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Based on the observation that particle masses are much smaller than the Planck mass, a frame-
work for the matter-gravity system in which matter follows gravitation adiabatically is examined in

a path-integral approach. It is found that the equations that the resulting gravitational wave func-

tion satisfies involve, in addition to the expectation value of the matter stress tensor, an adiabatically
induced gauge field which can lead to interesting topological structures in superspace. Such a non-
trivial geometric contribution modifies the semiclassical quantization condition and can change the
conserved quantities associated with the symmetries of the system.

I. INTRODUCTION

Quantum gravity' in path-integral form has been the
subject of considerable interest. Such formulations
were largely stimulated by the superspace approach to
the canonical quantization of gravity. In such an ap-
proach the space-time dynamical variables are the three-
geometries of spacelike surfaces together with their con-
jugate momenta. As a consequence, Einstein's equations
become geodesic equations in the manifold of three-
geometries ' (superspace} modified by the presence of a
"force term. " Canonical quantization then leads to a
Schrodinger-type equation (Wheeler-DeWitt} and a corre-
sponding wave function satisfying it.

An alternative way of quantizing a system is of course
through the path-integral formulation in which one sums
over all paths joining two states of a system and associ-
ates to each path a suitable weight related to the action,
For the case of gravitation one must consider a transition
amplitude from one three-geometry to another. In the
path integral one must then sum over all possible paths
connecting the two given three-geometries, which are
separated by a given local proper time, and integrate over
all possible local proper-time separations. This in effect
corresponds to a sum over all four-geometries which
match the initial and final three-geometries on the initial
and final spacelike surfaces, respectively.

As a consequence of the invariance of the action under
arbitrary space-time transformations, time does not ap-
pear in the Harniltonian form of gravity and we expect
that such a feature will be maintained in a quantum for-
mulation. It has been observed, however, that the intro-
duction of matter allows one to introduce the concept of
time; time parametrizes how matter follows gravity. ' In
particular it has been noted that the semiclassical wave
function for gravity provides a pararnetrization for the
evolution of matter in which the latter follows the former
adiabatically.

That one may consider an adiabatic approximation to
the rnatter-gravity system is a consequence of the mass

scale of matter going much less than the Planck mass.
Indeed for the matter-gravity system one may consider
the coordinates associated with the former as being the
"fast" variables and those associated with the latter as be-
ing the "slow" variables. After resolving the dynamics of
the "fast" variables one is left with an effective action
governing the "slow" variables.

The adiabatic approximation has been studied in a
number of different contexts. In the Born-Oppenheimer
studies of molecules one has a Harniltonian which con-
tains "slow" and "fast" degrees of freedom and in partic-
ular the internuclear distance, which is "frozen" in the
adiabatic process, is regarded as a dynamical variable. '

On the other hand, if one considers a Hamiltonian de-
pending on a slowly varying external parameter and
closed loops in parameter space, a wave function acquires
an extra phase, and associated "gauge" connection, with
respect to the conventional dynamical one. " In both ap-
proaches such an additional phase arises which is a func-
tion of the slowly varying heavy degrees of freedom and
which cannot be eliminated in the presence of nontrivial
mappings of the "gauge" connection into the heavy pa-
rameter space. This will then give rise to generalized
Aharonov-Bohm effects. The purpose of this paper is to
examine the consequences of the above observations for
the case of the matter-gravity system and in particular
for the case of the three-geometry, corresponding to
heavy degrees of freedom, considered as a dynamical
variable. We shall examine the physical consequences of
the above and illustrate its connection to the topological
properties of superspace.

With the above aim in mind, in the next section we
shall discuss the path-integral description of the matter-
gravity system in the adiabatic approximation, exhibit
the change in the effective action due to the presence of
an induced gauge connection and obtain and discuss the
correspondingly modified equations satisfied by the sys-
tem.

In Sec. III we discuss the semiclassical approximation
to the wave function describing the system and illustrate
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how time arises in the semiclassical limit for the gravita-
tional wave function. The case of closed orbits in super-

space is then discussed and the modification to the semi-

classical quantization condition due to a nontrivial topol-

ogy induced in superspace by the introduction of matter
is illustrated. Further the possible consequences on the
topology of superspace of the degeneracy of the matter
energy levels at some point during a closed orbit is briefly
illustrated together with the relation of the fluctuations
neglected as a consequence of the adiabatic approxima-
tion, to a quantum metric tensor.

Lastly in Sec. IV our results are summarized and dis-
cussed.
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In the above we have identified pairs of indices into single

indices according to

where V is a gravitational potential, 6 is Newton's con-
stant, and

~T ~G+~M

II. A PATH-INTEGRAL FORMULATION

Before obtaining a path-integral description of the in-
teraction between gravity and matter we briefly illustrate
the Hamiltonian constraints one would expect for the
classical system. If we write the line element in the
form'

1/2y 5
F12

(2.6)

and we note that y = iy;1 ~,
m'J is the momentum conjugate

to y;J and is given by

ds =g„„dx"dx"

=( p+p,—p')dt +2p;dx'dt+y, ,dx'dx' (2 I) with
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corresponding to the standard 3+1 decomposition of
space-time, one has the total Hamiltonian (gravity plus
matter) is given by

&"=r' r",'P '(P;(-+Pi; r i,o»— (2.8)

H G+ H M —f d 3x (pgf T+pi~ T
)

= g e (P&o+PVf; ) = g H„, (2.2)

where in the second line of the above we have replaced
the integral over three-space by a sum over all points x of
a spatial lattice of volume e, thus obtaining a sum of
Hamiltonians at each point. The introduction of such a
lattice, in addition to being relevant for our subsequent
path-integral discussion and manipulations involving
functional derivatives, is the most natural approach to su-
perspace which is the topological product of the six-
dimensional space of "points" [y'~I with itself over all
points of three-space x. We note that the lapse and shift
functions p and p' are not true degrees of freedom but
play the role of Lagrange multipliers and we have chosen
the so-called "proper time" gauge conditions'

(lP BP'

at at
(2.3)

From the above one has that the Hamiltonian con-
straints for the classical system are given by

~T ~G+~cM
0 0 0

where K' is the extrinsic curvature and K =y; K". Last-
ly %o and %; are the matter-field stress-energy tensor
projected in a direction normal to the three-dimensional
spacelike surface and with one component normal and
one tangential, respectively. Further we shall assume
that %o depends only on the matter field variables and
the spatial metric tensor (y ) and not on its conjugate
momenta.

The object we shall be interested in is the transition
amplitude from one three-geometry and matter state to
another. These states are associated with two generic
spacelike surfaces each point of which has a proper time
and in the path-integral formulation one must integrate
over all possible histories which connect the two given
states and over all possible local proper time separations
or relative positions of the spacelike surfaces. The latter
in efFect corresponds to a sum over all four-geometries
which match the initial and final three-geometries on the
initial and final spacelike surfaces, respectively.

In order to obtain the desired gravitational wave func-
tion let us consider the following Hamiltonian operator in
Hilbert space:

$2H= pe P &o+ R +P'&; = gH, (2.9)
12

( 87TG )'
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—y,,y„,)~"n'+ V +%.
1 [(8~G)'G"~„~s+V]+moM =O, (2.4)

where R is the curvature scalar associated with the mani-
fold of all three-metrics and has been introduced in order
to take into account operator ordering. '

If we now denote the matter-gravity state vectors by
~n(y, x), y,J(x))(—:in, y)) where y; (x) and n(y, x) de-
scribe gravity and matter, respectively, we may write the
transition matrix element between two states as' '
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where 8 is the Hamiltonian operator in Hilbert space
and, in addition to having introduced a spatial lattice, we
have also separated the interval p"t" p't'(—p'"t" p"t—')
into N equal segments of size e(e') such that
Nq=p" t" p't'—(Ne'=p'"t" p"t')—. The constraint
equation (2.3) then allows us to introduce a local proper
time r =p( t" t ') w—ith p =p' =p" at each spatial point
(similarly for r')

A detailed derivation of expression Eq. (2.10) requires
the introduction of ghost fields in order to obtain a result
independent of the gauge condition, that is, the deter-
mination of the correct measure; this has been previously
discussed for the constraints, Eq. (2.3) (Ref. 13). Let us
further remark that the integrals over all possible values
of ~ and ~' for each x reflect the fact that one must obtain

I

I

the quantum-mechanical version of the constraint equa-
tions (2.4) and (2.5). These integrals of course eliminate
the dependence on ~ and ~' in the final matrix element.

%e have previously mentioned that, since the mass
scale associated with gravity (Planck mass) is much larger
than that associated with usual matter, one may expect
that the latter follows the former adiabatically. There-
fore we assume that the coupling of matter to gravity in-
volves the three-metric, but not its conjugate momentum,
and that rnatter only undergoes transitions between states
having the same quantum numbers. %e shall later com-
ment on the corrections to this.

On writing our states as l n, y ) = ln (y ) ) l y ) and us-

ing the completeness relations for y and its conjugate
momentum nLwe o.btain, from Eq. (2.10),

&n",y"ln', y'&= f &n", y"le "/"")(N" /Nl~(N}&&~(N) ly(N 1))—
dmL(N) N —) dmL(k)x . &y(1)le "'"'"""'"1~(1)&&~(1)ln'y')g«'«g dy'(k}

2m'' 27Ti6
(2.11)

where H(k ) denotes the Hamiltonian at a point ke on the path going from y' to y".
The transition matrix element then becomes, in the limit N ~~,

&n", y" ln', y') = f e P(n", n'}+2)nLSy +dr'dr,
X, l

where SG is the gravitational action

(2.12)

S,= ' fd'x—f'~, Sy' f Sr—m','— ~ f' S—rm, 'r' 7' 7"

and P(n", n') is the path-ordered matter transition amplitude' '
p(» r) tt »( —(t'/A)H (N)t/N. . . e

—(i/fi)tl (k)t/N. . . e
—(i/h')ll (1)t/N)

, n, , n Ie

P(n", n') =
n&1), . . ., n(N —1)

where 8 (k ) denotes the matter Hamiltonian at a point ke on the path going from y' to y" .
%e may now use the completeness relation for the rnatter states at each point k on the path obtaining

—(i/i))H™(N)t/Nl (N 1))& (N 1)l. . .
l

(1))& (1)l
—(i/A)H (1)t/Nl ~)

(2.13)

(2.14)

(2.15)

As we have mentioned before in the adiabatic approximation we need only consider transitions between rnatter states
with the same quantum number n( =n'= n" ). Then on introducing the energy density associated with an adiabatic lev-
elnaty =y (k):

~oM(k)ln(k) & =&"(k)ln(k) &

we have

I
j(t'

P(n, n)=exp ——ggE [eA"(k}+E'&nl%, ln)] g &n(k)ln(k —1)) .
k=1

(2.16)

(2.17)

If we now consider the matrix element in Eq. (2.17) we observe that it refers to two infinitesimally separated points;
hence, one may expand
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(n(k)ln(k —t)&=t —Xe' n(k) e ntk) ky =exp iX«' ntk) i e n(k)lky
gyL 5yL

and Eq. (2.17) then becomes

p(nn)= , exp —„' f—d'» f'k»&nlpyele&+ f k'e'&nlyy; ln& —f ky &n ((( «)T' T'

(2.18)

(2.19)

The final expression for the transition matrix element Eq. (2.10) is then

(n, y" ln, y'&= f exp —' s„+f d'x f ky" n i() n) gn, ny'gd 'd
X, I

(2.20)

with

S„=fd'x f'~, 5y' f—'5. a,'—,~+@ —f 5~'(m,'+(n~m, ~n))
r'

=SG —fd'x f '5~&."+f' 5r'(n~&Mln) (2.21)

where S„ is the adiabatic action function.
One may now verify that the transition amplitude satisfies the quantum-mechanical version of the constraint equa-

tions (2.4) and (2.5). This can be done in a straightforward way by introducing normal coordinates' and one then ob-

tains

—SmGAG + n n2

6y' 5y

6 + n n + V+& " (n, y~n, y') =05
5yM 5yM

(2.22)

which is the Wheeler-DeWitt equation modified by the presence of matter and

iA

4+G
y' 5 5

. + n . . n (n, y~n, y')
6y" 5y" ;k

+(n ~JY, ~n )(n, y~n, y') =0 (2.23)

which is associated with reparametrization invariance on
the spacelike three-surface in the presence of matter.

Let us comment on our results. As a consequence of
the Born-Oppenheimer (adiabatic) approximation, off-
diagonal matrix elements have been ignored (we shall
later comment on this). This means that during the
motion of the system in superspace matter remains in the
same eigenstate which will be a function only of the
three-metric y . In addition to the expected result the
presence of a "gauge" field (n ~li5/5y ~n ) is worth not-
ing. The presence of such a term leads to some changes
in the interpretation of Eqs. (2.22) and (2.23).

In particular it is clear that reparametrization invari-
ance on the spacelike three-surface can be realized in a
nontrivial way if one also allows for a gauge transforma-
tion of the connection (n ~i5/5y ~n ) (Ref. 20). Further
one may have nontrivial topological structures in the
manifold of three-metrics (superspace) analogous to 0 va-
cua in Yang-Mills theories. ' One then has a topological
charge and different homotopy classes. This will lead to
a modification of the quantization conditions and we

I

shall return to this in the next section.
Let us end this section by observing that we have not

discussed the introduction of ghosts in order to imple-
ment our gauge choice or the consequences of the condi-
tion y )0 since these are not necessary in order to illus-
trate the effect of the adiabatic treatment of matter in the
gravity-matter system.

III. SEMICLASSICAL APPROXIMATION,
PHASES, AND FLUCTUATIONS

In the previous section we have seen that as a conse-
quence of the adiabatic approximation matter enters in
the functional integral through the expectation value of
the stress tensor. Let us now examine the semiclassical
approximation for the gravitational field.

The semiclassical approximation is obtained through
the stationary-phase approximation to Eq. (2.20). One
may first expand around (barred) three-metrics satisfying
the Hamilton-Jacobi equations

—BS(n, y" ~n, y') = f exp —' 5„+f d x f '
5y n iA n g(2vriA) det

r' 5y, &)y'"(x )&)y" (x )

1/2

d7 d77 (3.1)



1852 BALBINOT, BARLETTA, AND VENTURI 41

where the determinant on the right-hand side (RHS) is
the Van Vleck —DeWitt determinant' and is interpreted
as the density of paths. The barred quantities are evalu-
ated for three-metrics which are solutions to the
Hamilton-Jacobi equations and we note that the presence
of a term associated with repararnetrization invariance in

Eq. (2.20) requires that the quantities appearing in the
Van Vleck determinant be just functions of the three-
geometry. In Eq. (3.1) let us emphasize the presence of
the additional phase factor, with respect to the expected
result, corresponding to an adiabatically induced gauge
field. If one replaces the Van Vleck-DeWitt determinant
by its modulus one will acquire a further phase factor in
the exponent of Eq. (3.1). Such a phase factor is related
to the number and multiplicity of the determinant's
singularities (Morse index).

In the semiclassical limit, Eq. (3.1) for A~O, one may
I

perform a further steepest-descent approximation which
leads to the conditions

5SG —6+ n iA n =0,
5~ 5~

(3.2)

5SG 5—L

,
—(alt/, In &+, n iR n)=ii, (3.3i

5~' 5~' 5y

which in general for a given classical path will choose
values of r( =r ) and r'( =a*'). This means that in gen-
eral we shall have introduced a classical (local) time as a
consequence of our semiclassical and adiabatic approxi-
mations. We observe that in general both from Eqs.
(2.22) and (3.2) one obtains conditions for either the grav-
itational wave function or the matter eigenvalue.

From Eq. (3.1) we finally obtain

It

(n, y" In, y') =exp —' S„'+f d'x f Sy n iR n)fi " y' gr
' 1/2 —1/2

X g(2iri fi) det
—AS*

ar '"(x )ar "(x )

1 BS' 8S*
det

(2W)' ar"(x ) a~* (x )ar'J(x )
(3.4)

where the asterisk denotes that the action is evaluated for
values of r, r, satisfying Eqs. (3.2) and (3.3) and we have

just considered one classical path otherwise one would
have to sum over all possible classical paths. We note
that we have finally obtained the semiclassical gravita-
tional wave function in the adiabatic approximation and
including the back reaction of matter.

One may now examine the semiclassical quantization
of our system by considering closed orbits in superspace
(for example, a closed sequence of classical solutions).
Let us assume, for the sake of simplicity, that there is

I

I

only one isolated closed orbit (just as before we con-
sidered a single classical path) and perform only a single
circuit. According to our result, Eq. (3.3), the wave func-
tion will acquire a phase factor associated with the
change of action h(S„") during a circuit plus a multiple
(Maslov index) of —ir/2 equal to the number of caustics
encountered during the circuit. In order that the wave
function be single valued (we shall later mention the case
of degeneracy) one must have that the phase factor be a

multiple of 2m", hence,

e

6S„'+f ' )dyxnSiti n —an/2= —fd'x $3@xyex+itiSyx n iR n)
—ae/2

(3.5)

and we immediately observe that our topological phase factor modifies the semiclassical quantization condition.
At this point before further discussing the phase factor let us note that in obtaining the path-ordered matter transi-

tion amplitude equation (2.17) in the adiabatic approximation we have only considered states with the same quantum
number. Clearly the lowest correction to this will actually be to allow just one intermediate transition to another eigen-
state then subsequently returning to the original eigenstate. This suggests we consider the matrix element

B" =g n
R 5 S

5 5
R5r'

n
(~. (@. &()—

ni nS

g~M fi~M
R 5 S (3.6)

where 8Rs is Hermitian and we note the opposite sign of
the connection appearing in the covariant derivative act-
ing on the rnatter eigenstate. This reflects the fact that
the matter eigenfunction acquires an equal but opposite
adiabatic phase to the gravitational wave function. '

The matrix element in Eq. (3.6) may be decomposed

I

into real and imaginary parts:

ReBRs ', (Bi(s +Bsi( )—
and

ImBk = ,'(BRs B,".) . -—
(3.7)

(3.&)
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The first term Eq. (3.7), provides a possible means of
measuring distances along paths in parameter space: it
corresponds to a metric tensor on a manifold of quantum
states. Further we see that the quantum metric tensor
for a given eigenstate of the energy is related to the ener-

gy fluctuations about the state and that such a term
I

occurs if one allows states other than
~

n ) to contribute in
one of the intermediate state sums in Eq. (2.15). Such
terms are of course absent in the adiabatic approxima-
tion.

The second term, Eq. (3.8) can be related to the con-
nection. Indeed it is straightforward to see that

n s" s" &
n =2ImB&s

1
X (@r ~.)2

(3 9)

hich is a phase two-form in parameter space. It is worth noting that if for some values of the parameter Y some states
I ) become almost degenerate with ~n ) then they will dominate the sum in Eq. (3.9) and in the absence of such singu-

Eq (3..9) is zero (the eigenfunctions can then be made real) F~~th~~ i
sider a closed cycle C in parameter space (superspace), we have using Eq. (3.9) that the additional phase factor in Eq
(2.20) becomes

fd'xf (n i )iiynfl'x=f f Sn" imp
& z(n n

i (i x n), (3.10)

where as before the integrations in superspace are only
over the three-geometries because of the repararnetriza-
tion invariance on the spacelike three-surface and 5cr"
denotes an element of a two-dimensional surface in super-
space bounded by the circuit C.

The above result is the gravity and matter system
analogue of a previously obtained result. " When during
the circuit C one passes near a point where the state n be-
comes degenerate, the sum in Eq. (3.10) is dominated by
the "degenerate states" and for the case of three dirnen-
sions and a double degeneracy this leads to a monopole-
like singularity. " Clearly our case, since our expression
involves an integration over all three-space (or a sum over
all points of a spatial lattice) and a six-dimensional super-
space, is much more complicated. However it may lead
to correspondingly very interesting results. Indeed both
from the study of a model having S-dimensional rota-
tional symmetry and an adiabatically induced non-
Abelian gauge symmetry and from a study of the topol-
ogy of superspace it has been speculated that the total an-
gular rnornentum can have nonintegral values.

IV. CONCLUSIONS

The purpose of this paper has essentially been to exam-
ine the consequences of the introduction of matter in

quantum gravity and to examine some of its general
consequences. The framework in which we work is
essentially provided by the adiabatic approximation, or
Born-Oppenheimer method, because of the extremely
small ratio of the usual particle masses to the Planck
mass.

In order to illustrate the approach we have examined a
path-integral formulation of the matter-gravity system.
We have constructed, in terms of a path integral, a solu-
tion to the Wheeler-DeWitt equation for gravitation in

I

the presence of matter. This was done through a suitable
choice of gauge (time independence) for the lapse param-
eter which allowed us to introduce a local time. This lo-
cal time is allowed to vary from —~ to ~ thus ensuring
both that the system has only the true physical degrees of
freedom and that matter is the source for gravity. The
resulting wave function is then shown to satisfy the
Wheeler-DeWitt equation with an induced gauge field
other than the matter-field stress-energy tensor.

An analogous (time independence) choice of gauge is
also made for the shift function and again one obtains a
local time-related parameter. This parameter, as before,
is also made to vary from —~ to Oc in order to ensure
the reduction to the physical degrees of freedom. One
then finds that reparametrization invariance on a space-
like three-surface for the wave function can be realized
nontrivially owing to the presence of a gauge connection
other than the usual rnatter term.

We then performed a semiclassical approximation to
the gravitational wave function and noted how a local
time is introduced along a classical trajectory. The re-
sults we have obtained agree with previous ones ' in
which rnatter follows gravity adiabatically. We have
however included both the back reaction of matter and
the adiabatically induced connection. Concerning the
adiabatic approximation we have seen that it consists of
the neglect of terms associated with fluctuations and have
noted that the energy fluctuations about an energy eigen-
state are related to a quantum metric tensor.

In addition to the quantum metric tensor we have seen
that our equations also involve a gauge connection and
an associated phase which cannot be gauged away in the
presence of gravitational configurations having nontrivial
homotopy. The presence of such a connection is of par-
ticular interest since one can then obtain nontrivial topo-
logical structures in the manifold of all three-metrics (su-
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perspace), some of them analogous to the 8-vacua struc-
ture in Yang-Mills theories. Such structures can lead to a
modification of the constants of motion associated with a
symmetry of a system; this of course is of particular in-
terest for physically observable quantities. Further
reparametrization in variance on the spacelike three-
surface can be realized in a nontrivial way if one also al-
lows for a gauge transformation of the connection.

Finally let us comment on the induced phase. A time
evolution in which the state of a system returns to its
original state is of particular interest in physics. An ex-
ample of this for a quantum system in adiabatic evolution
is when a Hamiltonian returns to its original value and
the state evolves as an eigenstate of the Hamiltonian and
returns to the original state. Other examples are periodic
particle motions or the splitting and recombination of a
beam so that the system may be regarded as going back-
ward in time along one beam and returning along the

other beam to its original state at the same time. In all
the above cases of cyclic evolution the initial and final
states can differ by a phase factor which is the holonomy
transformation due to the parallel transport in parameter
space of the state vector with respect to a connection.
Such a geometrical phase factor can lead to observable
consequences such as the modification of the energy lev-
els of particles executing periodic motions of slowly vary-
ing three-geometries.

To summarize, the consequences of the framework we
have examined for the study of the matter-gravity system
are numerous and are associated with a rich topological
structure.
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