T,b is (to lowest or-
der in e) equal to —crh, &5(z). This is just the usual thin-
wall expression for the stress-energy tensor of a domain
wall. Therefore the results of our zeroth-order equations
reproduce all of the usual results of the thin-wall forrnal-
ism applied to domain walls.

We now consider the first-order corrections to this
thin-wall limit. Taking the derivative of Eq. (2.21)—(2.23)
with respect to e at e=O gives

sinhu (2 cosh u + 1)
cosh u

(3.6)
Bhab

2KQab )
ou

(3.14)

In the zero-thickness limit, all points at finite values of u

are equivalent to z =0. We therefore need to be more
careful in interpreting this solution. In the Israel formal-
ism the quantity [K,b ] was defined by

+' R pab+2KQ«Kpb —KQKp (3.15)

8K,b 2 2 2= —3no (Xo —1) h, b
—12m.oXo(Xo —1)Xho,b

[K.b] =K,b I, K,b I, =lim (—K,b I q
—-K.b I q),(~0

BX Xp—X(3Xo—1)+Ko =0 . (3.16)

4maho b(0) (3.7)

This is just Israel's equation for a zero-thickness domain
wall. Thus the solutions of our zeroth-order equations
reproduce the usual results of the Israel formalism for
domain walls.

Now let us consider the energy-momentum tensor.
Though T,b becomes singular as e~O, the quantity eT,b

is smooth. Define the quantities S and Q,b by

(3.8)

the difference in extrinsic curvature across the wall.
Since u =z/e, clearly in the limit a~0, the correct quan-
tity to consider is

[K,b]= lim [Ko b(u) Ko b(
—u)]

Using Eq. (3.5) we find that Eq. (3.16) can be written as

a 4 a 2. Kp
cosh u (cosh uX }

Bu u cosh u
(3.17)

3u +tanhuX= ——0.
2 cosh2u

(3.18)

Thus to first order, the solution for the scalar field is
given by

L

In order for X to have the appropriate behavior for large
l
u l, it follows from Eq. (3.17) thatf" Kocosh u du =0. Using the exPression for Ko,b

in Eq. (3.6) we find that Ko(0)=0. [The condition that
Ko(0)=0 can also be derived from Eq. (3.7).] Then in-

tegration of Eq. (3.17}using Eq. (3.6) yields
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e~o 3u + tanhu
X=tanhu ——

2 cosh2u

The zeroth-order solution is only slightly modified and
the expansion remains consistent. It is interesting to note
the corrections to the stress-energy tensor. From Eqs.
(3.10), (3.11),and (3.18) it follows that

It then follows from Eq. (3.22) that

[h,b]=4ebKp, b(0) . (3.23)

We now evaluate [K,b ]. Since K,b is well approximat-
ed by Kp,b+eK, b we find that [K,b] is well approximat-
ed by

Q.b
=—

and hence

3n 2 5 tanh u+12u tanhu —4
8 cosh4u

3m 2 3 cosh u +1
0 n, nb,

8 cos}1 u

(3.19)

(3.20)

BK,b
[K&b ] =Kp&b (5) Kp&b ( 5) +ef du (3.24)

Then using Eqs. (3.6), (3.15), (3.18), and (3.21) and the
fact that b, )) 1, we find that [K,b] is well approximated
by

[K,b]= —4mo [hp, b(0)+eh, b(0)]

eT,b
= —

—,'o sech uh, „ 1+ (5 tanh u

+ 12u tanhu —4)

3%60' 3 cosh Q + 1
n, nb .

8 cosh Q

—irohp, b(0)(41ncoshu +tanh u ) . (3.21)

When our expansion scheme is valid, h, &
is well approxi-

mated by ho, &+eh,&, i.e.,

h, b=hp, b(0) 1 Ewer 41ncosh ——+tanh-z 2z

+eh, b(0)+2zKp, b(0} . (3.22)

We expect the approximation to be good only for those
values of z where the first-order corrections are much less
than the zeroth-order values. Thus this equation tells us
that for the validity of the approximation, we require that
z «(cr) ' and z «L where L is the length scale associ-
ated with K,b. This latter cutoft'we expect anyway, since
it merely expresses the constraint on our coordinate sys-
tem being well defined. The former provides a cutoff as-
sociated with the mass of the domain wall, and is indica-
tive of the horizon structure associated with a domain
wall. In analogy with [K,b] in the Israel formalism, we
will need to define [K,b ] and [h,„]for the thick-wall for-
malism. Since [K,b] was defined in terms of a limiting
process as one approached each side of the wall, a natural
way to generalize this for thick walls would seem to be

[Kab ] Kab I.=,g — .b I.=,~

where eA is chosen to be su%ciently large so that the
matter fields take their vacuum values, but smaller than
other relevant length scales. We define [h,b] similarly.

Thus although the stress-energy tensor is predominantly
proportional to the induced metric of the wall, it does ac-
quire a piece orthogonal to the wall which vanishes
smoothly in the zero-thickness limit. This shows that, as
far as the matter fields are concerned, the zero-thickness
limit is a physically consistent approximation.

We find h, b by integrating Eq. (3.14) using Eq. (3.6):

hgb =h,b(0)+2uKp, b(0)

+2am ( —", —8ln2)a hp, b(0)

+2eh[' Rp, b(0)+2Kp„(0)Kpb(0)

4n o' hp b(0)] (3.25)

Now define the quantity K b to be

,' (K,b I, ,—~+K,b I, ,~ ) and define h, b analogously.
Then, to zeroth order in e,

K,b =Kp,b(0),

and, to first order in e,

h, b
——hp, b(0)+Eh,b(0) .

(3.26)

(3.27)

Then evaluating Eqs. (3.23) and (3.25) to first order in e
we find

[h,b ]=4mb, K,b,

[K,b ]= 4mcr h,—b [1+neo(4 ln2 ——"
, +26, )]

+2eb, (R,b +2K„K b ) .

(3.28)

(3.29}

Here R,& is the Ricci tensor associated with h, &. Equa-
tions (3.28) and (3.29) are the modified version of the Isra-
el equations for thin domain walls with corrections due to
the thickness of the wall.

IV. WALL MOTION

We now apply the modified Israel equations to the
motion spherical and planar walls. We first find two vac-
uum spacetimes with boundary, representing, respective-
ly, the z ~ eA and the z ~ —eh portions of the wall space-
time. We then impose Eqs. (3.28) and (3.29) and thus find
the motion of the wall.

Equation (3.28) is somewhat more difficult to apply
than the corresponding Israel condition [h,b ]=0. This is
because when the Israel condition is applied both surfaces
often have the same metric and this yields a natural way
to identify them, whereas in our case we are comparing
the surfaces z =+eh, which are at a finite proper distance
apart, thus the identification of corresponding points in
the two surfaces will not in general be so obvious. In the
case of refiection symmetry (such as the conventional pla-
nar wall) this difficulty is circumvented, since
[h,b] =K,b =0, and Eq. (3.29) reduces to
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K,b
= —2@ah,b[1+~ecr(41n2 —

—",, +26, )]

+ehR, b ~ (4.1)

on the z=eA surface. However, even here we are left
with the problem of finding K,b at z=eh rather than
z =0. We therefore need to find a way of rewriting (3.28)
and (3.29) in terms of quantities evaluated at z =0; in
fact, this turns out to be quite straightforward.

To model the thick domain wall, we first glue together
two vacuum spacetimes along a surface X in such a way
that X has induced metric H, b and extrinsic curvatures
k,b on one side and k,b on the other side. We then real-
ize the z =+eh surfaces of the wall as the surfaces at
geodesic distances +eh from the surface 0. in that space-
time just introduced. Since Eq. (3.28) and (3.29) are only
correct to first order in e we need only calculate quanti-
ties to first order in e, and to find these, we simply expand
in a Taylor series around z =0. Equations (3.28) and
(3.29) then become conditions on H,b, k,b, and k,b.

Using this procedure for the induced metric gives, via
Eq. (2.11),

h.b I z =+,a =H.b+2e~k. b (4.2)

K,b I z=+,b,
=k,b eh(R, b +2k,+,k b

—k+ k—,b )
—. —(4 4)

From Eqs. (4.2) and (4.4) we can now see that Eq. (3.28) is
automatically satisfied (to first order in e).

Now define the quantity [k,b ] by

[kgb] =kgb —
kab . (4.5}

Then using Eqs. (4.2) and (4.4) in Eq. (3.29) and keeping
only terms to order e we obtain

[k,b] = 4mo H, b [1+m—eo (4 ln2 ——"
, +26, )]

For the extrinsic curvature, we note that in a vacuum
spacetime E,b satisfies the relation

X„K,b = ' 'R, b +2K„K'b KK,b, —

where ' 'R,b is the Ricci tensor of the intrinsic metric of
the surface. In our particular coordinate system X„=i)„,
and therefore we have

Since 41n2 &,p
it follows that o. &0.. Thus the effect of

finite thickness is to substitute a lower effective surface
energy in the Israel equations. We can now apply these
results to the cases of spherical and planar domain walls.

In the case of the reflection and plane-symmetric
domain wall (the case treated by Ipser and Sikivie and by
Widrow), k, b

= —k,b, and hence Eq. (4.7) reduces to

kab
—2mo Hab (4.9)

Thus we find a plane-symmetric surface satisfying Eq.
(4.9) in a plane-symmetric vacuum spacetime. There are
only two different plane-symmetric vacuum spacetimes,
(called class I and class II by Ipser and Sikivie). The class
II spacetime is singular and we will not consider it here.
The class I spacetime has a metric of the form

ds =2du dr+r (dx +dy ), (4.10)

q, b =r (V—,xVbx+V, yVby) .

Then the intrinsic metric of the surface is given by

b
— Q Qb+g b

(4.11)

(4.12)

Using Eq. (4.10) a straightforward calculation shows
that the extrinsic curvature of the surface is

R R
Kb=s . 9 Qb gb (4.13)

Here an overdot denotes a derivative with respect to ~
and s =+1 with the value of s depending on the direction
of the normal to the surface (without loss of generality
s =1).

It now follows that the tensor equation (4.9) reduces to
the following pair of ordinary differential equations:
equations:

which is simply the metric of Minkowski spacetime writ-
ten in an unusual set of coordinates. A plane-symmetric
surface in this spacetime is given by a relation of the form
r =R (r) where w is the proper time measured by an ob-
server in the surface whose four-velocity is orthogonal to
the planes of symmetry. Let u' be the four-velocity of
this observer and define the tensor q, b by

+2mb (KK,b+ —,
' [k][k,b ]——,

' [k„][k'b]) . (4.6)

Recall in Sec. III we showed that K=0. Using this re-
sult, Eq. (4.6) reduces to an equation on z =0. We can
now see that [k,b ]= 4n o H, b to —zeroth order in 6,
which is just Israel's equation for the wall surface, as
would be expected. Substituting back in Eq. (4.6) we ob-
tain the first-order correction

R —27TCT

R

R
2%0

R

Clearly the solution to these equations is

R =ce2~u~

(4.14a)

(4.14b)

(4.15)

[k,b] = 4~o H, b[1+
—neo (4 ln2 ——'„' }] .

Defining the quantity o. by

(4.7)

o =o [1+m.eo(41n2 —
—",, )], (4.8)

we see that Eq. (4.7) is identical to the usual Israel equa-
tion with the quantity o playing the role of o.. Thus the
finite-width corrections simply produce corrections to o,
and leave the form of the equations of motion unchanged.

where c is some constant.
The Ipser-Sikivie wall solution has the same form as

Eq. (4.15) but with o instead of o. Thus our solution
simply substitutes an "effective energy per unit area"
with finite-thickness corrections for the quantity cr; oth-
erwise our solution is identical to the Ipser-Sikivie solu-
tion. The Widrow solution in the zero-thickness limit
reduces to the Ipser-Sikivie solution. Our solution can be
regarded as the Widrow solution expanded to first order
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in thickness.
We now apply the equations of motion to the collapse

of a spherical wall in a vacuum. In this case, by
Birkhoff's theorem, we know that the spacetime exterior
to the wall must be Schwarzschild spacetime, and we will
take the interior to be Oat. The motion of a spherical
wall is given by a relation of the form r =R (r) where r is
the "radius" of the wall and ~ is the proper time of a radi-
ally moving observer in the wall. Using the Ipser-Sikivie
equation of motion for the wall and substituting 0 for o
we find that the equation of motion for the wall is

1/2

(1+R )' — 1+R
R

=4mcrR . (4.16)

Let R be the maximum radius of the wall. Then it fol-
lows from Eq. (4.16) that

M =4trtrR (1 2tro R—) . (4.17)

Using Eq. (4.17) in Eq. (4.16) we find

R. '
R

R

'2

(4.18)

Thus for a given R and R smaller 0 leads to a larger
R . Therefore the finite-thickness corrections lead to a
slightly faster collapse of the wa11.

V. CONCLUSIONS

In this paper we have developed an expansion pro-
cedure for the equations describing the motion of a
domain wall. Our formalism has a well defined zero-
thickness limit which is just the Israel formalism.
Perhaps most importantly, we have shown that for a gen-
eral domain wall, the stress-energy tensor tends uniform-
ly to the standard distributional form in the zero-
thickness limit.

We applied our equations of motion to the case of
domain walls in vacuo, and showed that the effect of
finite (as opposed to zero) thickness was to substitute a
smaller effective surface energy in the Israel equations.
Thus finite-thickness vacuum domain walls have exactly
the same qualitative behavior as their zero-thickness

cousins. In particular, the general result that domain
walls are gravitationally repulsive still holds, although
the repulsive force is slightly weaker than their zero-
thickness counterparts.

Whilst it is generally thought that grand-unified-theory
scale walls are cosmologically disastrous, it has recently
been suggested that very thick domain walls could have
played a part in the formation of structure in the
Universe. It is therefore important to obtain a good un-

derstanding of the gravitational properties of such walls.
It is therefore encouraging that many of the properties of
zero-thickness walls persist in the case of thick walls.

We applied our results to the cases of planar and
spherical domain walls to obtain the first-order correc-
tions to the metric. For the planar wall, our metric was
clearly consistent with the zero thickness results of Ipser
and Sikivie and Vilenkin, and the thick-wa11 treatment
of Widrow. We then turned to the cosmologically more
interesting case of a spherical collapsing domain wall.
Here the smaller effective energy per unit area produces
qualitatively the same behavior as with the zero-thickness
wall, but the result of having a "lighter" wall is to speed
up collapse. This latter result is suggestive of the rigidi-
fying effect of gravity on domain walls. The zero-
thickness limit corresponds to scaling out all other phys-
ics except gravity. Thus, we would expect the gravita-
tional effects on the dynamics of the wall to be the strong-
est in the zero-thickness limit. Since this limit produces
the slowest collapse rate for a spherical wall, the effect of
gravity is to resist regimes of large curvature. We can
therefore think of gravity as rigidifying domain walls.
The effect of gravity and wall thickness upon the dynam-
ics of domain walls is currently under investigation.
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