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We consider minisuperspace quantum models of the universes with spatial sections being a prod-
uct of two maximally symmetric spaces. If neither of the spaces has negative curvature, no
Lorentzian solutions exist. If one of the subspaces is flat, and the other has negative curvature, the
Lorentzian Hartle-Hawking ground state is the Minkowski space with a specific parametrization
chosen by the boundary term in the action. W'e analyze the propagation of wave packets in the min-

isuperspace of the model with both subspaces of negative curvature. Both the wave packets and
classical trajectories oscillate if the number of space-time dimensions is less than ten. However, the
wave packets do not follow classical trajectories, although they are (in principle) distinguishable
even after a large number of oscillations, in contrast with the gravity-scalar-field model.

I. INTRODUCTION

The action of classica1 gravity can be written in a
canonical form very similar to the action of a particle
mo~ing in a (generally, curved) space-time. This is the
basis of canonical quantum gravity, which applies the
standard Dirac procedure to quantize gravity. ' The
space of positive-definite, compact three-dimensional
metrics —the superspace, which is the configuration
space in this formalism —is infinite-dimensional. This is
one of the very problems of canonical quantum gravity.
Almost all but a small number of results were obtained
for truncated models, with a finite number of degrees of
freedom in the superspace. Here we present yet another
model of this type. We consider pure-gravity higher-
dimensional universes for two reasons.

First, many similar, but more complex systems have
been already quantized. By comparing our results
with what is known about various nonvacuum models
one can investigate the importance of the matter content
for the compactification process. The classical solutions
for the R XS"XR models with maximally symmetric
both "internal" and "physical" spaces were first found by
Sahdev. They have been subject to a detailed
analysis. ' ' The result is that, in the vacuum case,
both scale factors of the two spatial sections vary mono-
tonically, one starting from zero and tending in a finite
time to infinity, and the other one starting from infinity
and tending to zero. Quantum gravity was one of the
effects supposed to stop the collapse of the internal space,
thus leading to the Universe observed today —a long
time after a period of inflation of the physical space and a
corresponding shrinking of the internal space. ' ""
Here we consider a vacuum model, as opposed to those of
Refs. 4—8, which have the desired stabilizing effect al-
ready at the classical level, due to a specific choice of
matter field or cosmological constant.

It is shown that the evolution of vacuum geometries is
qualitatively different from the evolution of geometries
coupled on a classical level to various matter fields.
This raises a question to what extent it is justified to trun-

cate the superspace by fixing the matter fields by
geometry.

Second, the pure-gravity model with only two degrees
of freedom provides an interesting example of wave pack-
ets in superspace. The issue of measurements in quantum
gravity is not clear. In a particular case of a scalar field
coupled to Robertson-Walker geometry, it seems likely
that no well-peaked wave packets can survive a large
number of semiclassical oscillations of the scalar field,
thus making the issue even less clear. In the case of vacu-
um higher-dimensional universes there is no arbitrariness
in the coupling coefficients, and the model seems to indi-
cate that, under certain circumstances, there may exist
well-peaked wave packets, even though the semiclassical
evolution is certainly very unrealistic.

This paper is organized as follows. After deriving in
Sec. II the Wheeler-DeWitt equation for the model, we
obtain the classical solutions with one flat spatial section
as an immediate result of our choice of coordinates in the
minisuperspace. We solve the Wheeler-DeWitt equation
for the Hartle-Hawking ground state of the Universe
with a topology of R XS"XR . The wave function has
no Lorentzian regime. Then we analyze the geometries
with one subspace flat, and the other of negative curva-
ture. The Hartle-Hawking proposal singles out the maxi-
mally symmetric Minkowski space-time.

In Sec. IV we consider the wave functions of spatial
geometries with two subspaces of negative curvature. If
the number of space-time dimensions is not less than ten,
one may apply the Wentzel-Kramers-Brillouin (WKB)
approximation. We obtain a general solution in terms of
an asymptotic series. If the number of space-time dimen-
sions is less than ten, caustics develop and one may not
use the WKB approximation. However, we find approxi-
mate solutions in the adiabatic approximation for a har-
monic oscillator with a complex frequency. Because no
Born-Oppenheimer approximation is valid, both degrees
of freedom are nontrivially coupled. The group velocity
of wave packets in the minisuperspace is different from
the phase velocity. Generically, one would expect the
wave packets to smear out rapidly in such a case. How-
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ever, we construct a well-peaked wave packet which can
survive a large number of classical oscillations. Section V
contains discussion and conclusions.

II. THE MODEL

Throughout this paper we restrict the infinite number
of the degrees of freedom to be quantized to two —the
scale factor the "physical" (three-dimensional) space, and
the scale factor of the "internal" space. Namely, we re-
strict the geometry to be homogenous and isotropic sepa-
rately in both the "physical" and the "internal" spaces.
In a useful system of coordinates the model has the
metric

and to the Hamiltonian constraint

n(n —1}(h +k„r )+N(N —1)(H +k&R )

+2nNhH =0, (6)

where h = r'r ', H =RR ', and the overdot denotes
difFerentiation with respect to the cosmic time
(o /&2)JVdt.

The wave function of canonical quantum gravity is
defined over a two-dimensional minisuperspace with a
natural metric

ds =K JV 'r "R [n(n —1)r dr +N(N —1)R dR

+2nNr 'R 'dr dR ] .

ds = —JV (t)dt +r

n

g (dx')
i =1

k„
2

1+ g (x')
4

The wave function is a solution to the Wheeler-DeWitt
equation, being an operator version of the Hamiltonian
constraint (6). Let

1/2

+R

N

(dx')
g=1

N

1+ g (x~)
4

2

U=

where

n —1

n —1 ~ N(1+ 1/a)r R

1/2

n —
1 ~ N(, 1 —1/a)r R

(8)

Here, both n and N are arbitrary integers, such that
n ) 1 (N. The constants k„and kN are equal to +1 or 0,
depending on whether the respective subspace has posi-
tive, negative, or zero curvature.

The action functional of canonical quantum gravity
for the model is

S=K f dt JV 'r "R tn(n —1)r r' +N(N 1)R R—
+2nNr 'R 'r'R

,'JV o [—k„—n(n—1)r

+ktvN(N —1)R ]I,
(2)

where

2 k„
K2 d(n+x) x I+ " g (xi)2

8~ 4,.

N

X 1+ g (x~)
4

and o (of dimensions ML "
) depends on the grav-

itational constant 6 appropriate for n +N spatial dimen-
sions. If kn kN =0 the value of ~ has no meaning unless
one specifies the volume of the fiat space(s), which should
be regarded as a torus (tori). We will show that in this
case no physical predictions depend on the value of v .

The classical equations of motion are obtained by vary-
ing the action (2) with respect to r, R, and JV. This leads
to

nN

n+N —1

1/2

(10)

With a natural choice of the kinetic energy operator as
the Laplacian in the metric (11) the Wheeler-DeWitt
equation is

8 M+ (k„+ar R } g(U, V)=0, (12)

where M =n (n —1)K and a=k,vN(N 1)n—
X(n —1) '. In the foregoing section we discuss the case
a =0.

III. WAVE FUNCTION OF A GEOMETRY
WITH ONE FLAT SUBSPACE

If kiv=O the wave equation (12) is a Klein-Gordon
equation for a particle moving in a two-dimensional Min-
kowski space-time with null coordinates U and V. '

Therefore, the classical trajectories are timelike straight
lines in the fourth quadrant of the UV plane [since U ~ 0
and V~O from Eqs. (8) and (9)]. With a convenient
choice of constants the trajectories satisfy

A ' 'U —A' 'V=2
n 1

1/2

Then the metric (7) expressed in coordinates U and V be-
comes manifestly conformally Rat:

ds — K ~ 'r "R +dUdV

h = —h(nh +NH) —k„(n —1)r

H= H(nb +NH ) —k~(N——1}R

(4)
If k„=+ 1 the first integral (6) of the equations of motion
(4) and (5) suggests the following parametrization:
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U=2
n —I

n —1

1/2

1/2

~ (n —1)r'B sin

z (n —1)r'8 cos
2

(14)

(15)

@~=g tan', (n —1)r
2

r" '=BR sin(n —1)r .

(16)

(17)

A general solution to the wave equation (12) can be
written in several equivalent ways, for example,

if BWO or UV '=const otherwise. If BAO Eq. (6) gives
(crl&2)JVdt=r dr, and Eqs. (14) and (15) are exactly the

solutions of Sahdev. In the form used in Ref. 12,

The wave function (20) is not normalizable, but this is not
the main problem. ' More importantly, the solution (20)
does not oscillate and therefore it does not admit any
Lorentzian semiclassical interpretation. '

Generally, since in no region of the minisuperspace the
term —M k„ in Eq. (12) is positive, any wave function is
a tunneling one on the entire superspace, rather than a
propagating one. In particular, the solutions of Sahdev
and their discussion in Refs. 9—12 describe spacelike tra-
jectories in the Euclidean regime.

Now we consider the case of one of the subspaces hav-
ing negative curvature, k„=—1. The classical trajec-
tories are timelike straight lines in the UV plane, and can
be obtained by replacing the trigonometric functions in
Eqs. (14) and (15) by their hyperbolic counterparts,

' 1/2

f= fdna(co)exp[iM(coU+cu 'V)]
'k

U=f dk —— [b(k)It, (M& UV )—
V

U=2
n —1

n —1

A 'i'B sinh
2

1/2

~-'"B omah'
"

(21)

(22)

+c(k)Et, (Mv' UV )],— (18) where, as before,

where It, ( ) and Kt, ( ) are the modified Bessel functions of
order k, and a( ), b( ), and c( ) are arbitrary functions.

The null lines UV=O form a Cauchy surface for the
hyperbolic equation (12). Thus one can impose boundary
conditions on the wave function g by specifying the
characteristic data on these lines.

On the other hand, in extending the Hartle-Hawking
ground-state proposal to the higher-dimensional case new
features arise. It was pointed out by Hawking and Hal-
liwell" that, in order to obtain a nontrivial wave function
at an ( n +N)-dimensional surface, which (for n +N & 3 )

is not necessarily cobordant to zero, one has to evaluate
the path integral over all compact Euclidean (n +N + 1)
manifolds which connect the given surface and other
(n+N)-dimensional surfaces with the same characteris-
tic numbers. However, in the case of a truncated model
with a global topology of a product of a three-
dimensional manifold and another manifold, the space-
like sections always form a boundary of an (n +N+1)-
dimensional manifold with no other boundaries. Thus we
need not consider any modifications of the no-boundary
proposal for the model. '

The Euclidean path integral between two (n+N)
geometries should be dominated by the Euclidean action
along the classical manifold, joining those geometries.
The Euclidean version of the action (2) is zero when eval-
uated along a classical path which is null with respect to
the minisuperspace metric (11). ' Therefore, one may
argue (compare Refs. 4, 5, and 20) that the path integral
is approximately constant along the null characteristic
surface UV= 0, and can be normalized so that

PiUv=o=l .

—JVdt=r dr .
2

Also, the straight lines passing through the origin,

V= —CU, C)0,

(23)

(24)

are classical trajectories extremizing the action (2).
If k„=—1 a general solution to the Wheeler-DeWitt

equation (12) is

P= f dco a(co)exp[iM(coU —co
' V)]

T 'k
U= f dk —— [b(k)Jt, (M& —UV )
V

+c(k)Nt, (M& UV )], —(25)

where Jt, ( ) and Nt, ( ) are the Bessel functions of the kth
order [for other representations of the solutions (25) see
Ref. 24].

The Hartle-Hawking ground-state proposal implies the
boundary condition (19), which specifies the ground state
as

Q=JO(M& —UV) . (26)

The wave function (26) admits a semiclassical interpreta-
tion at —UV=n(n —1) 'r " R ) W))M . The
wave fronts are orthogonal to the WKB trajectories,
which are given by Eq. (24). Thus the Hartle-Hawking
proposal picks a particular one-parameter set of classical
solutions out of the two-parameter family given by Eqs.
(21)—(24).

The evolution of the scale factors along the trajectories
of this one-parameter family is given by

q=r, (M& UV ) . — (20)

Equation (19) provides the characteristic data for the
Cauchy problem of Eq. (12). Then, the Hartle-Hawking
wave function for the model is

dR
p

dt

i df' G

dt v'2

(27)

(28)
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Actually, any solution to Eqs. (27) and (28) depends on
two parameters. However, one of them should be fixed
by shifting the origin of time t so that the initial singulari-
ty occurs at t =0, as was implicitly assumed in Eqs. (14),
(15), (21), and (22).

In this model the scale factor of the flat space is exactly
constant, whereas the scale factor of the curved space in-
creases linearly with time, starting from initial singulari-
ty. The time dependence of the size of the "internal"
space is supposed to determine the possible variations of
the Newton's gravitational constant G. If one identifies
the physical space with the n-dimensional expanding hy-
perboloid (and therefore the "internal" space is flat) the
gravitationa1 constant G, proportional to 0 R, is ex-
actly constant in the classical regime, contrary to the re-
sults of Refs. 25 and 26.

One can use the wave function (26) to evaluate the
probability density P for the scale factors being within a
given range. If one fixes

Uv n (& 1 )
—1&2n —2g 2N

r R

' —1/( n —1)

U"( —V)"=, (31)
N —1

where

p=
n —1

n
1 ——

a
(32)

to the Euclidean universes rather than to the Lorentzian
ones. We will not discuss this case. From now on we as-
sume that both spatial subrnanifolds have negative curva-
tures, k„=k~ = —1, unless explicitly specified otherwise.
Then the classical trajectories lie entirely in the region
ab'c' and a'bc in Fig. 1 of Ref. 12. Without losing gen-
erality we consider only the former region; i.e., we choose
a particular direction of time. Then there exists only one
focal point in the phase space (it is denoted by e on Fig. 1

of Ref. 12), and all trajectories asymptotically tend to the
one given by

P(r)dr ~ dr, (29)

to be within a given range dW in the classical regime
W+dW& W»M ', then

and

1 n1+—
n —1 a

(33)

or

p(g )dg ~ g —
( +N —()/( —) )dg (30)

IV. WAVE FUNCTIONS OF GEOMETRIES
WITH TWO CURVED SUBSPACES

the coefficients of proportionality depending on the value
of W and its range dW. Note that W is invariant under
the rescalings of the flat N-dimensional subspace, as one
would expect if the probabilities are physically meaning-
ful. As a consequence of Eqs. (29) and (30) it is more like-

ly to have a very small scale factor of the "internal" space
and a (relatively) large scale factor of the "physical"
space early in the classical evolution, and their respective
ratio is ever decreasing along any classical trajectory.

However, if Eqs. (27) and (28) are satisfied, the metric
(1) defines a flat, (n +N+1)-dimensional "Rindler"
space, for which the splitting of the spatial sections into
two spaces on di6'erent footage appears to be artificial
from the classical point of view. Note, that even though
the Einstein-Hilbert action is zero in this case, the action
(2) does not vanish because it includes a boundary term,
vanishing only in the limit t ~ (x).

Moreover, one may not consistently consider the flat
"internal" space as a limit of a curved space with a large
scale factor. In such a case (i.e., if k)v&0) its curvature
term in the action (2), or in the wave equation (12), where
it is equal to a r R f, would eventually dominate over
the curvature of the "physical" space. This is discussed
in the next section.

n+N —1
lnr =~—a exp

2
'r

(n +N —1)' (9 n N)'——
Xsin + (34)

2

1 N —1
lnR =~+ —ln

2 n —1

n+N —1+b exp
2

'r

(n +N —1)' (9—n N)' +-X sin + g+
2

(35)

where

(n +N —1)'~ (9 n N)'— —
g =arctan 2

3N+n —3
(36)

and a and b are small constants:

Along this trajectory dr ~R ~ JVt ' dt, where t is the
cosmic time of Eq. (1).

One can determine the evolution of linear perturba-
tions about the solution (31) of Eqs. (4) —(6), or
equivalently, the geodesic deviations along the timelike
geodesic (31) in the superspace with the metric (11). If
n +N & 9 the perturbations satisfy

If both the n- and N-dimensional subspaces have posi-
tive curvature, one should not expect the solutions to the
Wheeler-DeWitt equation (12) to exhibit semiclassical os-
cillatory behavior. The classical trajectories correspond

b =2n [(3N + n —3) +(9—n N)(n +N —1)—]' a .

(37)

If n +N ~ 9, the perturbations are
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$17 $27
Inr =~+a(e ' —e ' ), (38}

and

1 N —1 6017 6027
lnR =w+ —ln +a(k&e ' —k2e ' ),

2 n —1
(39)

where

and

(40)

co& z= —
—,'[n+N —1+(n +N —9)'~ (n +N —I)'~~],

As far as the Wheeler-DeWitt equation (12) is con-
cerned, no exact solutions are readily at hand. However,
if the number of space-time dimensions is not less than
ten, the classical trajectories do not oscillate and one may
hope to obtain useful solutions to Eq. (12) by applying the
Wentzel-Kramers-Brillouin (WKB) approximation. We
will proceed a little further and find a general solution to
the wave equation as a series of terms with increasing
power of M ', for the moment assumed to be a small pa-
rameter in Eq. (12).

Let

k& 2= n—(2N+n —2+co& z) (41)
and

[n(n 1)
—

~r ~n —
~R ~+]=ln( UV) (47)

R~= A tanh', (n —1)r
2

r" '=BR + .
h

(n —1}r
2

(42)

(43)

Close to the U =0 line in the UV plane, where
r R )&1, one can neglect the curvature of the n-
dimensional subspace. The solutions in this regime are

R '=Br "s' h
2

(44)

If n+N=9 there exists also another solution different
from the one given by Eqs. (38) and (39). It dominates at
late r and can be obtained from Eqs. (38) and (39) by re-
placing a ~a~.

On the other hand, one can obtain approximate
solutions far away from the focal point e [i.e.,
at r R &&(n —1)(N —1) ' or r R «(n —1)
(N —1) '] by using the results of the preceding section.
In particular, close to the line V=O in the minisuper-
space r R ((1, and one may neglect the curvature of
the N-dimensional subspace. The trajectories in that re-
gime are straight lines in the UV plane, and the solutions
(21) and (22) yield

q=2ln(rR ')=ln
n —1

—1/( n —1)

U"( —V)", (48)

M+ e~(1+ a~e") /=0 .
4

(49)

Assume that the wave function may be represented as a
series

/=exp(iMSO+S, +M 'S2+ +M S~+, + ) .

(50)

If one demands that all terms of order M ~, up to some
p =I ) 1, vanish separately in Eq. (49), one gets the fol-
lowing system of equations:

'2 2
as,

'

as, as, as,
4 +(p+v) +pv

with p and v defined in Eqs. (32} and (33). The Wheeler-
DeWitt equation (12) is now

a2 a2 a2
+(@+v) +pv

a ag

, (N —1)r'r"= A tanh'
2

with v' defined by

JVdr=R dr' .
2

(45)

(46)

—e&(1+~a~e")=0, (51)

a's, a's, a so
z +pv z +(p, +v)

ag' a&' a a7]

as, as, as, as,
+'ag ay+" a„a~

To obtain a more complete approximation, one should
match the solutions (34) and (35) or (38) and (39) with ei-
ther Eqs. (42) and (43) or (44) and (45), depending on the
number of spatial dimensions and the initial conditions
for the trajectory, respectively. and I —1 equations

as, as, as, as,

a's, ~ as, as. . . as,. as. . . '

as, as. . . as„as. . .
ay' aq' ag aq aq ag

as, as, , as, as, , as, as, , as, as, , =0 (53)
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for each p up to p = l.
Equation (51) is the Hamilton-Jacobi equation for the

classical action So, and Eq. (52) determines the WKB
prefactor exp(S, ). Equations (52) and (53) are linear in
the highest-index function S +,. Once Eq. (51) is solved,
one can (in principle, of course) solve consecutively all of
Eqs. (53},starting with Eq. (52), provided appropriate ini-
tial conditions are imposed on each S,l &p )0. A par-
ticular example is presented later.

Now we discuss the solutions to the Hamilton-Jacobi
equation (51). One can guess a one-parameter family of
solutions (as opposed to a two-parameter general solu-
tion) of the form

by using the substitutions

y =coth arcosh exp
Nri

2(n +N)

and

(n —1)(n +N)+N
4(n +N)

x(eNgl(n+N)+
l al

e[(2 )v+")I(" +N)]q)

y' — y + +1—3 y + +2—2 y=0,F'
3

F'
2

F'
F F F (60)

(61)

(62)

S()=e~ f(ri) .

Then the function f(ri) satisfies

4 f'+4 f f+f' (1+l-
N(n —1) n —1

Asymptotically, f ( g ) behaves like

f(q)~+I, rl « —1,
and

f(q)-+ —e')~, rI»1 .N
n

(54)

(55)

(56)

(57)

Sk(k=40 n)=4k(n»

then one may solve Eqs. (52) and (53) recursively,

Sk(k '9) =Lk(k

(63)

with prime denoting differentiation with respect to
2[N +(n +N)(n —1)]' (n +N) 'ri. Equation (60) is
an Abel's equation of the first kind. ' There are several
specific cases in which a solution to this equation is
known. Unfortunately, Eq. (60) does not belong to any of
these classes. From now on we assume that the solution
to Eq. (55) is known, obtained either by numeric integra-
tion or by choosing a particular specific solution.

If the initial conditions for Eqs. (52) and (53) are

This behavior is what one would expect for the Hartle-
Hawking wave function, which should be approximately
given by Eq. (26) for g « —1, and by

Lk[( K(—ri);K—'(gk (+K(ri)—)]

+0k[K '(4 —0+«n)}] (64)

f=Jo [M' U"+ '( —V)'+ '] (58)
along the classical trajectories of the Hamilton-Jacobi
equation (55):

with

1/( n —1)

+ +
(65)

()M+1} '(v+1) 'M (59)

at g»1.
No general solutions to Eq. (55) are known to the au-

thor. This equation can be brought into the form

The function L(; ) in Eq. (64) is defined as

Lk(x;y)= f Rk(x+K(8);8)d8 (66)

and Rk+)(, ) is determined recursively by all S~,
p (k+1,

„ a's„ a's„ a's,
Rk+)(4 n)=&[f+(I +v)f'] 'e ",+)Mv, +()M+v)

ay' a&' aga~

es, as„, , as, as. . .
as, as. . . os, as. . .
ag a~ a~ ag

+|'p+v) (67)

with

(68)
,' f+p vf"+ )(p+ v )f—'—

Now one can investigate the role of the assumption

that the number of dimensions is not less than ten. It can
be proved that, if n +N &9 and aAO, any function f(rj)
solving Eq. (55) is necessarily multivalued. Thus neither
K( } nor Lk(; ) are single valued. Also, at the caustics,
the integrand in Eq. (65) is singular, and K( ) is not
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f(i])=] . (69)

defined. This is exactly because the WKB approximation
breaks down near the caustics —all terms in the exponent
in Eq. (50) are infinite and one may not consider the
higher-order terms as small corrections.

If n+N) 9 all solutions to Eq. (55) are single valued.
In this case one might consider the radius of convergence
of the series (50). For simplicity, we compare the series
with the known solutions to Eq. (12) for a=0. Then one
may choose a solution to Eq. (55):

the coefficients Rk,

k

X
m=0 ql+ . +q =m

q&+2q2+ . +pq =k

P
Cm, p

ql j=1

'k

2——R'
J

~ j+1

21

I (k +1/2)
I (

—k+1/2)

where C 'P are defined as the p-nomial coefficients:
qp

Let P), (q]) =0 for all k )0. Then Eq. (64) gives

g R (
[()—P)/2]» e[ o)

P 1 p P

with recursively defined R ': R ', = —
—,', and

p
—

1

Rp=i Rp, + g R),'Rp
k=1

(70)

(71)

gx,
'm

q+ +q =m
1 p

P
Cq'P

q g(x, )'. (75)
j=1

)i/= '[H'(M-e» ')+H'(Me» ')] (76)

One can repeat an analogous discussion for the other
independent solution of Eq. (49), Ho (Me»/ ), using

f(q])= —1 instead of Eq. (69). A linear combination

One can compare the limit for go~ —(x) of the expres-
sion in Eq. (50) with Sp given by Eq. (70), to the exact
solution, corresponding to the same boundary conditions,

g=H'(Me» ) (72)

Also, by comparing term by term the series (50) and the
asymptotic expansion of the solution (72) (again, formula
8.451 of Ref. 29) one can prove a nontrivial identity for

where Ho( ) is the first Hankel function of zeroth order.
Then, using formula 8.451 of Ref. 29 for the expansion of
the Hankel functions one can show that the series (50) is,
at g)) 1, an asymptotic series of the solution (72) to Eq.
(49). The optimum number of terms in the series of Eq.
(50), givin~ the smallest approximation error, is roughly
p =M 'e +2. Then the smallest error between the
function and its series is, very roughly,

P
b =2P 'i Rp+ g R)'Rp+, ), e P . (73)

k=1

(77)

and

1
9

pv

1 n —1
g0= ln

pv N —1

(78)

(79)

so that ri'=i]o is the classical equilibrium trajectory (31).
The Wheeler-DeWitt equation (12) or (49) now takes the
form

is the Hartle-Hawking ground-state solution (26). Thus,
in the general case kN= —1, one could argue that the
ground-state solution has an asymptotic series which is a
linear combination of two solutions (50), each evaluated
with a different boundary condition on f(ri) allowed by
Eq. (56) or, equivalently, by Eq. (57).

Unfortunately, the series (50) is not useful if n +N & 9.
From now on, we consider this case. Let

2 g2 1 g2 M2(p+v (3 + 1 () + M»'( [(p+v)/2]q'+
f

fe[(p+v)/2+pv]g') q 0
4pv ()g'~ pv (jq]'~ 4

(80)

C)2 02
+C3 +e [C, +C2(ri' q]()) ] /=O, —

at' aq' (81)

The potential term in Eq. (80) considered as a function of
q' has a minimum at q'=g0. This suggests a simple
harmonic-oscillator potential approximation, valid for
fi]' —i],'f «1, ar, d

nC2= C, ,
2N(n —1)

2

C3 =()uv) ' 1—
4pv

(83)

(84)

with

C1= M n+N N —1

4 n n —1

N/(n +NI
()M+ v)

4P-

(82)

At this point one ' ' usually makes the Born-
Oppenheimer approximation, neglecting the variations of
the wave function as a function of one of the variables,
solving the wave equation and then correcting for the
changes of the variable initially fixed. In the pure-gravity
case of Eq. (81) one may not neglect the dependence of f
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X exp i 2+C, e ~'

+O(e -e'/2)

C3
( I + —,

' )Qg'
C1

(85)

Here

( 1/22li1) —1/2
27 (86)

on any variable, which makes the Born-Oppenheimer ap-
proximation useless. However, if we assume a quasiadia-
batic separation p=g(g')h(g', 2)'), without assuming that
h, compared to g, varies slowly with j, but requiring that
h considered as a function of (2)' —go} is the standard
harmonic-oscillator wave function, its frequency and the
function g(g') being fixed by Eq. (81), we get an approxi-
mate solution

$1 =N, exp[ —
—,'Qe~ (ri' —rio) ]Hl[&Qe& (rt' —rio)]

Hl( ) are the Hermite polynomials and

Q= —,'QC, pv 1—(p+ v)
4pv

1/2
9—n —Ng+
n+N —1

(87)

The solution (85) has the same accuracy as one would get
if the Born-Oppenheimer approximation were appropri-
ate. However, the frequency of the harmonic-oscillator
wave function is not equal to the frequency of oscillations
for fixed g'. Instead, it is given by Eq. (87). In the Born-
Oppenheimer approximation the imaginary part of the
frequency would have been suppressed by a large factor
(nt Pl,„,k in the gravity-scalar field model ).

Finally, the solutions (85) can be used to construct
wave packets, for example, a generalization of the
coherent (or classical) states of a harmonic oscillator,

(i 1) 1/2alg
1=0

C3=n'/ exp i — Qg'+2i1/'C e~ 'Qe~ (—rt'——2)')

+2&Qa exp ~ i —Qg' (ri' —rio) —a exp 2i — Qg'
4 gC QC1

(88)

where a is an arbitrary constant. The probability density
ql'1I/ of the wave (88) considered as a function of ri' is a
Gaussian with a standard deviation

o=&2~Q~ '(cosine & ") ', '

centered at g' such that
' 1/2

1 9—n —N
g —g0O-a cos

4 n+N —1

(89)

(90}

where P=+arctan[(n +N —1)l(9—n —N)]' '.
The results of (89) and (90) may be compared with the

classical solutions (34) and (35), which give

' 1/2

2)' —2)0 ~ ae ~ cos — g'+ P'/4 1 9—n —N
4 n+N —1

(91)

P' being a constant. Thus the center of the wave packet
(88) oscillates with the same frequency as the classical

I

trajectories do. However, the oscillations of the wave
packet have a constant amplitude, whereas the amplitude
of the classical perturbations vanishes exponentially.

The difference between the behavior of the wave packet
and the classical solutions is due to the nonvanishing
imaginary part of the frequency Q in Eq. (87},and there-
fore is a result of the fact that the Born-Oppenheimer ap-
proximation may not be applied. In many cases the ap-
proximation is valid ' and the frequency is usually real.
But the second correction for the motion of the "heavier
particles" as in Eq. (85) inevitably yields a complex fre-
quency of oscillations. This causes the difference between
the group velocity and the phase velocity even for a
Gaussian packet such as Eq. (88). The difference be-
comes extreme for the pure gravity model, (90) and (91).

Although the concept of measurements in quantum
gravity is far from being clear, it is likely that the results
of observations are determined by semiclassical wave
packets such as Eq. (88). Then the ratio of the scale fac-
tors should oscillate,

n —1

N —1

' 1/2

1+a'cos —,'v'(9 —n N)(n +N —1—)ln f JVt ' dt +const (92)

rather than tend to a limit of [(n —1)i(N —1)]' given
by the purely classical considerations (91). The constant
a' in Eq. (92) should be small in order not to break down
the approximation (81) of Eq. (80). Then, the width of

I

the wave packet (89) decreases exponentially, so that the
trajectory of the wave packet should be easily distinguish-
able for large t, even after a large number of oscillations.

The oscillations can be traced back to early times
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where, however, our approximation (81) breaks down.
Still, it might happen that even if this approximation is
not valid, one of the two potential terms in Eq. (12) dom-
inates over the other, and one may roughly use the
analysis of the preceding section.

Again, one may investigate the role of the number of
spatial dimensions. If this number were greater than
nine, the effective frequency 0 would be purely imagi-
nary, corresponding to an upside-down harmonic oscilla-
tor.

If both spatial sections have curvature of opposite
signs, the classical trajectory must lie within the dotted
region of Fig. 1 of Ref. 12. In this case, comparing Figs.
1 and 2 of Ref. 12, and using the results of the preceding
section, one may argue that only the trajectories from b'
to b on Fig. 1 correspond to the Lorentzian solutions
picked out by the Hartle-Hawking proposal. These tra-
jectories have one classical turning point, corresponding
to the maximum of the scale factor the "physical" space
and minimum scale factor of the "internal" space.

V. CONCLUSIONS

We have analyzed a pure-gravity cosmological model
with spatial sections being products of two maximally
symmetric spaces. If neither of the subspaces has nega-
tive curvature, there exist no Lorentzian solutions.

If one of the subspaces is flat, and the other has nega-
tive curvature, the Hartle-Hawking ground-state propo-
sal picks out a classical solution with maximal possible
symmetry, which is the Minkowski space. The space-
time is split into a product of constant curvature and flat
spaces because of the specific choice of the boundary
term in the action of canonical gravity. This space can

be considered as the "initial" state for the models with
both spacial sections of negative curvature. In this case
we found the classical trajectories, which, to our surprise,
oscillate only if the number of space-time dimensions is
less than ten —the number of dimensions already called
critical for various other reasons, which seem to have lit-
tle connection with our model.

We found approximate solutions to the Wheeler-
DeWitt equation and (for n +N & 9) used them to con-
struct wave packets. The trajectories of the wave packets
oscillate about a classically stable solution. The frequen-
cies of oscillations of the classical trajectories and the tra-
jectory of the packet are equal, but the time-dependent
amplitudes are not. The wave packets can be dis-
tinguished even after a large number of oscillations as
they remain well peaked for a large number of periods.
This is exactly opposite to what happens in the gravity-
scalar field model, and is a direct consequence of the
equal strength of coupling for all gravitational degrees of
freedom. Concluding, the quantum-mechanical evolution
of empty higher-dimensional Universes is qualitatively
different from both their classical evolution and the evo-
lution of the universes coupled to various matter fields.
Thus, it is very unlikely that specific results do not de-
pend on the minisuperspace truncation chosen for the
model.
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