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The Hamiltonian formulation of the theory of a gravitational field interacting with a perfect fluid

is considered. There is a natural gauge related to the mechanical and thermodynamical properties
of the fluid, which enables us to describe 2 degrees of freedom of the gravitational field and 4 de-

grees of freedom of the fluid (together with 6 conjugate momenta) by nonconstrained data (g, P)
where g is a 3-dimensional metric and P is the corresponding Arnowitt-Deser-Misner momentum.
The Hamiltonian of the theory, numerically equal to the entropy of the fluid, generates uniquely the
evolution of the data. The Hamiltonian vanishes on the data satisfying the vacuum constraint equa-
tions and tends to infinity elsewhere as the amount of the matter tends to zero. In this way the vac-
uum theory with constraints is obtained as a limiting case of a "deep potential well" theory.

I. INTRODUCTION

Kkt is the second fundamental form of X (extrinsic curva-

ture) and K =Kleig"'. Four of ten Einstein equations do

not contain time derivatives of p
"' and gk(.

R (g) — (P"'P —-'P') =O1

detg

(P denotes again the trace of the tensor P ') and

(3)

where a vertical bar denotes the covariant derivative with
respect to the metric connection generated by g. They
can be treated as Harniltonian constraints for the general-
ized Hamiltonian system (P"',g&t). There are 4 (per
point) "Lagrange multipliers" N and X", canonically
conjugate to the four constraints. As for the usual con-
strained Hamiltonian systems, the dynamics of the data
(P"',g&t ) resulting from the remaining six Einstein equa-
tions

Gk( =~Tt, ( (4)

(by tt=8trG we denote the gravitational constant) is not
uniquely defined unless the parameters (X,X") are fixed

The Hamiltonian formulation of general relativity'
may be sketched as follows. Let X be a 3-dimensional
initial-value surface. Cauchy data for the gravitational
field are described by the Riemannian metric gkt on X (la-
tin indices run from l to 3) and by the so-called
Arnowitt-Deser-Misner (ADM) momentum P"', where

P "'=&detg (Kg "' K')—

at each point of X and at each instant of time t =x . Fi-
nally, the parameters can be interpreted as the lapse func-
tion

1

00
(5)

and the shift vector

&k=gk(& =gkO.(

The freedom in the choice of lapse and shift corresponds
to the gauge freedom of the theory with respect to the
group of space-time diffeomorphisms.

In the theory of constrained Harniltonian systems it is
usually possible to replace constraints by a "deep poten-
tial well" without changing essentially the behavior of the
system (one could even argue that all the constrained sys-
tems known in classical physics are idealized situations
with a deep potential well ). The goal of this paper is to
show that general relativity coupled to a perfect fluid is
indeed a theory with constraints (2) and (3) replaced by a
potential well. We show that the phase space of both
gravitational and thermomechanical degrees of freedom
(2+4 per point) can be described by the same inutually
conjugate objects (P"',gk, ) as in the vacuum case. The
zero on the right-hand side of Eqs. (2) and (3) is replaced
by the corresponding components of the matter energy-
momentum tensor. However, the equations can no
longer be considered as constraints. They enable us to
calculate uniquely the lapse and the shift in terms of the
data (P"',gkt ). Finally, the time evolution of the system
is uniquely generated by a regular, nonconstrained Ham-
iltonian H =H(P "',

g&t ). Therefore, our formulation is
well adapted to numerical simulations.
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e =e(V,S) (7)

(internal energy per mole expressed as a function of the
molar volume V and the molar entropy S). The function
(7) uniquely determines the properties of the fluid, ac-
cording to the Gibbs relation

The Hamiltonian vanishes on constraints (2) and (3)
and —as the amount of the matter tends to zero—tends to
infinity outside the constraints. This shows that our
description of the dynamics may also be used for numeri-
cal analysis of the vacuum equations, since the con-
straints can be considered as an "infinitely deep potential
well. " Replacing it by a deep, but finite well does not
change substantially the dynamics.

The specific form of the Hamiltonian function depends
on the specific Gibbs functional equation of the liquid:

L= —&g —e(V) .
1

V
(12)

Here g = ~detg„„~ =
~g ~' "(detgk&) is the absolute value

of the determinant of the 4-dimensional metric tensor
with the signature ( —,+,+, + ), and V is the specific
volume (per mole) of the fluid in its rest frame. It is con-
venient to introduce the rest matter density (moles per
volume): p= 1/V. In this way we have

P(x ). The equations will be derived from the variational
formula

5 JLd x=0,
where the Lagrangian L is equal to minus the rest energy
density of the fluid:

de= —p dV+TdS, (8) L = —+g pe( 1/p) . (13)
where p is the pressure and T is the absolute temperature.
In our paper we also need another description of the
fluid, given by the so-called "entropy picture. " To get it
we divide Eq. (8) by T:

dS= —de+ ~d V .
1

T T
(9)

Here, the entropy S has to be expressed in terms of the
molar internal energy and the molar volume,

S =S(e, V), (10)

and Eq. (9) gives the values of remaining two parameters
T and p. Given a function (10) we construct a noncon-
strained Hamiltonian H=H(P"', gkl ) such that the evolu-
tion equations derived from H are precisely the Einstein-
Euler equations for the self-gravitating perfect fluid
whose mechanical and thermodynamical properties are
described by (10).

r =h(z)dz'hdz hdz (14)

which enables us to assign to each volume D in Z the
number n (D ) of moles (or the number of particles) of the
matter contained in D:

n (D):= (15)

The pull back of r from Z to X via the configuration g is a
differential three-form (i.e., it is a vector density in the
physical space-time X ):j:g "r =h(g(x))dg—'hdtv hdtv

Using the notation @=BP/Bx", we have

(16)

The quantity p (or V) has to be expressed in terms of un-
known functions P and their derivatives. This is possible
because Z is equipped with the volume structure (scalar
density or a differential three-form)

II. RELATIVISTIC HYDRODYNAMICS
AS A LAGRANGIAN FIELD THEORY

In the present section we show how to derive the rela-
tivistic Euler equations for a barotropic perfect fluid from
the first-order variational formula. This formulation of
the hydrodynamics is essential for our purpose. We as-
sume therefore that the energy is a function of the
specific volume V only and formula (8) reduces to
de = —p d V. In the present section the space-time metric
g is given a priori.

Consider an abstract 3-dimensional "matter space" Z
equipped with an appropriate geometric structure which
will be specified later. Points of Z correspond to particles
of the matter. A configuration of the fluid is described
completely if for each point x =(x") of the physical
space-time X a particle z=((x ) whose world line passes
through x is specified. The configuration can thus be
represented as a mapping g: X~Z. Given a coordinate
system (z'), a =1,2, 3, the mapping is described by three
functions z'=P(x ). Physical laws governing the evolu-
tion of the system will be formulated in terms of partial
differential equations for the three unknown functions

j= h g' gg' dx h dx ~ h dx r

1= —h —e" ~rg'@'r e„„z dx ' h dx h dx (17)

j=j" J(dx hdx'hdx hdx )
Bx"

1 1

)~2 J Ep g dx Adx Qdx
(
—

)
1 /2

3= g j"(—1)"dx h hdx "h hdx'
p=o

(18)

(the factor dx" is to be omitted in the pth term). The for-
mulas (17) and (18) enable us to express j" in terms of
derivatives of the fluid configuration P:

where e" ~~ denotes the completely antisymmetric tensor
density (Levi-Civita symbol; we use the convention of
Misner, Thorne, and Wheeler ). The vector density j can
be spanned with respect to basic three-forms:
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g Qg ~~~pry& gg»
1 100» 03

=h( —1)"det 2 2
0o

3 3
0o (19)

Because of the Noether theorem, variational formula (11)
implies conservation laws

V„T"=0 (28)

where V„means the covariant derivative with respect to
the space-time metric. Because of the continuity equa-
tion (20) only three among the four equations (28) are in-
dependent. They are equivalent to three variational equa-
tions:

(again, the pth column of the 3X4 matrix P~ is to be
omitted; this is indicated by p). The current j is con-
served by virtue of the definition

dj=dg r=g*dr=0 (20)

since dr=0 as a differential four-form in the three-
dimensional material space Z. In coordinate language
this means that the divergence of the current vanishes:

j)" dz Ad+ Ad+ Ad+ =0 .
ax~

(21)

Decomposing j" as a product of a four-dimensional
volume density (g )'~, normalized velocity vector field of
the fluid u" (u "u„=—1), and a rest-frame matter densi-

ty p,

J"=&gp ",
we obtain the formula

1
p —& j"J g„

(22)

(23)

J ga —~ v5p Jp5v
g A

P

(24)

The easiest way to prove that the variational formula (11}
is equivalent to Euler's equations of motion of the fluid is
to calculate the canonical energy-momentum tensor of
the above field theory:

(25)

Because of formulas (13), (23), and (24) we have

BL, 'dL Bp Bj"
ag

'
~p aj. ag

'

de Bj
dV

= —& g pe —
(5~&+u "u~) .

de
(26)

Finally, using (8) we obtain

T~q = —+g [peu "u3 +p(5~3+u "uq)] . (27)

Formulas (19) and (23) give us the necessary expression of
p in terms of P„. The reader may easily check that the
following fundamental identity holds:

L =0.
5p

(29)

rr, = —+g p(e+ Vp )u u&(g '),"

where (g ')," is a 3X3 matrix inverse to (Pl, ) and
rl=(e+ Vp) is the enthalpy of the fluid. The above
canonical structure is equivalent to the description based
on the so-called Clebsch variables, although it is simpler
and physically more natural.

Because of the reparametrization freedom of the ma-
terial space Z the theory may be further reduced.
Indeed, any reparametrization of Z which leaves invari-
ant the volume structure (14) is physically equivalent to
the previous one. The space of equivalence classes can be
parametrized by four parameters (e.g. , j" or p and U").
The Poisson brackets between those quantities can be im-
mediately calculated from the canonical structure car-
ried by the variables (P,m, ). Some authors introduce
those brackets in an axiomatic way as a "noncanonical"
Hamiltonian formalism. '

The parameters z'= P(x ) can be considered as "poten-
tials" for hydrodynamics: we express physical quantities
(p and u "}in terms of the first derivatives of the poten-
tials in such a way that the continuity equation is au-
tomatically satisfied. The analogous ansatz in electro-
dynamics consists in expressing physical quantities (elec-
tromagnetic tensor I'„„)in terms of the potential A„ in
such a way that the first pair of Maxwell equations is au-
tomatically satisfied. First-order field equations for phys-
ical quantities (Euler equations in hydrodynamics and the
second pair of Maxwell equations in electrodynamics) be-
come variational second-order equations for the poten-
tials. In both theories the ansatz is not unique or "unique
up to gauge transformations. " In hydrodynamics gauge
transformations correspond to unimodular (i.e., without
changing the volume form r ) transformations of the
matter space Z.

The above formulation of the fluid mechanics as a La-
grangian field theory leads in a natural way to the Hamil-
tonian formulation (later used also by Kiinzle and Nes-
ter ). Momenta canonically conjugate to configurations

P are given by m, =p, , where

pP= L
a

g a
P

Equation (26) implies that
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III. THERMODYNAMICS

To describe thermal properties of the fluid we need one
more potential. " We add therefore a new dimension
~=z to the matter space Z. This way we obtain the 4-
dimensional matter space-time Z with ~ playing role of a
"material time. " To describe the configuration of the
fiuid we need now an additional function z =g (x").
The physical interpretation of the new variable will be
given in the next section. However, a purely phenomeno-
logical point of view is also possible. We prove that the
following ansatz for the temperature,

(where p is a positive constant), together with the choice
of minus the free energy [f( V, T ) =e —TS ] as a La-
grangian of the theory

L, = —V g f—(V, T)= V—g pf(lip, T),1 (31)

BL
P~

—
5~.L

pe
where a =0, 1,3. Using the thermodynamical identity

(32)

leads to correct equations. To prove this statement we
calculate again the energy-momentum tensor

T =Pu" =Pu "Pa
ax~

(30)
df = —pdV —S dT

we obtain

(33)

Vr)f Bp + pBf Bu p
i'" (,

BV gj" B)T gj

g
'v

=[(f+ Vp)u, +S(5„+u u, )PP]

= —V g [(f+Vp)(5~i, +u "ui )+SPPu "(5„+u ui )] . (34)

Moreover,

L
a

gg=+g p(Su "Pgi. ) . (35)

Finally, we obtain formula (27) for T~i with internal ener-

gy defined by e=f+TS. Again, the Noether theorem
implies the energy-momentum conservation V„T~&=0,
equivalent to four independent variational equations

molecules move chaotically around the theoretical world
lines of the fluid (lines tangent to the vector field u") and
the mean kinetic energy of this motion with respect to
the rest frame is equal (for low temperature) to
—,'kT=mU /2. Because of this motion the proper time t
for the particles is retarded with respect to the physical
time x calculated along u". For velocities U much small-

er than the velocity of light c this retardation can be cal-
culated from the formula

L =0.

For a =0 this gives the entropy conservation

0= = —PB (Sj")=—
Ppu "8 S .L

P P

(36)

(37)

' 1/2

t= 1—
c2

p p 3kT—x x
2 Ale

2

Jx 1
U px

2C2

(38)

It is easy to check that four equations (36) are equivalent
to the system of three equations of momentum conserva-
tion [three independent equations among (28)] plus entro-

py conservation (37).
In the above formulation the phenomenological con-

stant P may be chosen arbitrarily. The choice P=1 is
also possible. It gives (time X temperature) for the di-

mension of the new potential ~=z . As we shall see in
the next section, it is better to choose the dimension of p
equal to the temperature and to measure r in units of
time.

IV. MICROSCOPIC INTERPRETATION
OF THE "MATKRIAI. TIME" v

Suppose that the liquid is composed of molecules with
mass m. If the temperature of the fluid equals T, the

We identify the parameter ~ with the proper time retar-
dation multiplied by an arbitrary dimensionless constant
0.

t=0( x t)= xT, —o 1 o (39)

where the constant p=2rnc /30k has dimensions of tem-
perature. Hence,

P =T (40)
dxo

similarly as in formula (30). We interpret therefore the
"material time" (up to a multiplicative constant 8) as the
"proper time retardation" due to the chaotic motion of
the particles. This phenomenon enables us to construct
(at least theoretically) a "radium thermometer. " We in-

ject a drop of radioactive radium into the fluid. Because



41 HAMILTONIAN THEORY OF SELF-GRAVITATING PERFECT. . . 1879

of chaotic motion of the particles the lifetime of radium
gets lengthened proportionally to the temperature of the
fluid. Therefore, measuring the lifetime we measure the

temperature.

V. SELF-GRAVITATING FLUID

The theory of self-gravitating fluids will be based on
the Lagrangian L =Lgr»+ L mzt p where L«» is the
Einstein-Hilbert Lagrangian for the gravitational field
and L „is as in Sec. III. In Hamiltonian formulation,
the complete Cauchy data for the theory consists of Cau-
chy data for both gravitational and hydrothermodynarni-
cal field: (P"',gk/, P,p, ), where p/' =BL /Bg are momen-
ta canonically conjugate to hydrothermodynamical po-
tentials. Using Eqs. (30), (31), and (33), we show that the
momentum canonically conjugate to g is equal (modulo
the factor P) to the entropy current:

po =+gpPSu" . (41)

The Hamiltonian field equations giving the time deriva-
tives of the Cauchy data in terms of the functional
derivatives of the Hamiltonian can be briefly written as

5H= — fP "'5g„( g„,5P"'+—fP 5P —
g 5p

(42)

fying the material time with the time coordinate x im-
plies

T=P 1

v' —g N'tr 1 n—
(47)

where the quantity o = JSh is equal to the total entropy
of the system. Now, the quantity &=H Po pla—ys the
role of the Hamiltonian of the system described by
canonical variables (P"',gk() and the evolution is uniquely
determined by the Harniltonian.

For the sake of simplicity let us limit ourselves to the
case of spatially compact space-times. In this case the to-
tal gravitational energy vanishes identically (H=O) and
the global Hamiltonian is determined by the total entropy
of the system: &=—Po. The quantity U=PhS plays
the role of minus the Hamiltonian density on the Cauchy
surface X. To express the Hamiltonian in terms of
canonical parameters (P"',gk/) we consider the constraint
equations corresponding to components T and Tz of
the energy-momentum tensor (27):

Our gauge conditions imply g =0, g"=0 for k =1,2, 3,
and g =1. The formula (41) reads po =PSj"=PSh5~o.
These observations enable us to rewrite the Hamiltonian
formula (42) as

1—5 H P—f Sh = fP "'5gk( gk(5—P"', (48)

J.('= hing —e( ~(/rg( A@3

= —h +g e"' =h 5" .0

Using (23) we obtain

(43)

(the overdot denotes the "time" derivative), which simply
means that the time derivatives of canonical parameters
are equal to the variational derivatives of the Hamiltoni-
an with respect to the conjugate parameters. Because of
the invariance of the theory with respect to space-time
diffeomorphisms, we are allowed to impose the following
"gauge conditions": P(x")=x . The three conditions
corresponding to a=1,2, 3 mean that the coordinates x
are comoving with the fiuid (constant on the fiuid world
lines). In this gauge we have pk =5k and, according to
(1), we have

and

N pe+pN'N, pe+pn
N —N'¹ I —n

(49)

1
~k (g P )

Gh
Pk

~
/8~Gh

&detg NNk(pe+p)
h N —N'N;

&detg Nk pe+p
h N 1 —yg2

(50)

&(g,P)= &(g)— (P"'P// ,'P')——1 1

16m 6 detg

V goo (r g~goo „+1 n-
p=h

&detg &detg

1
n = QN'N(g-

fj (45)

where N is the lapse function and N' is the shift vector.
Moreover,

where &detg =Qdetgk/ denotes, as usual, the three-
dimensional volume density on the Cauchy surface
X= [x =constj and

We stress that Y is a covector field since Pk'~& is a covec-
tor density and h is a scalar density. For a given funda-
mental equation (10) of the fiuid the pressure p is given as
a function of the parameters (e, V). Therefore, the six
equations (44), (47), (49), and (50) can be solved with
respect to the following six variables: the lapse function
N, the shift vector N', and the two therrnodynamical pa-
rameters (e, V). In this way we are able to express these
six parameters as functions of five purely geometric vari-
ables: two scalars X,Z:=h /detg and a covector Fk.
The simplest way to solve the above system consists in
calculating the square of the length of the vector Yz ..

$P= 1
QP

N+1 n— (46)
2 2

( n (pe+p)
k 1 (1—n )

(51)

Because of formula (30), for a=O gauge condition identi- Equation (44) implies
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2
n'=l —~ ——l—

Z
1

VZ
(52) P "'= 16~G

8gkl
(59)

Inserting the above value into (49) and (51) we obtain the
following nonlinear equations for two therrnodynamical
parameters (e, V):

5U
g = —16mG-kl (60)

e= VX —&Y+V'Z —1,

V)
VZ+ Y

&V'Z —1

(53)

(54)

S =S(e(X,Y,Z },V(X, Y,Z)) =:F(X,Y,Z) . (56)

Practically (see Sec. VII) Eq. (54) is very often highly
nonlinear and cannot be solved analytically. To calculate
the function F(X, Y,Z) (i.e., the Hamiltonian) it is how-
ever sufficient to observe that it satisfies the following
Hamilton- Jacobi equation:

2

where the function p(e, V) is determined by the state
equation (9):

as as
BV Be

Inserting (53) into (54) we obtain finally a single nonlinear
equation for the parameter V= V(X, Y,Z) which has to
be solved. Having solved this equation we can express all
the thermodynamical parameters together with the lapse
and the shift in terms of geometric quantities (X, Y,Z},
i.e., in terms of canonical variables I' ' and gki. More-
over, we can find the entropy density

VI. CONSTRAINT MANIFOLD AS A BOTTOM
OF A "POTENTIAL WELL"

p'(e', V')=Hp(e, V)=Hp —,V'e
(61)

Similarly

To prove that the free Einstein theory corresponds to a
limiting case when the Hamiltonian tends to infinity out-
side the constraint subspace IX=0, Y=O), assume that
we change the mass of particles of the fluid: m'=8m,
where 8 is a real number (finally, we are going to pass to
the limit 8~0). For a given kinematical state of the par-
ticles we have therefore T' =OT. Moreover, we assume
that the total molar energy changes in the same way:
e'=He (this assumption is compatible with the fact that
both the rest energy mc and the kinetic energy —,'kT
change in the same way). On the other hand, we do not
change the density (particle number) of the fluid: p'=p.
Hence, V'= V. Consequently, according to (8) we have
p'=Hp and S'=S. If p'=p'(e', V') gives the pressure as
a function of energy and volume for the new liquid and if
p =p(e, V) is the corresponding function for the old one,
we have

aF aF
BY BZ

(57)
S'(e', V'}=S(e,V) =S —,V'

e'
(62)

F(X,O, Z) =S ~z'~z (58)

The proof is given in Appendix A. Observe that the
three-dimensional space of parameters (X, Y,Z) has a
pseudo-Riemannian structure with the signature
(+,+, —

) and the characteristics of (57) are straight
lines. The initial-value condition for Eq. (57) is given by
the following observation: for Y=O Eq. (51) implies
n =0. Hence, Eq. (49) reduces to X=e/V and Eq. (44)
reduces to I/V=&Z. Finally, we have e(X,O, Z)
=X/VZ, V(X,O, Z)=1/&Z, and

To parametrize the dynamics we use the "material time"
r given by the formula (39) with the corresponding value
of 8. This way we keep the parameter p unchanged
(p'=p) during the entire operation.

Consider now Eq. (49) for the new fluid (i.e., with p, e,
and p replaced by corresponding primed quantities). Di-
viding both sides by 8 and using (61) we obtain on the
right-hand side the same function of parameters
(e'/8, V') as we have had for the cold fiuid. The same
observation is valid for Eq. (51) divided by 8. On the
other hand, Eq. (52) is the same for both fluids. We con-
clude that

where the function S =S(e, V) on the right-hand side is
precisely the one which defines the fundamental equation
(10). It is possible to find a thermodynamical condition
for the function (58) which prevents the occurrence of
caustics (see Appendix C). If the fluid satisfies this condi-
tion the Hamilton-Jacobi equation can be solved globally
for Y&0, providing the Hamiltonian of the coupled
matter and field system. The Hamiltonian is a function
of X (depending algebraically on P"' and on derivatives of
gki up to the second order), Y (derivatives of both P"' and
g«up to the first order), and Z (algebraic dependence on
gki ). Hamiltonian formula (48) implies the following evo-
lution equations with U(X, Y,Z) =PhF(X, Y,Z):

e' X Y—=e —, , Z0 0' g2' (63)

and

V'= V —,—,ZX Y
g

(64)

where e =e(X, Y,Z) and V= V(X, Y,Z) are correspond-
ing solutions for the first fluid. Using (62), (63), and (64)
we obtain the following expression for the Hamiltonian
density of the second fiuid:
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T

U'(X, Y,Z) =hPF'(X, Y,Z) =hPS'(e', V') =hPS —,V' =hPS e —, ,Z, V —, ,Z
e', X Y X Y
0 ' 0 ' g' ' ' 0 ' g' '

=hPF —, , Z = U —, ,Z0 ' g' ' 0 ' g' ' (65)

VII. EXAMPLES

Example 1. A monoatomic ideal gas is described by
the fundamental equation

S =R ln(e m) V, — (66)

It is easy to see that U' satisfies (57) if U does. We prove
in Appendix B that for XAO and YAO the value of the
right-hand side tends to infinity as 8 goes to zero. This
proves that indeed, the constraint manifold IX=0, Y=O)
can be considered as a bottom of "a very deep potential
well. " The dynamics of the free gravitational field can
thus be approximated by the nonconstrained dynamics of
the self-gravitating fluid. For 8&(1 the degrees of free-
dom transversal to constraints become "fast degrees of
freedom" and decouple practically from the dynamics
along the constraints. Starting the numerical simulation
from the bottom of the well the system will remain for a
long time in the vicinity of the bottom.

cal systems that are described by a fundamental equation

S =f(e"V), (71)

(72)

1/2

where f is an increasing concave (f ' )0,f"& 0) function
and p is a positive constant. Moreover, we assume
[(p,+1)xf"(x)+pf'(x)]&0, which is necessary for (71)
to be concave (thermodynamical stability condition).
This class includes the ultrarelativistic ideal gas (tu= —,')
and the photon gas [S= ', (e —Vcr )'~, p=3]. An interest-
ing class of fluids corresponds to p=1, where the pres-
sure is equal to the energy density pe. This makes the
energy-mornenturn tensor proportional to the metric.
Einstein equations contain therefore a "dynamical
cosmological constant" (e.g. , if S=v'e V we have
T=2&e /V and the constant is equal to T ).

For a general fiuid described by (71) we have

1 ep=
p V

and Eq. (54) can be solved:

where m is the rest mass per mole. It follows that

2 e —m
p

and Eq. (54) reads

(67) V=

X—2 YZ+X X'—
@+1

"",YZ
(p+1)

2Z(X —YZ )

(73)

2 e m

3 V

Vzv' Y

~V'Z —1

Inserting (53) into (68) we obtain

2 X—v'Y&V'Z —1 —m VZ
3 V V QV2Z —1

The function F(X, Y,Z ) is given again by (56), i.e.,

F(X, Y,Z)=f [[V(X,Y,Z)X
—v'Y+V (X, Y Z)Z —1]"V(X, Y Z)I,

(74)

with V(X, Y,Z) given by (73). For S=&ev the expres-
sion (74) can be somewhat simplified:

1/2

which can be rearranged into

V Z(X —YZ) ——', V'mXZ+ V ( —', YZ —X + 4 m Z)

+ 4 VmX —,4, (m + Y)=0 . (70)

As the roots of a fourth-order algebraic equation are
given by a rather lengthy formula we note only that there
exists a unique solution satisfying the condition
V ~ I /v Z. The entropy density is given by Eq. (56).

Equation (70) becomes much simpler when the rest
mass can be neglected. For such a ultrarelativistic ideal
gas, however, the fundamental equation is a special case
of a more general class that is described in the next exam-
ple.

Example 2. Let us consider a class of therrnodynami-

X( 1 —YZ/X +1)
2Z

At each point

as
BX Be

BF as
BY Be

BI as
BZ Be

(X, Y,Z) the system of equations

ae as av
Bx avax '

ae as av
aY+ av aY '

Be aS BV
az+ Bv Bz

APPENDIX A

Take the function

F(X, Y,Z)=S(e(X, Y,Z), V(X, Y,Z)) .

(75)

(A 1)

(A2)

(A3)

(A4)
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can be uniquely solved with respect to (BS/Be) and
(BS/B V). This proves that there must be two linearly in-

dependent equations among the above three. Suppose,
those independent equations are (A2) and (A3). Hence, BF 1/2

Finally, taking (A3} and (A4) as independent equations
we obtain

BS
Be

BF Be BF Be

aY ax ax aY
Be BV Be BV
ax aY aYax
aF av BF av
BX BY BY BX
ae av ae av
BX BY BY BX

as
BV
as
Be

BF Be BF Be

aY ax ax aY
BF BV BF BV
ax a Y aY ax

Using (55) we have

(A5)

(A6)

(A7)

V=
BF

BZ BY

(A13)

K(x, Y,Z, Pz, P), ,Pz ) = (P» ) 4PrPz—. (A14)

The solvability of the system (A2)—(A4) implies that at
least two formulas among (All), (A12), and (A13) are
satisfied. Equating the right-hand sides of any two of
them we obtain (57).

Conversely, we will prove that (57) is sufficient for F
being obtained from Eq. (Al). The function satisfying
(57) is constant on the characteristic lines generated by
the following "Hamiltonian":

p+V,BV
(A8)

Using Eqs. (53) and (54) we can eliminate the derivatives
of e(X, Y,Z): The "Hamiltonian" (A14) does not depend on the "posi-

tions. " Hence, the "momenta" are constant on charac-
teristic lines. Of course,

Be BV +VZ —1

BY BY 2v Y
(A9} BF BF BF

x BX BY z BZ
(A15)

aF aF &v'z —1

BY BX 2v'Y

or, equivalently,

(A 10)

Inserting (A8) and (A9) into (A7) and using (54) we finally
obtain This proves that BF/BX, BF/BY, and BF/BZ are con-

stant on the characteristic lines of (57). The equations
generated by (A14) are linear. Therefore, the lines can be
parametrized as follows:

2

F
X

'2 1/2

(Al 1)

Px
X=2P~s+Xo, Y= 4Pzs, Z =—— s+Zo, (A16)

Z

Z BFZ
BX

—4Y
aY

F
Z

2

2

' 1/2

(A12)
BF
Bz

BF—Y

Assuming that (A2) and (A4) are independent we obtain
in a similar way the result

where s denotes the parameter along the line and
Xp Zp Px Pz are initial conditions on the surface
[ Y=OI. Let us calculate the value of the (mutually
equivalent) expressions under the square root in the for-
mulas (Al 1), (A12), and (A13). The value equals
1/Zo )0. This enables us to define the function
V= V(X, Y,Z) by any of the formulas (Al 1)—(A13).
Moreover, define e=e(x, Y,Z) by the formula (53)
[again, it is easy to prove the inequality ( V Z —1))0].
The reader may easily check that both V and e are also
constant on the characteristic lines. Hence,

F(X, Y,Z)=F(X(0),O, Z(0))=F ' ', 0,
v(x(o), o,z(o)) ' ' v'(x(o), o,z(o))

e(X, Y,Z) 1

V(x, Y,z)' '
V'(X, Y,Z)

=S(e(X,Y,Z), V(X, Y,Z)), (A17)
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where the function S=S(e, V) has been defined by the
formula (58), i.e.,

T

responds to vanishing of the heat capacity cz, which can
be excluded for physically reasonable systems.

S(e, V)=F —,0,
e 1

V
'J (A18)

APPENDIX C

APPENDIX B

From Appendix A, Eqs. (A 1 1)—(A13) we conclude that

,Z =V(X, Y Z)X Y

and from (53) we have

X Y e
e —, , Z =—(X,YZ).0' t92' 8

Thus, according to (65),

(B2)

A physical interpretation can be given only to those solu-
tions of (57) which correspond to physically admissible
entropy functions (A18) taken as initial condition
F(X,O, Z).

X(X0 ZD)=XQ Yf(XD Zo)

Z(XD, ZD)=ZD+ Yf (XD,ZD) .

The corresponding Jacobian is equal to

, a(x, z)
"a(x,,z, )

(C 1)

(C2)

We define a mapping P: (XD,Z0)~(X,Z). To each
point (XD,Z0) on the plain Y=O we assign the intersec-
tion point (X,Z) of the plain Y=const&0 with the
characteristic line of Eq. (57) starting from (XD,ZD). Be-
cause of Eq. (A16) the value of the parameter s corre-
sponding to Y=const equals s= Y/4—Pz. Denoting
f=P~/2Pz, where P~=dF/BX, Pz =dF/dz on the ini-
tial plain Y=0, the mapping P can be written as

U'(X, Y,Z)=hPS —(X, Y,Z), V(X, Y,Z) . (B3)

The entropy is necessarily an increasing and concave
function of e and V, so when I9 goes to zero, S tends to
infinity or to a finite constant. The latter possibility cor-

=det

df
1 —Y

2fY df
Qs

where we have denoted

df
BZ0

=1+AY, (C3)
1+2fY

0

~ =2f
Bz, Bx,

dF dF d F
BX Bz BXBZ

2
dF dF
BX gZ'

BF'
Bz

'2
BF dF
BZ ()X

Y=O

(C4)

Using (58) we express the derivatives of F in terms of thermodynamical quantities of the fluid:

BF BS v
BX ), o Be T

BF
BZ p o

, Bs BS 1 v'= ——V e+ V = —— (e+pV),
2 Be BV 2 T

B'F,B'S
r=o Be'

BF
BxBz

1 BS BS 1= ——V e +V +—
2 Bei BeBV T (C5)

F
BZ2

3 V
( )

1 BS+2VBS V
BS

4 T 4 Be BeBV BV

so that

BeBV QV2
(C6)

where g =e+p V denotes the enthalpy function. The expression in parentheses can be further simplified:



1884 KIJOWSKI, SMOLSKI, AND GORNICKA

BS
2

BS +BS
t)et) V c) V'

r

p 1 g BT Bp

T c T BV BV

p ae
t)p

BV

B7l

BV,
Be

Bp

BT
BV

. P

V

BV,

BS
BV . P

BS

BV,

(C7)av,

Finally we get we get

~=g-' g+v' BV, 25(e rn )— (C9)

t) e3
~ V2

av' s
(C8)

where g=e+pV denotes the enthalpy function. Observe
that only the half-space Y&0 is physically meaningful.
Equation (C3) implies that A )0 is the necessary and
sufficient condition for the global existence of the func-
tion F within this half-space. The condition is satisfied in
all the examples considered in Sec. VII. For a perfect gas

and for fluids described by S=f(e"V ),

1

( +1) O' l (C10)

We see that for p) 1 the coefficient A is positive. This
happens, in particular, for the ultrarelativistic gas
(rn =0) and for the photon gas. For is = 1 we have A =0
and (57) can be solved globally, also in nonphysical sector
Y&0.

'Present address: Institute for Theoretical Physics, Polish

Academy of Sciences, Al. Lobnikow 32/46, 02-668 Warsawa,
Poland.

R. Arnowitt, S. Deser, and C. W. Misner, in Gravitation, An

Introduction to Current Research, edited by L. Witten (Wiley,
New York, 1962).

C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(Freeman, San Francisco, 1973).

3V. I. Arnol'd, Mathematical Methods of Classical Mechanics
(translated from the Russian by K. Vogtmann and A. Wein-
stein) (Graduate Texts in Mathematical Physics, Vol. 60)
(Springer, Berlin, 1978), p. 75.

4K. Huang, Statistical Mechanics (Wiley, New York, 1963),
Chap. 1; see also Ref. 2.

sJ. Kijowski and W. M. Tulczyjew, A Symplectic Framework for
Field Theories (Lecture Notes in Physics, Vol. 107) (Springer,

Berlin, 1979).
J. Kijowski, B. Pawlik, and W. M. Tulczyjew, Bull. Acad. Po-

lon. Sci. Ser. Sci. Math. Astron. Phys. 27, 163 (1979).
7H. P. Kunzle and J. M. Nester, J. Math. Phys. 25, 1009 (1984).
V. E. Zakharov and E. A. Kuznetsov, Sov. Sci. Rev. C 4, 167

(1984).
D. Lewis, J. Marsden, and R. Montgomery, Physica 18D, 391

(1986).
' P. J. Morrison and J. M. Greene, Phys. Rev. Lett. 45, 790

(1980); D. D. Holm, Physica 17D, 1 (1985); D. D. Holm, Lec-
tures given at the Centro Maternatico Estivo, Session on Rel-
ativistic Fluid Dynamics, Noto, Sicily, 1987 (unpublished).

"J.Kijowski and W. M. Tulczyjew, University of Calgary re-

port, 1981 (unpublished); Mem. Acad. Sci. Torino serie V,
6-7, 3-17 (1982-83).


