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We investigate the theories of dissipative relativistic fluids in which all of the dynamical equations
can be written as total-divergence equations. Extending the analysis of Liu, Muller, and Ruggeri,
we find the general theory of this type. %'e discuss various features of these theories, including the

causality of the full nonlinear evolution equations and the nature and stability of the equilibrium

states.

I. INTRODUCTION

The earliest attempts' to formulate theories that de-
scribe the evolution of a dissipative fluid in a manner con-
sistent with relativity theory were based on the assump-
tion that the usual fiuid variables (a four-velocity and two
thermodynamic variables) were the appropriate dynami-
cal fields for such a fluid. All of these early theories are
now known to be physically unacceptable, because they
fail to provide causal evolution equations, and they do
not admit physically acceptable equilibrium states. More
recent efforts to formulate acceptable dissipative rela-
tivistic fluid theories have involved extending the set of
dynamical variables to be the entire stress-energy tensor
T' and the conserved particle-number current X' of the
fluid. A candidate theory of this type consists of the
differential equations for the evolution of these two tensor
fields.

Among these candidates for a relativistic theory of a
dissipative fiuid are those of divergence ty e—those in
which all of the dynamical equations for T' and N' can
be written as total-divergence equations. These theories
were proposed originally by Liu, Muller, and Ruggeri.
This class of theory is of particular interest for at least
two reasons. First, discontinuous solutions of the fluid
equations can be given mathematical meaning in theories
of divergence type. As a consequence, it is possible to
consider in these theories solutions that describe shock
waves, domain boundaries, etc. Second, the equations for
Quid theories of divergence type can be cast into a re-
markably simple mathematical form. Because of this
form, for example, it is straightforward to determine the
conditions under which the full nonlinear evolution equa-
tions for the theory are causal.

In this paper we investigate several aspects of the dissi-
pative relativistic fluid theories of divergence type. In
Sec. II we obtain, by extending the analysis of Liu,
Muller, and Ruggeri, the general fluid theory of this
type. The key object that determines the dynamical
properties of such a theory is a single scalar "generating
function" of the dynamical variables. In Appendix A we
extend this analysis to more general systems of

differential equations of divergence type. We explore
several examples of these theories in Appendix B and Sec.
III. In Appendix B we show how an ordinary relativistic
perfect Quid can be formulated in terms of such a gen-
erating function. In Sec. III we show that the original
dissipative relativistic fluid theory of Eckart can be writ-
ten as a theory of divergence type, and we find its gen-
erating function. We also give an example of a theory of
this type whose evolution equations are causal (i.e., have
a well-posed initial-value formulation with all Quid sig-
nals having speeds not exceeding that of light) for fiuid
states near equilibrium. This theory, and a similar but
more complicated example proposed by Liu, Muller, and
Ruggeri, are known to be causal in an open set of states
surrounding the equilibrium states. In contrast, the
theories of the type proposed by Israel and Stewart ' are
not known to be symmetric (let alone causal) for any open
set of fluid states. '

The last two sections are devoted to an analysis of the
near-equilibrium states of a dissipative relativistic fluid
theory of divergence type. In Sec. IV we show that the
equilibrium states for such a Quid must have the same
properties as those of the Eckart theory: rigid flow and
constant (generalized) temperature. In Sec. V we show
that causality of the underlying theory implies stability of
the equilibrium states. This interesting relation between
causality and stability is similar to a weaker relation for
the dissipative fluid-theory proposed by Israel and
Stewart. ' In that case it is known ' that the causality
of the equations for linear perturbations off an equilibri-
um state implies the stability of that state.

Il. A REVIEW OF DISSIPATIVE-FLUID THEORIES
OF DIVERGENCE TYPE

Consider a fluid theory having the following three
properties. (i) The dynamical variables can be taken to be
the particle-number current ¹ and the (symmetric)
stress-energy tensor T'. (ii) The dynamical equations
are, in addition to the conservation laws,
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an equation of the form
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for all possible choices of the fields. These coefficients
will be taken as the new dynamical fields. Next, intro-
duce the vector y', an algebraic function of g, g„and
g,b, defined by

V s =o, (4)

where 0. is some algebraic function of N' and T' . Such
theories are said to be of diUergence type because the left
sides of Eqs. (1)—(3) are all divergences. These properties
generalize slightly those required by Liu, Muller, and
Ruggeri in that we do not require that A ' be totally
symmetric.

The general theory having these three properties is
determined by specifying a single scalar "generating func-
tion" y and the tensor I' as algebraic functions of a new
set of dynamical variables' g, g„and g, b (with the latter
trace-free and symmetric). The dynamical equations for
these new variables are Eqs. (1)—(3), with

and
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The entropy current in this theory is
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and its source is

o = g,bI'" . — (9)

These fields satisfy the entropy law, Eq. (4), as a conse-
quence of Eqs. (1)—(3). The transformation between the
old dynamical variables N' and T' and the new dynami-
cal variables g, g„and g, b is given by Eqs. (5) and (6).
This transformation will, in the generic case, be nonde-
generate, and so the theory will in general have property
(i).

To see that this is indeed the general theory having the
three properties stated above, consider any theory having
these properties. In order that the entropy law [Eq. (4)]
be a consequence of Eqs. (1)—(3), the divergence of s'
must be some linear combination of the left sides of those
equations. Let —g, —g„and —g,b represent the
coefficients in this linear combination, so that

Here, the tensors A ' and I' are algebraic functions of
the dynamical variables N' and T', and are trace-free
and symmetric in the indices a and b. [The latter will en-
sure that Eqs. (1)—(3) give the correct number of dynami-
cal equations. ] (iii) There exists an entropy current s' (an
algebraic function of N' and T' ), which, as a conse-
quence of the Eqs. (1)—(3), satisfies an entropy law of the
form

0=
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Since Eq. (12) holds for all possible choices of the dynam-
ical fields, the coefficients of the gradients of these fields
must vanish. It follows that N', T', and A' ' are given
by the corresponding partial derivatives of the vector y'.
Further, symmetry of the stress-energy tensor implies
that the vector y' is "curl-free" with respect to gb, and
therefore may be written as the "g, gradient" of a scalar
field q (g, g. , g.b):

+a a
(13)

Replacing g' in favor of this single generating function y,
Eqs. (5)—(7) follow. In Appendix A we discuss the exten-
sion of this argument to more general systems of
differential equations of divergence type.

Thus, the general fluid theory having properties (i)—(iii)
is determined by specifying the two algebraic functions g
and I'" of the three variables g, g„and g,b. The argu-
ment of the previous paragraph shows that a given fluid
theory initially in the form of Eqs. (1)—(4) has a unique
representation in terms of these new variables. These
variables consequently have physical significance. We ex-
plore this significance through several examples in Sec.
III and Appendix B.

In order to make more transparent the dynamical
structure of Eqs. (1)—(3) it will be helpful to introduce g„
to represent the entire collection of dynamical variables:
g„=(g,g„g,b). Similarly we introduce I" to represent
the dissipation-source tensor: I"=(0,0,I' ). Thus an
upper case index, such as A, covers a total of 14 dimen-
sions. Equations (1)—(3) may be written in this notation
as

Q2 m

Vmka™~m0a I (14)

This first-order system of equations for ge is called sym-
metric because M™is symmetric in the indices A and
8 (a consequence, in turn, of the fact that partial deriva-
tives commute). A symmetric system is hyperbolic in an
open set of fluid states (i.e., has a well-posed initial-value
formulation there) if M" ur is negative-definite for
some (possibly state-dependent) future-directed timelike
to (Ref. 11). A symmetric system is causal in an open

+a —sa+ g~a+ g Tab+ g g abc

Compute the divergence of g' [using Eq. (10)] to obtain
the equation
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set of fluid states (i.e., hyperbolic with no fluid signals
propagating faster than light) if M" w is negative
definite for all future-directed timelike m

These properties —hyperbolicity and causality —may or
may not hold for a particular fluid theory, depending on
the generating function for that theory. It is of course
natural on physical grounds to demand causality. How-
ever, it is appropriate to demand causality only for the
physical states of the fluid, and these are only some open
set of the dynamical variables g, g„and g,b. These vari-
ables could be restricted to those for which N' is future-
directed timelike, for example, or to those for which T'
has positive energies or future-directed momenta. It is
also natural on physical grounds to require that the en-

tropy source o. be non-negative.

III. EXAMPLES

Eqs. (17)—(20) are simply the expressions for A ', I', s',
and o as algebraic functions of N' and T' .

Having written the Eckart theory in the form of Eqs.
(1)—(4), the analysis of Sec. II shows that these equations
are a manifestly symmetric system when expressed in
terms of the new variables g, g„and g,b, and that this
system of equations arises from some generating function.
It is not difficult to show that the generating function y in
this case is

y=a(g, p, )— (22)

where p =Pg„and a is an arbitrary smooth function
(which plays the role of the equation of state). By com-
paring Eqs. (5}—(8} with Eqs. (15)—(17) and (19) we find
that the new dynamical variables gz are related to the
Eckart variables by the equations

We now consider two examples of dissipative relativis-
tic fluid theories of divergence type. These examples
serve to illustrate the physical significance of the new
dynamical variables, g, g„and g,b that were introduced
in Sec. II.

The first example is the Eckart theory, ' the first dissi-
pative relativistic fluid theory. The equations of this
theory can be cast into the form of Eqs. (1)—(4), by setting
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Here the fluid four-velocity u is a future-directed unit
timelike vector; the heat flow q' satisfies u, q'=0; the
stress v' satisfies r' ub =0 and r', =0; and, the viscosity
coefficients q1 and g2 and the thermal conductivity K are
positive functions of n (the particle number density) and p
(the energy density of the fluid). Tensor indices are raised
and lowered with the spacetime metric g,b (and its in-
verse g' ); and parentheses surrounding indices indicate
symmetrization, e.g. , r' '=

—,'(r' +r ). The five thermo-

dynamic variables n, p, r(the temperature), s (the entropy
per particle), and p (the pressure} are related by the first
law of thermodynamics:

The five thermodynamic variables p, n, s, T, and p as
defined in Eqs. (23) and (26)—(29) satisfy the first law of
thermodynamics, Eq. (21},identically. We note that g is
the thermodynamic variable whose gradient vanishes in
the absence of heat flow in the Eckart theory; g, is pro-
portional to the particle number current of the fluid; and

g, b contains both the heat flow and viscous stress of the
fluid.

While the Eckart theory is an example of a dissipative
relativistic fluid theory of divergence type, its equations
are not causal and so it cannot be considered to be a satis-
factory physical theory. Indeed the quadratic form
M" w Z„Z~ with Z„=(Z,Z„Z,b) fails to be nega-
tive in the Eckart theory because 8 y/Bg Bg,bB(,d van-
ishes. But this theory can easily be modified to correct
this defect. For our second example we consider the
theory whose generating function is taken to be

dp=nT ds + dn .p+p
n

(21) X t (g P)+P(k P)0 0 kb++2(0 ~ '~ b) '

where we have set

(30)

This equation implies that the relationship of these five
thermodynamic variables is determined by a single func-
tion of two of the variables (the equation of state). Equa-
tions (15) and (16) can be considered to be the definitions
of n, p, u ', q', ~, and H in terms of N' and T' . Then

X2= ', (I g.b
—20.4)(Vg,d

—20, 4)P'&"" .y(,p)
p

(31)

Thus, we have modified the Eckart theory by generalizing
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is negative for all Z' whenever w and g, are future-
directed timelike vectors and y satisfies

ay 2r
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It follows that the quadratic form M m Z„Z~ is neg-
ative definite for all fluid states having g,b=0 provided
the perfect-fiuid causality conditions (B6) and (B7) are
satisfied and By/B(u is sufficiently large to ensure that the
Z,b-block dominates the cross terms. (It is straightfor-
ward to determine explicitly the required condition on
By/B(M, but it is rather complicated. ) Since M" is sym-
metric and a continuous function of g„ for all states of
the fluid, it follows that the theory is causal for all
sufficiently small gab (i.e., in some open neighborhood of
the equilibrium states). The causal properties of this
theory, and the more complicated example of Liu,
Muller, and Ruggeri, are considerably better under-
stood, nevertheless, than those of any of the theories of
the type proposed by Israel and Stewart. -' In those
theories it is not even known ' whether the equations
form a symmetric (let alone causal) system for any open
set of fluid states.

the term linear in g,b and adding the term yz, which is

(when g, is timelike) a positive-definite quadratic form in

ab

To investigate the causality of this theory, we must ex-
amine the quadratic form M m Z„Zz for arbitrary
future-directed timelike w . For simplicity, we limit our
consideration here to states of the fluid having g, b

=0.
(As the analysis of Sec. IV shows, these are the equilibri-
um states of the fluid. ) For these states P is proportional
to the number current N' and thus will be timelike for
physical states of the fluid. The full quadratic form
M" m Z„Zz consists of the block involving the vari-
ables (Z, Z, ), another block involving Z,b, and the cross
terms between these blocks. The (Z, Z, ) block of the
quadratic form is negative (for fluid states having g,b =0)
provided the perfect-fiuid causality conditions (B6) and
(B7) are satisfied. The Z,b block of the quadratic form

xo=~(0 v»
BX

Bk.b
=P(0 i )(P0" ,'f g'"»——

(35)

(36)

where a and p are algebraic functions of g and p =g, p.
This follows since the right sides of Eqs. (35) and (36) are,
respectively, the most general scalar and trace-free tensor
that can be constructed as algebraic functions of g, g„
and g,b. (For example, the Eckart theory discussed in
Sec. III satisfies these equations with p= —1/p. ) The
tensors N, s, T'"', and A '", evaluated at g,b =0, have
the form

a2
Nm 2

B&
gm

B(M Bg
(37)

Therefore a solution of Eqs. (1)—(3) is an equilibrium
solution if and only if I' =0. Note in particular that an
equilibrium solution has, by Eq. (9), vanishing entropy
production density o.

For the discussion of the equilibrium states that fol-
lows, we make two additional assumptions about the
dissipative-fluid theory. First, the entropy production
density is non-negative: o. ~0. Second, the theory is
"generic" in the sense that the derivatives of the generat-
ing function y and of the dissipation source tensor I'"
satisfy a number of inequalities, which will be specified
shortly. We shall find the general equilibrium state for a
fluid theory satisfying these two assumptions.

Consider a particular equilibrium solution of the fluid
equations (1)—(3). Since the entropy production density
0 = g,bI' i—s assumed non-negative for all states of the
fiuid, its value in an equilibrium state (i.e., zero) is its
minimum. It follows that the first variation of o. under
arbitrary variations in g, g„and g,b must also vanish at
this equilibrium state: 5(r= —g,b5I' =0. We now re-
quire that the theory be generic in the sense that under
such variations one may achieve for 5I' an arbitrary
symmetric trace-free tensor. ' The vanishing of the first
variation 5o then requires g,b

=0. Thus, in an equilibri-
um state of the theory the dynamical field g, b must van-
ish.

We next obtain expressions for the various fluid tensor
fields when g,b

=0. We denote the value of an algebraic
function of the dynamical variables, Q(g, g„g,b), evalu-
ated at g,b =0, by Qo. For the generating function y and
its g,b derivative we have

IV. EQUILIBRIUM STATES s() = —2 g +2(M
8cx 8cx

B(M B B(u2
(38)

A dissipative physical system is thought of as being in
an equilibrium state if its dynamics is time reversible. In
terms of the dynamical variables of these fluid theories,
we take time reuerse to mean N' —N' and T' ~T' .
That is, a current reverses sign while a flux of a current
remains unchanged. Thus, we call a solution N', T' of
Eqs. (1)—(3) in some region of spacetime an equilibrium
solution if —N', T' is also a solution in that region.
Since the tensors 3 ' and I' are algebraic functions of
N' and T', it follows that A '

(
—¹,T ')

g mab(Nc Tde) and Iab( Nc Tde) Iab(Nc Tde)

B2
Tma 4

B + gmga+2 B+ ma

Qp Bp

g mab (p(4gm(agb) gmgab)

P gm(4gagb ab)
2 Bp

(39)

(40)

when evaluated in a state having g,b
=0 using Eqs. (5)—(8)

and (35)—(36). Note that the right sides of Eqs. (37)—(39)
are precisely the forms of the perfect-fluid expressions for
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the particle number current, entropy current, and stress-
energy tensor, respectively. (See, for example, Appendix
B.) Identifying these expressions with the standard ones,
we obtain formulas for the thermodynamic variables p, p,
n, and s as various derivatives of a. The temperature T is
determined by using these expressions and the first law of
thermodynamics, Eq. (21). The resulting formulas are
the same as those of the Eckart theory, Eqs. (23) and
(26)—(29).

In addition to these algebraic conditions on the funda-
mental tensors in an equilibrium state, there also exist as
a consequence of the dynamical equations (1)—(3),
differential conditions. These are, in the present ease, the
vanishing of the divergence (on the index m } of each of
the tensors in Eqs. (37), (39), and (40). The three scalar
equations V No =g, V To'=g, gbV Ao' =0 each in-
volve linear combinations of V~), g V g, and g V JM:

B3
V g+ g V' g+ g V p=O, (41)

B2 Bcx Bcx
2p V g + 2p + g V'

Bp BIM Bg a@a

We require, finally, that the theory be generic in the sense
that p is nonvanishing. It follows that g, is a Killing vec-
tor field [i.e., satisfies Eq. (48)].

To summarize, in an equilibrium state of the fluid g,
must be a Killing vector field and g must be a constant.
We note that these are precisely the equilibrium condi-
tions found for the standard Eckart theory. '

V. STABILITY OF THE EQUILIBRIUM STATES

In this final section we study the stability of the equi-
librium states of a dissipative-fluid theory of divergence
type. We demonstrate that equilibrium states are stable
in any theory of this type having causal evolution equa-
tions.

Consider a smooth one-parameter family gA(A, ) of
solutions of the fluid equations which for A, =O is an equi-
librium solution. (We assume for simplicity that the
spacetime metric g, b is independent of k.) Denote as g'A
the derivative of this family with respect to A., evaluated
at X=O. To determine the evolution of this perturbation,
we differentiate the fiuid equations (14) with respect to A.

and evaluate the result at A, =O:

3 B2
(42) ag. ag„ag, - ~'+By.g„ag,ag, ~'

IPV 0—+3v a+ra B
PV0, ap . ap a'p

2B B+ 3p +6@ +2P g V p=O.
ap2 ap

(43)

We now require that the theory be generic in the sense
that the 3X3 matrix of coefficients of the derivative
terms in these equations have nonvanishing determinant.
It follows that the only solution is the vanishing of these
derivative terms:

(49)

The second term on the left side of Eq. (49) contains
V ga, the derivative of the equilibriuin fields. But this
field is very simple. We have V gii =(O, V gb, 0) using
the fact that, in equilibrium g is a constant and g,b van-
ishes. It follows that the second term on the left side of
Eq. (49) vanishes, for V gb is antisymrnetric [from Eq.
(48)] while the partial derivatives of y are symmetric.
Thus the evolution equation for a perturbation about an
equilibrium state is

V g =g V g=g V lu=0.
V 5 =5I (50)

The two vector equations V' To'=gbV Ao' =0 each
involve [using Eqs. (44)] linear combinations of Vbg and

P(V, (b+ Vb(, ):

Ba 8 a
2

2 P( Vg bV+bg, )+ Vb(=0, (45}

P+2P P(V, (b+Vbg, )+P Vb(=0 .a a
Bp

(46)

We now require that the theory be generic in the sense
that the 2X2 matrix of coefficients of the derivative
terms in these equations have nonvanishing determinant.
It follows that the only solution is the vanishing of these
derivative terms:

1 By
0A CB (51)

The divergence of this current is easily computed using
Eq. (50):

Note that the coefficient of the derivative on the left side
in Eq. (50) is precisely the coefficient M" that appears
in Eq. (14). It follows immediately that a dissipative-fluid
theory of divergence type is hyperbolic (respectively,
causal) in a neighborhood of an equilibrium state if and
only if the equation for perturbations off this equilibrium
state is hyperbolic (respectively, causal).

In order to investigate the stability of these fluids we
introduce the "energy current"

P(V, (b+Vbg, )=Vb(=0 . (47) V E =5$A5I"=5(,b5I'"~0 . (52)

P(V.kb+Vbk. }=o . (48)

The single tensor equation V Ao' =0 reduces [using
Eqs. (44) and (47)] to

The inequality in Eq. (52) follows from the fact that
5$,b5I' is the second derivative of o=g,bI'", a fi—eld
that achieves its maximum at an equilibrium state.

We now assume (i) that the fluid theory is causal and
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(ii} that the background equilibrium state is in a space-
time that admits Cauchy surfaces. For a given Cauchy
surface X, we define the "energy" associated with pertur-
bations of the fluid by

E(X)=—f E dS (53)
X

where dS is the proper three-volume element for X. By
causality, this energy is positive for any nonvanishing
perturbation of a fluid. But this energy is also nonin-
creasing into the future, for, from Eq. (53},

E ( X2)—E ( X, ) = J 5(,b
5I' d 0 & 0, (54)

0
where X2 is a Cauchy surface to the future of X

&
and 0 is

the spacetime region in between. We conclude that the
energy is bounded into the future.

Thus, the perturbations off an equilibrium state are
stable in the sense that every perturbation must evolve
keeping the norm E (X) bounded.

VI. CONCLUSIONS

We suggest two possible generalizations of the analyses
presented here. First, it seems likely that there exists an
example of a dissipative-fluid theory of divergence type
that is causal for all physical states of the fluid. Can one,
for example, choose the functions P and y in Eq. (30) to
achieve this? Second, it seems likely that there exists a
converse of the result obtained in Sec. V, relating causali-
ty to the stability of the fluid. Several references ' have
argued (in the context of other dissipative-fluid theories)
that if a fluid is stable, then its equations must, essential-
ly, be causal. But these arguments fail to be complete
proofs because (i} they fail to show the existence of a
sufficient number of linearly independent solutions to the
perturbation equations and (ii) they fail to show that the
solutions of the perturbation equations evolve toward
equilibrium states in the appropriate sense. Is it possible
to find an argument that corrects these defects?

Note added in proof. We have learned that the analysis
leading to Eq. (13) has been published previously by S.
Pinnisi in Symposium on Kinetic Theory and Extended
Thermodynamics, edited by I. Miiller and T. Ruggeri (Pi-
tagora Editrice, Bologna, 1989).
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APPENDIX A: GENERAL SYSTEMS
OF EQUATIONS OF DIVERGENCE TYPE

The analysis of Sec. II can be applied to much more
general systems of differential equations than the
dissipative-fluid theories considered there. ' Consider
any system of first-order differential equations on tensor
fields, which are in divergence form

V M~m I~ (Al)

where the index A runs over the set of tensor equations
of this system. Let there follow as a consequence of these
equations, one additional equation of the form

V s =cr . (A2)

We now consider the case of a perfect (i.e., nondissipa-
tive) relativistic fluid. The perfect-fluid equations are one
example of the general system of equations of divergence
type discussed in Appendix A. The fields in this theory
are u', a future-directed unit timelike vector field, and n

and p, two scalar fields. The equations for this theory are
the vanishing of the divergence of N'= nu ' and
T' =(p+p)u'u +pg', where p is any sinooth algebraic
function of n and p and g' is the (inverse} metric of
spacetime. These equations, written out in detail, are

u V n+nV u =0, (B 1}
u V p+(p+p)V u =0,
(p+p)u V u'+(g' +u'u )V p =0 .

(B2)

(B3)

Next, let T and s be any smooth algebraic functions of n

and p satisfying the first law of thermodynamics:

n Tds =ndp (p+p—)dn . (B4)

(That there exist such functions follows from the fact that
any one-form on a two-manifold is surface orthogonal. )

It follows, as a consequence of Eqs. (Bl), (B2), and (B4),
that

V (snu )=0 . (B5)

Thus, the equations for a perfect fluid are of the form
(Al), and as a consequence of these equations there exists
an additional equation of the form (A2). The analysis de-
scribed in Appendix A can be applied, therefore, directly
to this system. The field g„consists in this case of one
scalar field g and one vector field g, . The generating
function is an arbitrary function, y=a(g, p), of g and

@=PE,. The source tensor I" and the entropy produc-
tion density o vanish. Comparing Eq. (A3) with Eqs.
(Bl)—(B3) we obtain the same relationships between the
standard perfect-fluid variables and the new variables g„
as those given by Eqs. (23), (24), and (26)—(29) (for the
case of the Eckart fluid).

The system of equations for a perfect fluid have thus
been cast into the form of Eq. (A3), which is manifestly
symmetric. The system will also be causal if M w is
negative definite for every future-directed timelike w

The causality of these equations reduces therefore to a set
of inequalities on the derivatives of the generating func-

The argument given in Sec. II demonstrates that, in the
generic case, there exists a function y of a set of tensor
fields g~ (with y =s +g„M" ) in terms of which this
system can be recast in the form

Q2 my V g ~38 (A3)
A B

In Sec. II we were able to go one step further and replace
with the scalar generating function g by setting

=By/Bg . This is possible whenever one of the
M" 's happens to be a symmetric second-rank tensor,
e.g., whenever the conservation of stress energy is one of
the equations.
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tion a(g, p). While it is straightforward to obtain these
conditions on a(g, p) directly, it is far simpler to write
M w first in terms of the standard fluid variables us-
ing Eqs. (23), (24), and (26)—(29). The necessary and
sufficient conditions for causality are thus found to be

kiu V n+k2u V p+[kin+k2(p+p)]V u =0,
(BS)

k3u V n+k4u V p+[k3n+k4(p+p)]V u =0,
(89)

p+p )0, (86)
(p+p)u V u'+(g'+u'u )

Bp

Bp
) pa

Bp
(87)

The inequality (86) is simply an energy condition on the
stress-energy tensor of the perfect fluid, while the second
inequality in (87) requires that the adiabatic sound speed
be real and less than or equal to the speed of light. The
first inequality in (87) is equivalent to the condition that
certain specific heats and compressibilities are positive;
these are the standard stability conditions for a perfect
fluid.

It is of interest to compare this result on the causality
of the form (A3) for the perfect-fluid equations with the
answer to a slightly different question. What are the
necessary and suScient conditions for there to exist some
causal form for the perfect-fluid equations? That is, when
can Eqs. (Bl}—(83) bewrittenintheformM" V' ps=0
(where gs is some representation of the fluid variables}
with M ™msymmetric and negative definite for every
future-directed timelike w . This question, it turns out,
is easily answered. The key feature of this form of the
equations is that the equations are labeled by the same
type of index A as are the field variables. That is, we
make an identification between equations and fields.
Thus we wish to designate some linear combination of
Eqs. (Bl) and (82) as the "n equation, " some combination
as the "p equation, " and we take (83) as the "u' equa-
tion. " That is, consider

k, n+kz(p+p) =
. p

(812)

k3n+k4(p+p) =
n

(813)

For causality, we must require that the M" implicit in
Eqs. (BS)—(810) be negative definite when contracted with
each future-directed timelike m . This condition is
equivalent to certain algebraic inequalities on k „k2 k3,
and k4. These inequalities can be satisfied if and only if
the fluid variables satisfy the conditions

p+p )0, (814)
T

Bp )
Bp

These are weaker than the conditions (86) and (87) that
guarantee the causality of the perfect-fluid equations
when written in terms of the special variables of Eq. (A3).

V n+ V p =0. (810)Bp Bp
Bll Bp

One sees by inspection that this form of the equations for
a perfect fluid is symmetric if and only if

k2=k3, (811)
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