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In the no-boundary proposal for the initial conditions of a closed cosmology, the wave function of
the universe is the integral of exp(-action) over a contour of four-geometries and matter-field
configurations on compact manifolds having only that boundary necessary to specify the arguments
of the wave function. There is no satisfactory covariant Hamiltonian quantum mechanics of closed
cosmologies from which the contour may be derived, as there would be for defining the ground
states of asymptotically flat spacetimes. No compelling prescription, such as the conformal rotation
for asymptotically flat spacetimes, has been advanced. In this paper it is argued that the contour of
integration can be constrained by simple physical considerations: (1) the integral defining the wave
function should converge; (2) the wave function should satisfy the constraints implementing
diffeomorphism invariance; (3) classical spacetime when the universe is large should be a prediction;
(4) the correct field theory in curved spacetime should be reproduced in this spacetime; (5) to the ex-
tent that wormholes make the cosmological constant dependent on initial conditions the wave func-
tion should predict its vanishing. We argue that the convergence criterion is readily satisfied by
choosing a suitable complex contour. The constraints will be satisfied if the end points of the con-
tour are suitably restricted. For classical spacetime to be a prediction, the contour must be dom-
inated by one or more saddle points at which the four-metric is complex. We discuss the conditions
under which such complex solutions to the Einstein equations arise and their interpretation. Be-
cause the action is double valued in the space of complex metrics, every solution of the Einstein
equations corresponds to fwo saddle points: one with Re(Vg )>0, the other with Re(Vg)<O.
They differ only in the sign of their action. We find that criteria (4) and (5) imply that the contour
should not be dominated by a saddle point with Re(V'g ) <0. This restriction may be difficult to
satisfy in the path-integral forms of the “tunneling” boundary condition proposals of Linde, Vilen-
kin, and others. Although all of these physical considerations constrain the contour and largely
determine the semiclassical predictions of the wave function, there is still remaining freedom. Until
fixed by more fundamental considerations, the remaining freedom in the contour means that there
are many corresponding no-boundary proposals.
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I. INTRODUCTION

To apply quantum mechanics to the universe as a
whole we need a quantum mechanics of cosmology and
within that quantum cosmology a theory of initial condi-
tions.! There are no practical predictions of any kind
which do not involve a theory of initial conditions even if
only very weakly, and predictions of very-large-scale ob-
servations may be testably sensitive to its details. We do
not yet have a satisfactory and manageable quantum
theory of gravity readily applicable to cosmology. We
may imagine, however, that any theory of initial condi-
tions within such a quantum gravity will specify, approxi-
mately, for scales larger than the Planck length, the wave
function of a closed universe. This is the amplitude

Wolhy;(x), x(x),0M] (1.1)

that the universe contains a connected spacelike surface
which is a three-manifold M with a metric k;;(x) and
matter field y(x) upon it. From this amplitude one can
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extract most predictions of the initial conditions on ac-
cessible scales including, in particular, a prediction of
classical spacetime.

In the absence of a complete theory of quantum gravity
it is reasonable to try and identify principles which speci-
fy a wave function of the universe which is adequate for
predictions on scales larger than the Planck scale using a
low-energy effective gravitational theory. The hope
would be that such principles could be generalized to a
complete theory. The unique low-energy effective gravi-
tational theory is Einstein’s general relativity with
cosmological constant coupled to some number of matter
fields.” We are thus led in quantum cosmology to pro-
pose theories of initial conditions which fix ¥, using gen-
eral relativity coupled to matter for dynamics.

Observations show that at earlier times the universe
was more nearly homogeneous, more nearly isotropic,
and more nearly in thermal equilibrium. Natural candi-
dates for the initial conditions of our universe are, there-
fore, those which specify qualitatively a state of minimum
excitation. Were there a Hamiltonian quantum mechan-
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ics of closed cosmology, the obvious candidate for a state
of minimum excitation would be the ground state.” How-
ever, there are serious difficulties with applying Hamil-
tonian quantum mechanics to closed cosmologies. For
example, such a formulation would rule out the possibili-
ty of topology change which may be important for the
values of the physical constants. More importantly, to
form a Hamiltonian quantum mechanics of cosmology
one must distinguish a time variable.> No natural time
variable is suggested by the classical theory of general re-
lativity because it does not prefer one set of spacelike sur-
faces to another. The choice of a time variable for Ham-
iltonian quantum mechanics therefore involves singling
out a special set of surfaces not preferred by the classical
theory. York* has argued that a natural preferred time
for quantum mechanics is the trace of the extrinsic curva-
ture, K. Ashtekar, and others, have proposed another at-
tractive choice.” However, whatever the choice, it seems
likely that the resulting Hamiltonian will be time depen-
dent because the constraints of general relativity are
quadratic in the momenta and have a nontrivial potential
term. There will thus not be one unique ground state
picked out by the theory but rather one for each time.

Feynman’s sum-over-histories framework for quantum
mechanics provides an alternative starting point for con-
structing a quantum mechanics for cosmology which can
avoid these difficulties. A sum-over-histories quantum
mechanics can have an equivalent Hamiltonian formula-
tion when, among other conditions, from among the
physical variables specifying a history a time can be
identified which uniquely parametrizes the histories as a
curve in the configuration space of the remainder of the
variables. Such histories are said to “move forward in
time.” In cosmology the histories are four-geometries.
There are no geometric variables which uniquely label a
hypersurface in a general four-geometry. Certainly K is
not such a variable. Therefore, from a sum-over-histories
quantum cosmology which treats all four-geometries
equally we do not expect to recover an equivalent Hamil-
tonian formulation.® There is no natural preferred folia-
tion by hypersurfaces of a general compact spacetime;
therefore, there is no natural notion of time; therefore,
there is no natural generally covariant Hamiltonian for-
mulation of the quantum mechanics of these spacetimes.

A natural candidate for a theory of initial conditions in
sum-over-histories quantum cosmology is the “no-
boundary” proposal.”® The wave function of the
universe is specified by a Euclidean sum over histories of
the form

Wolh,x,0M]=3, f@i)gﬂ(bexp(—l[g,(D,M]). (1.2)
M

I is the Euclidean action for metric g and matter-field
configuration ® on a four-manifold M. The sum over
manifolds is over a class which have the one boundary
dM on which the arguments of the wave function are
specified and no other boundary. The functional integral
is over metrics g and matter fields ® on M which induce
h and y on dM.

To make a construction such as (1.2) definite, the class
of manifolds, the measure for the functional integrals,
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and the contour € over which these integrations are car-
ried out must be given. There thus may be many “no-
boundary” proposals depending on how these aspects of
the construction are specified. The essence of the no-
boundary proposals is topological: the specification of
the topology of the manifold on which the tensor fields of
integration g and & lie. It is this essentially topological
character which gives some hope that the idea may be
generalizable to many theories of quantum gravity.

Various possibilities have been discussed for the class
of manifolds’ and for the measure.!® The object of this
paper is to discuss the possibilities for the contour @. It
may be that this contour of integration is determined by a
yet more fundamental quantum theory of gravity or by
some synthesis between a theory of dynamics and a
theory of initial conditions. However, as far as the low-
energy theory is concerned, in the absence of a Hamil-
tonian quantum mechanics to specify the physical de-
grees of freedom or an alternative construction of a state
of minimum excitation, the contour in the construction
(1.2) is up for grabs. It is therefore reasonable to consider
the class of contours generally and to ask which contours
lead to no-boundary proposals which satisfy sensible cri-
teria for consistency and physical predictions.

This situation should be contrasted with that in the
quantum theory of asymptotically flat spacetimes. In
that case, there is the conformal rotation prescription of
Gibbons, Hawking, and Perry'! for the construction of a
ground-state wave function by an integration over
asymptotically flat spacetimes analogous to (1.2). Briefly
stated, their prescription is to decompose the metrics g v
that are integrated over into conformal equivalence
classes represented by a metric g, satisfying R (8,,)=0
and a conformal factor ) defined by g#‘,:Q?‘g#V. The
conformal factor is written 3=1+Y with Y vanishing
asymptotically and Y is rotated to imaginary values. The
resulting action is real. The integral over imaginary
values of Y is explicitly convergent and the integral over
conformal equivalence classes is likewise by the positive
action theorem of Schoen and Yau.'? As shown by
Schleich and others,!* this complex contour gives a
ground state which coincides with that of the Hamiltoni-
an theory for all orders of perturbation theory of Einstein
gravity linearized about flat space. It also coincides with
the results of Mazur and Mottola for gravity linearized
about curved backgrounds.!* These supporting calcula-
tions together with the strength of the Schoen and Yau
result make the Gibbons, Hawking, and Perry conformal
rotation a compelling prescription for asymptotically flat
spacetimes.

Despite these reassuring results, the prescription of
Gibbons, Hawking, and Perry is not without its limita-
tions. The chief difficulty lies in the generality of the
equivalence class condition R(g,,)=0. Not every
asymptotically flat four-metric can be conformally
transformed to one for which this condition holds.’> In
using this prescription, therefore, certain metrics are be-
ing missed out in the sum over geometries. However, the
prescription does at least encompass a large class of in-
teresting metrics, in that all metrics sufficiently close to
flat space, or to solutions of the vacuum Einstein equa-



41 INTEGRATION CONTOURS FOR THE NO-BOUNDARY WAVE. ..

tions, may be conformally transformed to R =0. There is
a further potential difficulty when gravity is coupled to
matter: The conformal rotation ensuring convergence of
the gravitational part of the path integral could destroy
the positivity of a conformally noninvariant matter ac-
tion. The matter integrals would therefore fail to con-
verge unless contour rotations were applied to those in-
tegrations also.

The difficulties with the conformal rotation are partic-
ularly acute if the prescription is applied to the case of
closed cosmologies under investigation here. There is no
singly obvious candidate for the conformal equivalence
class condition R (g)=0. For the case of compact four-
manifolds without boundary, the condition R =4A has
been suggested,'® but again this is problematic because
not all compact four-metrics can be conformally
transformed to this form.!” More serious is the fact that
there is no known analogue of the positive action
theorem. For particular choices of equivalence class con-
dition, the rotated action is complex and there is no
guarantee that the sum over conformal equivalence
classes will converge (see, however, Ref. 18). The con-
tour problem for the wave function of closed cosmologies
is therefore a very different problem from that in asymp-
totically flat spacetimes.

For these reasons, rather than seek a prescription for
the contour, we are led instead to search generally for
contours which satisfy sensible criteria for consistency
and physical predictions. Five criteria naturally suggest
themselves as reasonable restrictions on the contour
defining a wave function of the universe ¥,. Two of them
should be required of any contour for mathematical con-
sistency.

(1) The integral defining ¥, should converge.

(2) The resulting W, should satisfy the constraints im-
plementing diffeomorphism invariance. In a theory
where Einstein’s action governs the dynamics of space-
time these are the Wheeler-DeWitt equation and the
momentum constraints associated with invariance under
spatial diffemorphisms. These are, in some suitable
operator ordering, functional differential constraints on
¥,. Equation (1.2) may be viewed as an integral represen-
tation for ¥,. Whether a given integral representation
satisfies a certain differential constraint depends on the
contour and in particular on its end points.

Any contour satisfying (1) and (2) defines a possible
wave function of the universe. But there are further cri-
teria which single out, from the many possible wave func-
tions, those generally sensible for physical prediction.
Three requirements are so general that they may be
reasonably imposed.

(3) The wave function should imply classical spacetime
on familiar scales when the universe is large. Classical
spacetime is a manifest fact of the late universe but a
property of only very special quantum states of the
universe. Classical spacetime is predicted by a theory of
initial conditions when two requirements are satisfied.

(i) There is negligible interference between alternative
histories for spacetime geometry determined on scales far
above the Planck length. That is, the alternative histories
decohere.!*?0

1817

(i) The histories are highly correlated according to
classical laws.?!

There are, of course, many wave functions which lead
to classical correlations (e.g., Ref. 22). However, classical
correlations are most commonly signaled in quantum
cosmology when the wave function is well approximated
by a certain type of semiclassical approximation. A typi-
cal form corresponding to classical spacetime and quan-
tum matter is

Wolh;;x,0M]= 3 A,[h;;,dM]exp(iS,[ h;; 3M])
P

X¢,[x.8,,0M] . (1.3)
Here, S, is a classical action obeying the Lorentzian
Hamiltonian-Jacobi equation for gravity coupled to the
expectation value of matter fields. For this approxima-
tion to be valid, S, must vary much more rapidly with A,
than the prefactor A, or ¢,. The wave function (1.3) is
then strongly peaked about the ensemble of classical
spacetimes é‘p defined by the integral curves of S, (Ref.
21). The ¢,[x,8,,0M] are the associated states of the
matter field in these spacetime backgrounds. They
should be normalizable in the variables y(x) on a space-
like surface of §p (Ref. 23). Mathematically, a semiclassi-
cal approximation to W, of the form (1.3) arises when, in
a steepest-descent approximation to the functional in-
tegral (1.2), the dominating saddle points are complex.
The integral will frequently have many saddle points, and
for that reason we have included the sum over the
discrete label p. The number of saddle points supplying
the dominant contribution to the integral, however, is
typically very small so p runs over only a very small num-
ber of discrete values (one or two in simple examples)
(Ref. 24). For each p, the prefactor A, is of the form

e ' Awkp Where Ayyp is the usual WKB prefactor. Be-
cause the dominanting saddle points are generally com-
plex, the prefactor also includes the factor e *, where
I is the real part of the complex action.

There are other forms of the semiclassical approxima-
tion which can be appropriate. For example, there may
be classical matter fields, in which case Sp and Ap would
depend on them as well. Or some modes of the gravita-
tional field could form a classical background while oth-
ers form quantum fluctuations about it. The important
point is that there be a division between variables behav-
ing classically and included in the rapidly varying factor
exp(iS,) and the remaining ones which enter into the
more slowly varying rest.

Not every saddle point of the action is a potential con-
tributor to a semiclassical approximation of the no-
boundary wave function. These saddle points must corre-
spond to solutions on a compact manifold M with a single
boundary dM on which real boundary data h;; and y are
prescribed. If these saddle points are known, then the
question of whether a no-boundary proposal predicts
classical spacetime is the question of whether the contour
passes through the appropriate complex saddle points to
make an approximation such as (1.3) valid when the
universe is large.
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(4) A closely related requirement is the reproduction of
familiar quantum field theory for matter when spacetime
is approximately classical. This is connected with the
matter fluctuations in the steepest-descent approximation
about the complex saddle points. More precisely, it is the
question of whether the wave functions ¥,[x,8,,0M] in
(1.3) correctly describe quantum field theory in the space-
time g,.

(5) Recent work by Hawking,?> Coleman,?® Giddings
and Strominger,?’ and others has shown that if nontrivial
“wormhole” topologies are included in the Euclidean
sum over histories (1.2) then the coupling constants of the
effective low-energy theory accessible to us may depend
as much on the initial conditions of the universe as they
do on the form of the fundamental Lagrangian. In par-
ticular wormholes may provide a mechanism for making
the cosmological constant vanish. A reasonable restric-
tion on a no-boundary proposal is that it predict this. We
measure the cosmological constant only through the evo-
lution of the universe itself, that is, through the dynamics
of the classical spacetime of the late universe. A wave
function of the universe predicts a distribution of
cosmological-constants when it predicts a family of clas-
sical spacetimes, each obeying Einstein’s equation, but
with different possible cosmological-constant terms A,
that is, a semiclassical approximation of the form
Yolh,x,dM]= [dA S A,[A,h;;lexp(iS,[A, h;,0M])

P

ij»

XY, (X,84p,0M) . (1.4)

Here, S, is the classical action for gravity with cosmolog-
ical constant A coupled to expectation values of matter
fields in the state ¢,,. Roughly speaking, in the effective
theory, the integral over metrics in Eq. (1.2) contributes
the few terms in (1.4) labeled by different values of p,
while the sum over manifolds becomes the sum over A.
The distribution of the cosmological constant implied by
A,[A,h;;]is thus closely connected with the semiclassical
approximation and therefore with the contour of integra-
tion of a no-boundary proposal.

In the following sections, we shall discuss each of these
criteria in turn and we shall argue that there are contours
of integration which meet them.

II. CONSISTENCY:
CONVERGENCE AND CONSTRAINTS

The Euclidean action for gravity is unbounded below
on the space of real metrics on compact manifolds. The
integration contour in (1.2) defining the wave function of
the universe cannot, therefore, be over real metrics. The
resulting integral would diverge. Indeed, were the in-
tegral over real metrics to converge, it would define a
never oscillatory wave function and thus be inconsistent
with one of the necessary predictions of quantum
cosmology—classical spacetime when the universe is
large [cf. Eq. (1.3)]. To converge, the contour must be
over complex geometries. A complex contour defining a
state of minimum excitation in closed cosmologies should
not be surprising since, as discussed in the Introduction,

such complex contours are needed to define the analo-
gous states in the case of asymptotically flat spacetimes,
in agreement with Hamiltonian quantum mechanics.

The requirement of convergence is not a strong con-
straint on the contours of integration. In minisuperspace
models,?® 73 it can be satisfied in a variety of ways. It is
also easily satisfied in lattice implementations of the sum
over histories following the methods of the Regge cal-
culus.’32 In a simplicial approximation to (1.2), the ac-
tion becomes a function of the squared edge lengths of
the simplicial net, some fixed by the boundary geometry,
the n; interior ones integrated over. A complex metric is
specified by complex values of the squared edge lengths.
A complex contour of integration is then specified as an
n;-dimensional contour in the 2n;-dimensional space of
complex interior squared edge lengths. In most direc-
tions in the space of complex edge lengths, the asymptot-
ic behavior of the action is dominated by the total volume
term, this being the sum of the square roots of polynomi-
als in the squared edge lengths. This volume term will
have a real part which will become positively infinite in
some directions, negatively infinite in others while in cer-
tain special directions, the real part vanishes. Such spe-
cial directions occur for real edge lengths when the edges
of all four-simplices become large but the simplices them-
selves are nearly degenerate. It is exactly such real direc-
tions along which the gravitational action on real metrics
is not bounded from below. However, there are many
more complex directions along which the real part of the
action increases for all large edge lengths. While we offer
no definite prescription, it should not be difficult to
choose a contour following these directions along which
the integrals converge. Indeed, in simple minisuperspace
models it seems possible to use one-dimensional steepest-
descent contours along which the integral converges as
fast as possible.?8 32

A related but more stringent requirement for the con-
tour than convergence is the requirement of
diffeomorphism invariance. In classical physics, invari-
ance of the action under a group parametrized by func-
tions of time implies constraints between canonical coor-
dinates and canonical momenta. The invariance of the
action of general relativity under four-dimensional
diffeomorphisms implies the four constraints

H (), by (%), 7, (%), X(x))=0 2.1

between the components of the three-metric on a space-
like surface, h,-j(x), and their canonically conjugate
momenta 7Y(x), together with the matter-field
configurations Y(x) on the surface and their conjugate
momenta 7, (xX).

In quantum mechanics, wave functions ¥ constructed
as invariant sums over histories satisfy the constraints as
operator identities, e.g.,

| —i—D po(x), —i

— % xx)
TR sx(x) X

X WA (x),x(x),dM]=0 (2.2)

on each disconnected part of the boundary M. This has
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been discussed in many places, perhaps in the most detail
by the authors in Ref. 33, where further references are
given. We briefly summarize these results as they affect
the choice of contour.

An invariantly constructed sum over histories is an in-
tegral of the general form

‘I/[h,-j(x),)((x),aM]=f@$z exp{—I[z(x)]}, (2.3)

where the integral is over some possibly extended space
of variables z (x), defined on the manifold M which match
the arguments of the wave function on its boundary dM.
We include in Dz any gauge-fixing apparatus. € is a con-
tour of integration. An invariantly constructed integral
is one for which, under transformations for which the ac-
tion changes by at most a boundary term on dM, the
measure Dz and class of paths € are invariant. Under
these assumptions, Eq. (2.2) may be formally derived
from (2.3).

The important point for the contour in this result is
that it be invariantly defined. In particular, this means
that the contour of integration over gauge-dependent
variables cannot have gauge-variant end points. Were
the end points changeable by a gauge transformation the
integral would not be invariant and (2.2) would not fol-
low. In typical implementations, such as those con-
sidered in Refs. 28-30, this means that the contour of in-
tegration for each field component will have infinite
range, be closed, or have a range coinciding with a
periodicity of the functions entering the sum. We shall il-
lustrate this below.

That the requirement of invariance should constrain
the end points of the contour of integration is not a
surprise. Mathematically, (2.3) is an integral representa-
tion for the function W. It is characteristic of integral
representations that whether they satisfy differential rela-
tions such as (2.2) depends on the end points of the con-
tour of integration.

The connection between wave functions satisfying the
constraints implementing diffeomorphism invariance and
invariant ranges of their defining functional integrals has
been very clearly discussed by Teitelboim,** and since ela-
borated on in related contexts by the present authors.®
We now recall the model of Ref. 35, to illustrate in a sim-
ple way how these issues usually arise. Reference 35 was
concerned with homogeneous minisuperspace models
defined on a configuration space of n coordinates g%(1).
In Hamiltonian form, their defining action is

1 s a a
S=[ dt[pag “—NH(paq)] .

Here, N(t) is a ‘“lapse” multiplier for the super-
Hamiltonian

H=1f"%q)p,ps+Ulq),

(2.4

(2.5)

where fA(q) is a metric on minisuperspace and U (q) is a
potential. The action (2.4) is invariant under reparametr-
ization of the proper time

8q*=e(t){q%H}, dp,=e(t){p,,H], SN=&(r) (2.6)

provided €(0)=0=¢€(1). Classically, there is therefore a

constraint [found immediately by varying (2.4) with
respect to N] which is

H=0. (2.7)

Consider the wave function constructed from a path
integral of the form

Wg)= [ Dp,Dg°DN Alp,g,NIS[N —x(p,q,N)]

Xexp(iS[p,q,N]) , (2.8)

where x(p,q,N) is an arbitrary function entering the
parametrization-fixing condition in the argument of the
delta function. A is the associated Faddeev-Popov deter-
minant. The action is invariant under the reparametriza-
tion (2.6). The measure combined with the gauge-fixing
delta function is likewise invariant. Equation (2.8) will
therefore define an invariant path-integral construction
provided the range of integration defines an invariant
class of paths to integrate over. To see the consequences
of different choices of range, specialize to the gauge y =0,
i.e., N=0. A may then be shown to equal a constant.
The integral over the p,,q“ alone defines a wave function
Y(g% N), which satisfies the familiar Schrodinger equa-
tion

Y _

oN
The remaining integral in (2.8) is over the constant value
of N:

\l/(q“)=f@dN (g% N) .

HY . (2.9

(2.10)

This is effectively an integral over the time. Evidently
from (2.9), ¥(q?) defined by (2.10) will satisfy the
Wheeler-DeWitt equation

HWY(g*)=0 (2.11)
if the range of N is chosen to be from — « to + oo, or if
the N contour is closed. For ranges with finite end points
it will not. However, from (2.6) it is clear that
reparametrization transformations amount to translation
of N. No range with finite end points is left invariant by
(2.6). The invariant range of integration is the real line.

III. COMPLEX SADDLE POINTS
AND THEIR INTERPRETATION

Our third criterion is that the wave function should
predict classical spacetime when the universe is large. As
discussed in Sec. I, classical spacetime is predicted when,
among other conditions, the wave function is oscillatory,
of the form (1.3), where S, is a (possibly approximate)
solution to the Lorentzian Hamilton-Jacobi equation.
Mathematically, an expression of this form can emerge as
a steepest-descent approximation to the path integral
(1.2) only if the dominating saddle-points of the integral
over metrics are Lorentzian, or more generally, complex.
This section is therefore concerned with a discussion of
complex solutions to the Einstein equations—the condi-
tions under which they exist, how to find them, and their
interpretation.
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In Sec. III A we discuss complex metrics, the complex
Einstein equations, and complex diffecomorphisms. In
Sec. III B we discuss the interpretation of complex solu-
tions and the role they play in the prediction of classical
spacetime. In Sec. III C we give some simple examples of
complex solutions, obtained by joining together real Eu-
clidean and real Lorentzian solutions. In Sec. III D we
go to the restricted context of minisuperspace. There, it
is possible to discuss complex solutions in considerable
detail, although at the expense of generality. In Sec. IITE
we speculate on the extension of the considerations of
Sec. III D to the general case.

A. The complex Einstein equations and their solutions

First some definitions. We consider a fixed (real) four-
manifold M with a single connected boundary oM. A
complex metric on M is an invertible second-rank
complex-valued tensor field. Complex matter field
configurations are similarly defined complex-valued ten-
sor fields. We seek the extrema of the action for gravity
coupled to matter fields. This has the form

: =—[ d*xVg (R —2A)— XVRK
Pligg.Ml=— [ axvVg(R—-20-2[

+12 [ d'xVe L, . (3.1)

Here, I =(167G)!/? is the Planck length, K is the trace of
the extrinsic curvature of oM, and .L, is the matter La-
grangian. The saddle points which may potentially con-
tribute to a steepest-descent evaluation of (1.2) are the ex-
trema of this action with the real values of h;(x) and
x(x) fixed on the boundary which are the arguments of
V.. The extrema will thus satisfy the Einstein equation
on M,

Raﬁ—%Rgaﬁ-FAgaB:%lzTaB , (3.2)
together with the appropriate matter-field equations. In
general these solutions will be complex. The solutions
relevant for a steepest-descent evaluation of a no-
boundary integral are those which have finite action. As
we shall see below, these need not necessarily even be
continuous. :

Two solutions to (3.2) are physically equivalent if they
are connected by a real difffomorphism. Points on the
manifold can be labeled by overlapping charts of real-
valued coordinates. Real coordinate transformations
therefore connect physically equivalent metrics. In a sum
over geometries these equivalence classes should be
counted only once, and a standard gauge-fixing
machinery is available to effect this.

If the metric components are analytic functions of the
coordinates,’® for some family of coordinate charts,
themselves connected by analytic transition functions,
then new solutions can be generated from old by complex
coordinate transformations. Explicitly, if g,z(z") is an
analytic function of z¥ and a solution of (3.2) for real z7
then, by analytic continuation, it is a solution for com-
plex z7 as well. Thus, given a complex-valued function
z7(xP), the metric
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, dz¥ 9z¢
8ap(X)= |8,6(2) — (3.3)
ax @ axﬂ z=z(x)

will solve (3.2) if g .5 does.

With suitable restrictions on the transformation z?(x?)
the action of the new metric will be the same as that of
the old. In the space of four complex coordinates the ac-
tion is defined by the integral over some purely real re-
gion. If the transformation z7(x?) leaves the boundary of
this region fixed, then it may be thought of as a distortion
of the integration contour defining the action integral to
complex values of the coordinates. If this distortion en-
counters no singularities of the integrand of the action in-
tegral, then the value of the action will be unchanged. In
particular all semiclassical predictions, which follow
from the value of the action of the solutions, will be
unaffected. Thus, as far as their semiclassical predictions
are concerned, two extrema connected by a complex
diffeomorphism of this type are physically equivalent.
The contour of integration over metrics should therefore
be chosen to pass through at most one of the extrema
connected by complex diffeomorphisms which do not
affect the value of the action. This means that one can
use complex diffeomorphisms to simplify the form of the
metric in searching for suitable solutions.

The Lagrangian density for the action (3.1) is an ana-
lytic function of the metric except where the metric be-
comes singular. In particular, there is a branch point at
g =0 arising from the factor of V'g. The action is there-
fore double valued on the space of complex metrics. Car-
rying g,z once around the branch point at g =0 changes
the sign of 1. Each solution to (3.2) therefore corresponds
to two different extrema on different sheets of I whose ac-
tions differ only in sign. This doubling of extrema was
first noticed in a Regge calculus model®' and subsequent-
ly in the minisuperspace model of Ref. 28. We shall have
more to say about it in Secs. IV and V.

B. Interpretation

To predict classical spacetime in the late universe the
contour of integration over geometries must be dominat-
ed by extrema of the action which represent classical
spacetime. Which are they? For general matter we can
only expect solutions to the Einstein equations which are
complex. In particular the action of the solutions is com-
plex:

I[hy,¢)=1Iglhy,x1—iSTh;,x] .

The whole action will satisfy the Euclidean Hamilton-
Jacobi equation, which takes the form

—(VI*+U[h;,x]=0,

(3.4)

(3.5)

where U is the Wheeler-DeWitt potential. The real and
imaginary parts of the action will generally not satisfy it
by themselves. In general, therefore, S does not define an
ensemble of classical geometries and matter fields. Con-
sider, however, the real and imaginary parts of Eq. (3.5):

—(VIg P+(VS»?+U[h;,x]1=0, (3.6)
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(VS)-(VIg)=0. 3.7)

From Eq. (3.6), one may see that if the gradient of S be-
comes much larger than the gradient of I, then S will be
an approximate solution to the Lorentzian Hamilton-
Jacobi equation. In this case it does define an ensemble of
classical geometries and matter fields.

If S defines an ensemble of classical trajectories, then
the real part of the action is also important. In a
steepest-descent approximation leading to an expression
such as (1.3) the real part of the action contributes the

term e Ik to the prefactor A. Since it is exponential it
can well be the most significant contribution to the pre-
factor. If this is the case, the measure provided by the
prefactor on the ensemble of classical trajectories is, to

leading order, of the form e 21“. It is preserved along
the classical trajectories by virtue of (3.7). In situations
where the real part of the action becomes independent of
the overall scale of the universe, the measure will still
determine the relative weight in the semiclassical approx-
imation of classical histories with that scale. For exam-
ple, for anisotropic models it will determine the relative
weight of different anisotropies.’’” In the Hawking scalar
field model,® it would affect the relative weight of
universes with different initial values of ¢, and thus pro-
vides a measure of the likelihood of inflation.*® In models
in which the cosmological constant becomes a variable, it
will determine the relative weight of universes with
different values of the cosmological constant, as will be
discussed in Sec. V.

Beyond the simple considerations we have discussed,
very little is known about the complex solutions of the
Einstein equations on a general manifold. In the next few
subsections, we therefore turn to a few simple examples
and special cases.

C. Simple solutions

To begin, we shall consider the simplest manifold con-
tributing to the no-boundary wave function. This is the
four-ball B* which may also be described as a part of the
four-sphere with three-sphere boundary. We shall con-
sider also the simplest model of matter, which is vacuum
with cosmological constant.

We first consider real solutions. There are Euclidean
signature (+,+,+,+) real solutions on B* Consider,
for example, the vacuum Einstein equation with cosmo-
logical constant A. For a round three-sphere metric of
radius a on the boundary the solution is a round four-
sphere metric on the interior of B* with radius (3/A).!/2
In fact, there are two solutions corresponding to filling in
the three-sphere with more than a hemisphere of the
four-sphere or less. This example shows that there is not
necessarily a unique solution for the three-metric fixed on
the boundary.

There is a largest three-sphere, that of radius (3/ A2,
for which solutions of this type exist; thus, we do not ex-
pect Euclidean extrema for large nearly symmetric
three-geometries. However, since arbitrarily large, irreg-
ular three-geometries can divide the round four-sphere,
there is no upper limit to the size of these geometries
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which bound a purely Euclidean solution. There are no
solutions of purely Lorentzian signature (—,+,+,+) on
B* which induce a spacelike metric on its boundary, be-
cause B* cannot carry a nonsingular timelike vector field
pointing outward at the boundary.*

The absence of global Lorentzian solutions means that
the extrema which predict classical spacetime must be
complex, their action having both real and imaginary
parts. The simplest class of such solutions can be con-
structed by joining together purely Lorentzian solutions
with purely Euclidean ones giving a purely real metric
with a discontinuous change in signature. As long as
such solutions have finite action they are acceptable can-
didates for extrema of the sum over geometries. The ac-
tion will be finite provided the standard junction condi-
tions are satisfied across the three-surface which
separates the Euclidean from the Lorentzian part of the
solutions.*® The junction conditions are that the induced
three-metric h;; and the extrinsic curvature K;; should
match across the surface. Matching the metrics shows
that the surface must be spacelike in the Lorentzian
geometry. The metric in the neighborhood of the surface
can then be written in a standard 3+1 decomposition
with, say, 7=0 labeling the dividing surface as

ds’=N?%d7*+h;(dx'+N'dr)dx/+Nidr) .  (3.8)

The signature is controlled by N. Real metrics with Eu-
clidean signature correspond to real N. Real metrics
with Lorentzian signature correspond to purely imagi-
nary N. For both cases N‘ and h ;j are real. Convention-
ally, the extrinsic curvature is defined to be real in both
Euclidean and Lorentzian spacetimes. Then, however,
the Einstein equations take a different form for Euclidean
and Lorentzian metrics when expressed in terms of
h;j,K;; and their derivatives. As a consequence, the junc-
tion conditions between Euclidean and Lorentzian
metrics would not be expressed as continuity of K;;.
Here, we use the definition

koL

3.9
iT 3N (3.9)

ar

dh,,
—L+DN, |,

where D, is the derivative in the three-surface, for both
Euclidean and Lorentzian spacetimes. Then, six of the
Einstein equations have the form

i)

3
— R
a7

(K;—KS;)‘f'F;(hU, ij’Kij)zo ’ (3.10)

where F| is a tensor function of 4;;,’R;;,K;;, and is the
same for both Euclidean and Lorentzian regions. From
this one can deduce that a correct junction condition is
the continuity of K;; as defined by (3.9).

With the definition (3.9), K;; is purely real for spacelike
surfaces in Euclidean spacetimes and purely imaginary in
Lorentzian spacetimes. It is, therefore, clear that a real
Euclidean and real Lorentzian metric can be matched
only across a spacelike surface where

K;=0. (3.11)

Across such a surface, the three-geometry also must be
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continuous. In the presence of matter, there will be other
junction conditions for the matter fields. Together, these
conditions are very restrictive, as we shall see.

If there is a solution with K;; =0 on 9B* then two such
solutions could be joined together to give a nonsingular
Einstein metric on the whole of S*. The simplest exam-
ple is the round metric on S* and this does have a K ;=0
surface at its “‘equator.” It is not known whether this ex-
ample is unique. However, if it is, then the only metric
on B* with a K ;j =0 surface is the round metric in which
OM is the three-sphere ‘“‘equator” itself with a round
metric.

The Lorentzian solution which matches the Euclidean
one is the evolution of the initial data K;;=0 and the
round metric on the three-sphere. This, of course, is de
Sitter space with the matching surface being the de Sitter
“throat” at the moment of time symmetry. The action of
this complex solution is easily evaluated and is

I=—-1[1+i(ha?=1)"], (3.12)
3A
where A=2A/97G and a’d Q3 is the round metric on dM
(Ref. 41).

Thus, if the round metric on S* is unique, only for very
special values of the boundary metric, namely, the most
symmetric possibility, will there be any real extremum on
B* with a real Lorentzian part and a real Euclidean part.
For general boundary data we expect the extrema to be
complex metrics which cannot be transformed into
metrics consisting of just a pure real part and a pure Eu-
clidean part. As will be discussed towards the end of this
section, a general characterization of the conditions un-
der which complex solutions arise is not available. To
make further progress, therefore, we need to restrict at-
tention to a manageable class of reasonably simple
metrics. A sufficiently simple class with a history of utili-
ty in quantum cosmology is the class of models known as
mini- superspace models, and it is these that we study
next.

D. Minisuperspace models

In minisuperspace models, one severely restricts the
four-metric in (3.8) so that the shift N’, is zero, the lapse
is homogeneous, N =N (7) and the three-metric h;; is re-
stricted in such a way that it is described by a finite num-
ber of functions of 7,q%(7), say, where a=1,2,...,n.
The no-boundary wave function ¥(q ) is given by a mini-
superspace path integral of the form (2.8). This path in-
tegral is closely related to the more general minisuper-
space propagator between fixed three-geometries>® which,
in the gauge N =0, is of the form

G(q"lg')= [ dN [ Dgexp(~I[g*rLN)) . (.13)

Here, I is the reduced version of the Einstein-Hilbert ac-
tion and is of the form

1
2N?

I=[7drN|=5fupi %"+ U | . (3.14)

S ap 1s the DeWitt metric on minisuperspace and has sig-
nature (—+++ -+ - ). U(q) is potential which may take

positive or negative values. The path integral (3.13) is
over paths g %(7) satisfying the boundary conditions

na
’

q%(7'")=q q%(r')=q'", (3.15)
where ¢’ and g'“ are real. We are allowing the four-
metric to be complex, so N and ¢“(7) may be complex,
subject to the restriction (3.15), but 7 is strictly real.

The no-boundary wave function is obtained by sum-
ming over paths corresponding to four-geometries which
close off the bounding three-surface. Closure of the
four-geometry is achieved by imposing certain conditions
at the initial point of the paths ¢%(7). These conditions
involve not just the ¢'®s as in (3.15), but are generally
conditions on some combination of the ¢'®s and their
conjugate momenta, p,, (Ref. 42). The no-boundary wave
function is thus obtained from (3.13) by setting some of
the ¢'®s to certain values, and then performing some
kind of Fourier transform of (3.13) in the remaining q'“’s,
with the corresponding momenta set to values deter-
mined by the closure condition. For convenience we will
in what follows concentrate on the propagator between
fixed three-geometries (3.13), but our conclusions will
also hold for different choices of boundary conditions,
such as those implied by the no-boundary proposal.

The saddle points of (3.13) are the configurations
(g%7),N) for which 81 /8¢ =0 and 31 /ON =0 subject to
the boundary conditions (3.15), i.e., those for which

g 1 U _

+—T%gB837—fb 0 (3.16)

JVZ N2

and

e 1 . a-
[ dr Syl asd "= U(@) |=0. (3.17)

Because (3.13) is an ordinary, rather than functional, in-
tegral over N, (3.17) is not the usual Hamiltonian con-
straint. However, the integrand in (3.17) is constant, by
virtue of (3.16), and from (3.17) the usual constraint then
follows:

fapd “4P—U(g)=0. (3.18)

1
2N?

We are interested in the solutions to (3.16) and (3.17)
subject to the boundary conditions (3.15). A useful stra-
tegy for obtaining and studying the complex solutions is
as follows: First, one solves the second-order equations
(3.16), subject to the boundary conditions (3.15). This
yields a solution g “(7), say, depending explicitly on the
as-yet undetermined constant N and on the end-point
values of ¢% and 7. It seems reasonable to assume that
this solution always exists and is real when N is real, al-
though it is not necessarily unique (see Ref. 24, for exam-
ple). The second step involves inserting this solution into
the constraint equation (3.18) [or (3.17)]. This gives a
purely algebraic equation for the constant lapse N, which
may be solved to give N as a function of the end-point
values of ¢ and 7. The solution for N may be purely
real, implying that the corresponding four-metric is real
Euclidean, but will generally be complex. Whether it is
real or complex will depend on the end-point values of
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a

q®. 1If it is complex, it will in turn imply that the g%s
(i.e., the three-metric components) are complex, so the
four-metric will be fully complex.

Before going any further it is perhaps useful to com-
pare what we are doing here with tunneling calculations
in nonrelativistic quantum mechanics. There, one also
looks for solutions to a set of Euclidean equations of the
form (3.16), (3.18) (there is a constraint equation because
one considers fixed-energy solutions). A crucial
difference, however, is that in ordinary quantum mechan-
ics the metric f g4 is positive definite, whereas here, it is
indefinite. With a positive-definite metric there are well-
characterized conditions under which the solution con-
necting two values of ¢ is real or complex: If the two
values of ¢¢ are in the region U <0, they are connected
by a real Euclidean solution; if both are in U >0, they are
connected by a purely imaginary Euclidean solution; if
one is in U <0 and one in U >0, the solution is complex.
With an indefinite metric, however, things are more com-
plicated. Both real Euclidean and real Lorentzian trajec-
tories can exist in both U >0 and U <0, and it may be
the case that any two points in configuration space can be
connected by a real Euclidean, a real Lorentzian, or a
complex solution. These possibilities will be made mani-
fest by the appearance of a number of solutions to the
constraint equation for N, some real, some imaginary,
some complex. Even in the restricted context of minisu-
perspace, it is not immediately clear whether there exist
general conditions under which the solutions are real or
complex, and it would be of interest to study this. Some
simple models in which these conditions can be estab-
lished are considered in Ref. 30.

The complex saddle points which dominate the path
integral will generally not have any immediate interpreta-
tion in terms of real Euclidean or real Lorentzian
metrics. For the purpose of calculating the action of
these saddle points, however, there is a certain restricted
class of solutions which may, in a sense to be explained,
be regarded as combinations of real Euclidean and real
Lorentzian solutions. Suppose we evaluate the action
(3.14) of a complex solution g% (7) with a complex value
of N. The action (3.14) is the integral over a strictly real
quantity 7 of a complex-valued integrand. However, the
solution ¢%(7) and the action have the property that N
and 7 always occur in the combination N7. Introduce,
therefore, a new complex integration variable
T =N (7—7'). Equation (3.14) is then entirely equivalent
to the complex integral

1, dq® dq”
I=[dT | fo -+ U@ |,

4T dT (3.19)

where the T contour is taken to be the straight line run-
ning from O to 7T, in the complex T plane, with
T=N(r"—7'"). The point now, is that this contour may
be distorted into one running along the real axis from 0
to Re(7) and then from there parallel to the imaginary
axis up to T (assuming there are no intervening poles).
The integrand along the first section is purely real, corre-
sponding to a real Euclidean four-metric. On the second
section, under suitable conditions, one obtains a purely

imaginary result corresponding to a real Lorentzian
metric.*’ Let us determine what these conditions are.

Let T=T,+iT,, where T, and T, are real. On the
second section of the contour, one may write
T=T,+itT,, where 0=t <1. Then, since dT =iT,dt,
the action will be purely imaginary, and the correspond-
ing four-metric real Lorentzian, if g“(T) is real. Expand
q%(T) in t about the point ¢ =0. One obtains

q*( T, +itT,)=q%T)+itT,g «T,)

+1tT)2G§ «T )+ - - (3.20)
One may now see that the imaginary part of ¢*(T) is con-
tained entirely in the odd derivative terms, which will not
in general be zero. Suppose, however, that T, is such
that ¢ “(T,)=0. Since g® satisfies the second-order
differential equation (3.16), which is unchanged by
7— —1, it follows that all the other odd derivatives of ¢¢
also vanish at T, and ¢*(7T) is then real. The integrand
in (3.19) along the second section of the contour will
therefore be real, and the action will be purely imaginary.
The condition under which the complex solution may be
regarded as a combination of real Euclidean and
Lorentzian metrics, therefore, is that ¢ “(T,;)=0. As
mentioned at the beginning of this section, this distortion
of the contour is essentially the same as a complex
diffeomorphism transforming a complex metric into a
discontinuous combination of real Euclidean and
Lorentzian metrics. The discontinuity comes from the
right-angle turn of the contour, at which the lapse
effectively changes from purely real to purely imaginary
values. Moreover, in terms of the three-metric, the con-
dition ¢ %(T,)=0 is just the condition that the extrinsic
curvature K;; vanishes at T = T,. We have therefore ar-
rived, by a rather different route, at the junction condi-
tions (3.11).

A number of qualifying remarks should be made at this
stage. First, we have assumed that the action of the solu-
tion may be separated into real and imaginary parts by
distorting the contour into just two pieces, the first run-
ning up the real axis and the second running parallel to
the imaginary axis. This is appropriate for models such
as the de Sitter model, mentioned above and discussed in
more detail below, in which the solution connecting a
small three-sphere to a large three-sphere is a section of
four-sphere matched onto a section of de Sitter space
across a single transitional surface. More generally, one
might expect to have to distort the contour into a se-
quence of more than just two straight segments. Each
segment would run parallel to or along the real or imagi-
nary axis, with ¢ *=0 at each right-angle bend in the
contour. Such examples actually occur. An example
slightly more complicated than the de Sitter model is the
axionic wormhole solution with positive cosmological
constant.** One can in a smooth way join a section of
real Euclidean wormhole solution onto a small Lorentzi-
an Tolman-like universe at one end, and to a large de
Sitter-like universe at the other end. In evaluating the ac-
tion of a solution connecting a very small three-sphere to
a very large one, the T contour would run first along the
imaginary axis, then parallel to the real axis and finally
parallel to the imaginary axis.
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The second point to be made concerns the condition
¢ “(T,)=0. The condition that it be possible to distort
the contour into a series of contours parallel to the real or
imaginary axis with ¢ =0 at the right-angle bends is ac-
tually rather stringent. Demanding that all of the ¢ s
vanish together is a set of n conditions, and it is most un-
likely that they can be satisfied in general, given that one
has at best only the freedom to choose the point in the
complex plane at which to take the right-angle bends.
That is, it seems unlikely that one can in general find a
contour along which the four-metric is either real Eu-
clidean or real Lorentzian metrics. It may be possible to
keep some of the ¢®’s real along the contour, but not all
of them. This strongly suggests that it is generally not
possible to find a complex diffeomorphism which trans-
forms a given complex metric into a combination of real
Euclidean and Lorentzian. In the general case, that this
is so may be seen from function counting. A complex
four-metric has ten independent complex components.
However, a complex diffeomorphism has available only
eight real functions to eliminate the ten imaginary parts
of the complex four-metric.

Note that this is in contrast with the situation in ordi-
nary quantum mechanics mentioned above. There, be-
cause the metric is positive definite, all the ¢ ®’s vanish
together when U =0. This means that a complex solu-
tion can always be transformed into a combination of real
Euclidean and Lorentzian solutions, and the complex
methods introduced here reproduce the familiar
quantum-mechanical results. With an indefinite metric,
however, if U =0 it does not necessarily follow that all
the ¢ s vanish. All that one can say is that either ¢ *=
for all @, or the trajectories become momentarily null.
As we have just argued, it will generally be the latter pos-
sibility that is realized.

Wormbhole solutions again provide an illustrative ex-
ample of the above point. In considering the propagation
between fixed three-geometries and matter fields,
wormhole solutions arise if the Lorentzian momentum
conjugate to ¢ is fixed on the boundary.** In these solu-
tions, complex diffeomorphisms may be used to reduce
the scale factor to real Euclidean or real Lorentzian form,
with the transition between the two at the ends of the
wormbholes, at which ¢ =0. This cannot be achieved for
¢, however. The solution for ¢ is such that ¢ never van-
ishes, and thus the condition that ¢ /N is continuous can-
not be satisfied for real ¢. So although the solution for a
is real Euclidean or real Lorentzian, the solution for ¢ is
actually complex, and can in no way correspond to a
combination of real Euclidean and real Lorentzian solu-
tions.

To illustrate this discussion of complex solutions, let us
consider a specific example, namely, the de Sitter minisu-
perspace model.?® This model admits de Sitter space and
the four-sphere as solutions, and these have already been
discussed above, but it is of interest to discuss them in
this model in which they arise in a somewhat different
fashion. The four-metric is taken to be

2= 2G

EACH U S

)d Q3
q(r)

(3.21)
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This unconventional parametrization of the four-metric
simplifies the algebra. The Euclidean Einstein-Hilbert ac-
tion with cosmological constant A=97GA /2 is

=4 drN (3.22)
and the field equation and constraint are
L =—_2, (3.23)
NZ
g2
+ig —1=0. (3.24)

4N?

Because the model is one dimensional, the minisuper-
space “metric” is negative definite, and thus this model
does not capture an important feature of the full theory:
namely, the indefiniteness of the DeWitt metric. Howev-
er, we are mainly interested in seeing how complex solu-
tions arise and how they may be interpreted in terms of
real Euclidean and Lorentzian solutions, and this we shall
be able to see in this simple model.

Following the general stratergy described above, we
first solve the field equation (3.23) subject to the boundary
conditions (3.15). The solution is

g(r)=—ANAr—7 )+ F(-—,,J——)--FAN(T —7)

XN(r—7")+q". (3.25)
It depends on N explicitly and is real for real N. Insert-
ing this solution into the constraint equation (3.24), one
obtains the following algebraic equation for the lapse
function:

MT4+2Ag"+Aq'—2)T2+(g"—¢q')*=0,  (3.26)
where T=N(7"—7') as above. We will apply the no-
boundary proposal, which, for this model, involves
choosing ¢’=0, so that the geometries represented by
(3.21) close off at 7=17". Note that for every solution T to
(3.26) with Re(T)>0, —T is a second solution. The
metric is the same for these two solutions but they corre-
spond to two different extrema of the action with oppo-
site signs for Vg =Ng? and hence opposite signs for the
action at the extremum. This is the inevitable doubling
of the saddle points discussed in Sec. III A. For the mo-
ment, we will restrict attention to the solutions with
Re(T)>0. Whether the solutions to (3.26) are real or
complex depends on the value of ¢”’. In particular, when
Ag'' <1, the solutions are real:

~=%[li(l—}»q")”2] . (3.27)
The corresponding four-metric is the real Euclidean
metric on the four-sphere. The plus/minus sign corre-
sponds to the three-sphere boundary being closed off by
more than/less than half of a four-sphere. When Ag’' > 1,
the solutions are complex:

T=

[1+i(Ag”—1)172] . (3.28)

I
A



41 INTEGRATION CONTOURS FOR THE NO-BOUNDARY WAVE.. .. 1825

With these values of N, the corresponding g (7) may be
written

g(r)=—AN7—7')2+2N(r—7') . (3.29)

We therefore have a complex four-metric (3.21) with N
given by (3.28) and ¢q (7) given by (3.29). It is complex be-
cause N is complex.

Suppose one now attempts to evaluate the action of
this complex configuration. In terms of the complex in-
tegration variable T =N (r—7') introduced above, the
four-metric (3.21) of this solution becomes

_26[__ar

ds? _—
37 | —AT?+2T

+(—AT?+27)d Q3| (3.30)

from which it is easy to see that g(T)=0at T =1/A; i.e,
at T=Re(T). It follows from the above discussion that
in evaluating the action of this complex solution, the T
contour may be distorted into one running along the real
axis from O to 1/A, and from there parallel to the imagi-
nary axis to the complex value of T given by (3.28). The
action is purely real along the first section of contour, and
the metric is that of the four-sphere. One obtains
I=—1/3A, the correct result for the action of half a
four-sphere. The action is purely imaginary along the
second section, and the metric is that of real Lorentzian
de Sitter space. One obtains I ==(i/3A)(Ag" —1)*2,
which is the correct result for the Euclidean action of a
section of Lorentzian de Sitter space. The total action is
complex and is given by (3.12).

The method described in this section, let us call it the
“lapse method,” while it has conceptual advantages,
would be rather difficult to apply in practice. An alterna-
tive, perhaps more practical search for complex solutions
might proceed as follows.

We are searching for the extrema of the action which
imply classical spacetime on a region of a compact mani-
fold M with a fixed large three-geometry on its single
boundary dM. Such solutions must approach a Lorentzi-
an solution in the neighborhood of the boundary. As
there are no purely Lorentzian solutions on M, we inves-
tigate complex solutions which may be continuous or
discontinuous as long as the action is finite. These com-
plex solutions will consist of a number of different coordi-
nate charts. Complex diffeomorphisms can be used to
simplify the form of the metric in each chart to obtain
single representatives of families of extrema of equal ac-
tion. One can then attempt to solve the resulting
differential equations and match the solutions between
the individual charts to obtain a solution on the whole
manifold.

To make this procedure more definite let us consider
Hawking’s scalar field model.® Matter is modeled by a
scalar field with mass m minimally coupled to curvature.
The cosmological constant is assumed to vanish. The
manifold is B*. The geometry is assumed to have three-
sphere symmetry

ds’=N*r)dr*+a*(r)d Q3

and the scalar field as well, ¢=¢(7). Regular geometries
are locally flat near the center of the ball at 7=0:

(3.31)

N~1, a(r)~71 (3.32)

with a suitable choice of scale for 7. To imply classical
spacetime, the solution must be Lorentzian

N~ =i, (3.33)

a~a,

near the boundary with a suitable choice of scale for 7,
where a is the prescribed radius of the boundary three-
geometry, say at 7=1.

Complex transformations of the variable 7, which leave
7=0 and 7=7, fixed, connect functional forms for N(7)
satisfying (3.32) and (3.33). Various classes of N will give
the same action and the same configurations as discussed
in Sec. IIT A. The ones simplest to discuss are those

represented by the choice
N=1, (3.34a)

(3.34b)

O<7r<7,
N==i, 7,<7<7,

for some 7,. Let us look for solutions of this form. The
differential equations for the extrema are

q'5+3%d;——m2N2¢:0 , (3.35a)
. )2 2
a =¢;2+m2N2¢2._N_2 . (3.35b)
a a

One may conduct a search for a solution as follows: We
integrate outwards from the origin with boundary condi-
tions for regularity

a(0)=0, $(0)=¢,, $(0)=0, (3.36)

where ¢, is some complex constant. At some point 7, the
value of N? changes according to (3.34). We match
across this point with the matching conditions implied by
the differential equations, namely,

a

N

[a]=0, [4]=0, o, % —0 (a7

for the discontinuities across 7;. We carry on the integra-
tion until the value 7, is reached (if any) at which
Re(a)=ay,, its prescribed value. For given ¢, and 7, it is
unlikely that the remaining fields will assume their
boundary values, namely, Im(a,)=0, Re(¢d)=d,,
Im(¢)=0. These are three conditions which one can
hope to satisfy by varying the three real constants in ¢,
and 7. In this way solutions can be constructed, which
from the above naive counting argument we expect to be
locally unique.

E. The general case

In the general case, free of the restrictions of minisu-
perspace considered above, one has a three-metric h,-j, a
lapse function N, and a shift vector N', all of which have
full spacetime dependence. The considerations of Sec.
IIID above suggest that a similar strategy may be ap-
plied in the general case, in order to study complex solu-
tions. Let us take the gauge-fixing conditions N =0, and
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N '=0. These are the conditions that are most useful for
the purposes of studying the path integral.** They will
not fix the gauge completely, however, and some extra
conditions will be necessary. Of the ten Einstein equa-
tions, the six space-space equations (3.10) involve second
time derivatives of ;. The remaining four are constraint
equations and are preserved by the space-space equations.

The natural generalization of the lapse method de-
scribed above is to do the following. First, solve the six
space-space equations for the three-metric h;;(x,7), sub-
ject to the boundary conditions h;(x,7")=h;(x),
h;;j(x,7"")=h/;(x). The solution will depend explicitly on
the as-yet arbitrary functions N (x) and N'(x). It seems
reasonable to assume that a solution always exists, and is
real for real N and N'. The second step involves inserting
the solution for A;; into the four constraint equations.
This will give four partial differential equations for the
four functions N (x), Ni(x).

Clearly it would in general be very difficult to carry
this through in practice, although it may allow one to say
something about the nature of the solutions.*® There is,
however, a special case where this method makes contact
with a perhaps more familiar problem. This is the case in
which the initial and final surfaces are very close togeth-
er. The method then essentially reduces to the ‘“thin
sandwich” problem.*’ For k] and h;; very close, the six
space-Einstein equations play no role, leaving only the
constraints. By approximating the initial velocities by
h;j=(h{{—h};) /87, where 87 is the parameter time sepa-
ration of initial and final surfaces, the problem reduces to
an initial-value problem, namely, that of finding values of
the lapse and shift, for given h;; and h;;, such that the
four constraints are solved. It is not difficult to show that
the Hamiltonian constraint becomes a very simple purely
algebraic equation, determining N 2 in terms of h,j, h,-j,
and N'. Substituting the solution into the three momen-
tum constraints, one then obtains a rather complicated
partial differential equation for N'. It has no immediately
recognizable mathematical character, but is “almost” el-
liptic. The conditions under which solutions exist do not
appear to be known, however.

It is therefore at this point that our investigation runs
up against the fact that very little is known about the
Einstein equations as a boundary-value problem. We
would like to know, for example, under what conditions
the solution to the Einstein equations interpolating be-
tween two three-metrics (or between zero and a final
three-metric) is real Euclidean, real Lorentzian, or fully
complex. A reasonable conjecture is that this boundary-
value problem always possesses at least one complex solu-
tion. The examples above support this. These solutions
are locally unique (as we shall discuss in Sec. IV) al-
though the issue of whether the solutions are related by
complex diffeomorphisms is a more complicated problem.
The behavior of the action is an important property of
solutions for their semiclassical interpretation. When are
there solutions and what are the properties of their action
for arbitrarily large three-geometries? Does the real part
of the action approach a constant as the boundary three-
geometry is conformally scaled to larger and larger
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volumes? Under what conditions does the imaginary part
of the action (regarded as a function of the boundary
three-metric) vary much more rapidly than the real part?
For fixed scale, which three-geometries have the least real
action? For given boundary geometry which compact
four-manifolds give rise to the least real action?

IV. THE RECOVERY OF QUANTUM FIELD THEORY
IN CURVED SPACETIME

We have studied the complex saddle points of the path
integral over four-metrics and their significance for the
prediction of classical spacetime. However, the path in-
tegral involves not only a sum over four-geometries, but
also a sum over matter fields on those geometries. At the
saddle points of the integral over metrics therefore, there
remains a functional integral over matter fields on a back-
ground geometry which is a (generally complex) solution
to the Einstein equations. Such a functional integral is
clearly closely related to that describing conventional
quantum field theory in curved spacetime (QFTICS).
Indeed, our fourth restriction on the contour is precisely
that QFTICS be recovered in the limit that gravity be-
comes classical. The point of this section, therefore, is to
discuss the extent to which this is the case. This takes us
into a discussion of matter perturbations about complex
saddle points.

To lowest order, one may regard the matter field ® as a
perturbation on the metric g,,. It does not act as a
source. In the leading-order saddle-point approximation,
therefore, the path integral has the form

Yolhy, 1= [ D8, DPexp(—Iy[g,, 1= 118, @]
zexp(—Ig[é‘w.])fi)dwxp( —1,[8,,,®]D,
4.1)

where I, is the matter action and § uv 18 a (generally com-
plex) solution to the Euclidean Einstein equations subject
to the condition that it match the prescribed three-metric
h;; on the bounding three-surface. This solution may not
be unique, in which case the right-hand side of (4.1) may
be a sum of terms, one for each solution through which
the contour passes. In general, there will only be a small
number of solutions which contribute to the dominant
semiclassical behavior. As mentioned in Sec. I, it may be
argued that these separate terms decohere,?® and so may
be treated individually for all practical predictions.

Because the solution §,,, is generally complex, it has a
complex action:

Ig[§uv]Eig:IR[hlj]_l‘s[hlj] .

The case we are interested in is that in which the back-
ground spacetime is approximately classical. As dis-
cussed in the previous section, this is typically realized
when the imaginary part of the action S varies much
more rapidly than the real part Iz. S is then an approxi-
mate solution to the Lorentzian Hamilton-Jacobi equa-
tion, and defines a set of classical trajectories with
tangent vector

(4.2)
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D _ (. 0S b
o _fd x Gy 8h;(x) 8hy(x)

=VS-v, (4.3)

where G, is the inverse DeWitt metric on superspace.
Equation (4.1) may now be written

Wih;, "1~ ey [h,;, "], 4.4)
where
Unlhy, @)= [ DO exp(—1,,[8,,.P)) . @.5)

If, as we are assuming, I, is a slowly varying function of
h;;, then using the fact that (4.4) is an approximate solu-
tion to the Wheeler-DeWitt equation, it may be shown
that ¥, is a solution to the functional Schrodinger equa-
tion

Yy,
! at

. |_,-in¢ ],,,,,, ,

4.6
5D (4.6)

where H,_, is the matter Hamiltonian.?? Alternatively,
one would expect to be able to derive (4.6) from (4.5)
directly, using the same approximations, but we will not
do this here.

Equation (4.6) admits solutions which are normalizable
in the matter modes only, in the inner product

(¥, )= [ DO YH(®,00,(D,1)

where 1 =t[h;;] and is defined by (4.3). This inner prod-
uct is conserved under evolution by (4.6). Normalizabili-
ty of the matter wave function ¢, does not automatically
follow from their path-integral representation (4.5), how-
ever. As we shall see, it depends on the nature of the
metric at the saddle point, §,,,.

The normalizable solutions to (4.6) correspond to the
usual Fock-space states of QFTICS, in the Lorentzian
background geometry defined by the integral curves of S.
It is in this sense that QFTICS is recovered at the saddle
points.>® To illustrate this in more detail, let us consider
a particular example. This example will highlight a par-
ticular way in which QFTICS may fail to be recovered.

We will consider massless scalar field perturbations
about the saddle points of the de Sitter minisuperspace
model, discussed in Sec. III. The four-metric is taken to
be (3.21). For convenience, we take 7'=0, 7'=1 and
take ¢’ =0 corresponding to closed four-geometries. We
are interested solely in the complex saddle points arising
when Ag"'>>1, so N (=T with these conventions) may
take either of two values (3.28), or minus these values.
g (1) and N are thus given by

4.7

q(r)=—ANPHINT if N=+[1+i(Ag"— )],
(4.8)

g(r)=—AN22—2Nr ifN=—%[1ii(kq”——l)“2].
4.9)

We are going to study perturbations about the metric

(3.21) with ¢ (7) given by either of these two expressions.
Note that here and in what follows, 7 is strictly real.
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Whether or not the four-metric is real or complex is con-
trolled solely by the lapse, N. We will proceed to study
perturbations about these complex saddle points as if we
were studying perturbations on a section of four-sphere
described by the metric (3.21) with N real. The fact that
we will ultimately choose N to be complex will not worry
us because all the expressions we will deal with are ana-
lytic in N.

The Euclidean action for a massless minimally coupled
scalar field is

I,[®,g,,]=1 [d*x g'%¢"3,00,® . (4.10)

The spatial dependence of ®(x,7) is most easily treated
by expanding in harmonics on S* (Ref. 48). One thus
writes

172

Efnlm(T)er:n(x) ’

nlm

37

d(x,7)= e

4.11)

where the Q] (x) are eigenfunctions of the Laplacian
operator on S>:

V2QL (x)=—(n2—1)Q},(x) . 4.12)

For convenience we will exclude the constant (n =1)
mode from our considerations. It is more appropriately
thought of as part of the homogeneous background. In
terms of the perturbation coefficients, f,;,,, the action
(4.10) on the background (3.21) is

Im[(D,qlz 2 Inlm[fnlm’q]
nlm

fm
=72f0‘d71v q2—1\",’7+(n2—1) 2

nilm

(4.13)

It is extremized by configurations satisfying the field
equations

qz.fnlm +2qqfn[m _NZ(nZ__ 1 )fnlm =0.

The perturbation wave functions on our minisuper-
space background are given by a path integral of the
form

Ul ®(x),4” 1= [ D® exp(—I,[D,q]) .

(4.14)

(4.15)

The integral is taken over all paths ®(x,7) that match the
value ®"(x) at 7=1 and are regular on the background
metric. Because the individual perturbation modes
decouple, one may write

¢m[¢"(X),‘I”]= H djnlm(frll;m ’q”) .

nlm

(4.16)

The wave function for each mode ¥,,,,,(f,i.,q"") is there-
fore given by a path integral:

i Srimr 0" V= [ D imexp( =Lyt [ f o)) . @.17)
The path integral (4.17) is over paths f,,;,(7) satisfying
the boundary conditions f,,,(1)=f,, fum(0)=0, the
latter condition following from the requirement of regu-
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larity at ¢ =0.
Equation (4.17) may be evaluated exactly to yield the
result

Yuim Frim»a" )= A(g"Vexp( =Ty, ) (4.18)
where f,,,m is the action of the solution f,,,m('r) to the

classical field equation (4.14) satisfying the above bound-
ary conditions. The prefactor 4 may be evaluated by
standard methods, but will be ignored in what follows.
Using (4.14), one may obtain the following expression for

nlm*

~

1 o A -
T, =ﬁ[q('r)fn,m(’r)f,,lm(ﬂ],:(]) . (4.19)

Now let us find an explicit expression for the solution
fn,,,,‘ Consider first the case of the two saddle points
with Re(N)>0. Then g(7) is given by (4.8). There are
two linearly independent solutions to the field equation
(4.14). The first is

Fum(T)=constX 7" ~V/2(2—AN7)~(ntD72

X(ANT—n —1) . (4.20)

It is regular (indeed goes to zero) as 7—0. The second
solution is obtained from (4.20) by letting n — —n. It
blows up as 7—0. Only the first of these two solutions is
consistent with regularity; thus the solution f,,, (1) is
g\iven by (4.20) with the constant chosen so that
Sutm (D)= f1.. Inserting this solution in (4.19), one ob-
tains

; (n*=1g"f i,

nm = INAN —2)0AN —n —1)

This expression is valid for real or complex N, but only
for the two saddle points (4.8) for which Re(N)>0. One
thus obtains the following expressions for the perturba-
tion wave functions:

1pnlm (frlt;m ’q”)

(4.21)

(n*—1)g"[nxi(Ag" — 1))
2(n2_1+}\'q112)

=A(q")exp | — Fim

(4.22)

Now consider the other saddle points with Re(N) <O.
q (1) is then given by (4.9). A repeat of the above analysis
then yields, in place of (4.21), the result

X —(n?=1)g" 2

mim = IN(—AN —2)(—AN —n —1)

for the action of the classical solutions. For the wave
functions about these saddle points with negative Re(N),
one thus obtains

lpnlm(frll;m ’q” )

(4.23)

(nz—1)q”z[nii(kq"—l)‘/z]f,,2

=A(q")exp |+
e 2nt—1+1g"?) nim

(4.24)
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The perturbation wave functions about the positive
Re(N) saddle points, (4.22), differ from those about the
negative Re(N) saddle points (4.24), in one and only one
crucial respect—the sign of the exponent. The former de-
cay exponentially for large fluctuations, whereas the
latter grow exponentially. The latter, therefore, while
they are solutions to the Schrodinger equation, are not
normalizable in the inner product (4.7), so do not corre-
spond to Fock space states. This means that, in this ex-
ample, QFTICS is not recovered at the saddle points for
which Re(N)<O.

From the discussion of these saddle points in Sec. III,
it is easily seen that this failure to recover QFTICS is not
an artifact of this particular model, but is quite general.
Like the gravitational action, the matter action changes
sign under N — —N. Because the Euclidean matter ac-
tion with N real and positive is positive definite, it will be
negative definite when the sign of N is reversed. Clearly
if one attempted to do quantum field theory with such an
action, one would very quickly run into difficulties. We
have therefore derived a restriction on the contour from
the demand that QFTICS be recovered in the saddle-
point approximation: it is that the contour should not be
dominated by a saddle point with Re(V'g ) <0.

Although we have concentrated so far on the no-
boundary proposal, virtually all of our conclusions apply
to other proposals, provided they have a sum-over-
histories formulation defined by a suitable choice of con-
tour @. In particular, the above restriction on the con-
tour is of significance for the so-called ‘‘tunneling”
boundary condition proposed by Linde* and by Vilen-
kin.’®%! Vilenkin has presented his version of this bound-
ary condition in various different ways, not all of which
are obviously equivalent. For the purposes of this paper,
which is to discuss integration contours, the most con-
venient expression of his proposal is that phrased in
terms of a path integral. This is that the wave function
be given by a path integral over Lorentzian geometries
which close off in the past.’! This form of the Vilenkin
proposal was studied in Ref. 28, where it was shown that
although it does define a unique contour of integration,
and thus a unique wave function, the contour is dominat-
ed by a saddle point for which Re(V'g ) <0. As explained
above, one would not, therefore, expect to recover
QFTICS when considering matter perturbations about
this saddle point. This appears to rule out this particular
form of the Vilenkin proposal as a viable candidate for
the boundary conditions on the wave function of the
universe.

It is important to note that this conclusion applies only
to one particular form of the Vilenkin proposal: namely,
the form involving a sum of Lorentizan geometries. It is
this and this alone that appears to fall foul of our fourth
criterion. As mentioned above, there is another, perhaps
better known form of the Vilenkin proposal: namely,
that the wave function consist solely of outgoing modes
at singular boundaries of superspace.”® This is not by any
means obviously equivalent to the other form criticized
above. This version of the proposal appears to be perfect-
ly consistent with the recovery of QFTICS.

The proposal of Linde appears, in simple examples, to
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give a wave function identical to that of Vilenkin.*
Linde also seems to regard a purely Lorentzian path in-
tegral as his starting point. Because the usual Wick rota-
tion to a Euclidean action for gravity leads to a minus
sign in front of the kinetic term for the scale factor, he
proposed that the Wick rotation should be performed in
the “wrong” direction. In the de Sitter minisuperspace
model of Ref. 28, this proposal appeared to pick out a
contour identical to that picked out by the path-integral
version of the Vilenkin proposal. It also, therefore, is
dominated by a saddle point with Re(V'g ) <0, and thus
is inconsistent with the recovery of QFTICS. In fact, this
failure to recover QFTICS is more obvious in this
proposal—clearly if one does the Wick rotation in the
wrong direction, although it gives a desirable sign to the
conformal part of the gravitational action, any matter ac-
tion will become negative definite, rather than positive
definite. Linde responds to this difficulty by arguing that
one should proceed phenomenologically and choose
different contours, or different Wick rotations, for each
part of the total action separately, depending on what it
is that one is calculating.52 This point of view, for which
we see little motivation, is contrary to the point of view
we are taking in this paper, which is that one and the
same contour should be used for both the gravitational
and matter parts of the path integral.

Finally, note that as mentioned in Sec. III, the solution
(4.20) to the scalar field equation is complex for complex
N. Furthermore, it does not have the property that

fn,m=0 at the value of 7 for which ¢ vanishes. This
means that in the complex T plane (recall T =N7) there
is no contour along which both q and f,;,, are real. The
complex solution for f,,,, therefore, is not transformed
into a combination of real Euclidean and real Lorentzian
solutions by the transformation which does this for ¢g. It
is therefore an example of an inescapably complex solu-
tion. We can say the same slightly differently: if we had
carried out this perturbation calculation not on the com-
plex background metric (3.21), but on the equivalent
background metric consisting of a real Euclidean metric
on half a four-sphere matched onto a real Lorentzian
metric on a section of de Sitter space, then we would have
found that the scalar field has to be complex to match the
prescribed boundary values. The purely real tunneling
solutions which dominate the no-boundary wave function
for highly symmetrical points in its configuration space
are, therefore, isolated points in an immediate neighbor-
hood of generally complex solutions.

V. WORMHOLES AND THE INDEFINITENESS
OF THE ACTION

As briefly discussed in the Introduction, recent work
by Hawking,?® Coleman,?® Giddings and Strominger,?’
and others indicates that wormhole configurations in the
path integral will modify the fundamental coupling con-
stants. In particular, Coleman argued that they may pro-
vide an explanation as to why the cosmological constant
is zero.?® Of the many technicalities involved in these
calculations, it seems likely that the choice of contour of
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integration will be important. The point of this section,
therefore, is to try to establish the extent to which these
calculations depend on the contour. It will then be possi-
ble to determine what restrictions, if any, are imposed on
the contour by demanding that vanishing cosmological
constant be a prediction.

Let us begin by reviewing the mechanism, identifying
the points at which the contour is an issue. We follow
the original version of the mechanism, as given by Cole-
man.?® However, we anticipate that because what we
have to say about it is rather general, our remarks will
also apply to the various modified versions that have
since been put forward. We are interested in calculating
the wave function of the universe, ‘I’[h,«j ], a functional of
the three-metric 4;; on a three-surface oM. dM may con-
sist of a number of disconnected pieces, as would be the
case if the “initial” or ‘““final” states included a number of
disconnected baby universes. For convenience, we will
consider only the case in which dM consists of a single
connected piece. Also for convenience, we will not in-
clude matter fields. Using the no-boundary proposal, the
wave function is defined by summing over four-metrics
on compact four-manifolds whose only boundary is oM.
One thus has

Wolhy;1= [ Dg,expl—1(g,,, A -

The manifolds summed over are connected ones. Howev-
er, it is assumed that there is a separation of length scales
so that we may talk about “large” manifolds and ““small”
interconnecting wormholes. It is then convenient to
think of the sum over manifolds as the combination of (i)
a sum over large connected manifolds which have oM as
their only boundary, (ii) a sum over large disconnected
manifolds which have no boundary at all, and (iii) a sum
over small wormhole configurations connecting these two
types of large manifolds to themselves and to each other.
It is next argued that, for observables on scales much
larger than the wormhole scale, one may replace the
wormhole and baby universe configurations by an
effective local field theory on the large manifolds. Using
this effective field theory to sum over all the wormhole
connections, one obtains a path integral in which the sum
over wormholes is replaced by a sum over couplings. In
particular, the fully renormalized, low-energy cosmologi-
cal constant, observed in the dynamics of the universe on
very large scales, is summed over

Wolh;]= [dA [ De,exp(—Tlg,., Al ,

where we have ignored irrelevant factors. In (5.2) the
sum over manifolds no longer involves a sum over
wormbholes but only the sums (i) and (ii) above over large
manifolds. This sum over the cosmological constant is
the main effect of interest that wormholes have.

While some authors have questioned the details of the
derivation of (5.2) (e.g., Ref. 53), the general effect, that a
sum over couplings is induced, appears to be a reasonably
robust feature. It is not obviously affected by the choice
of contour. The value of (5.2) will, however, be affected
by this choice.

Let us defer for the moment discussion of the sum (ii)

(5.1

(5.2)
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over disconnected manifolds without boundary. Because
these manifolds have no boundary their contribution does
not depend on A, the three-metric on dM, and in fact
leads only to a factor depending on A. This factor is very
important but will be discussed below. Consider, then,
the expression (5.2) where the sum is taken to be only
over connected manifolds with boundary 0M. We are in-
terested in the wave function of the universe when the
bounding three-geometry oM is large and spacetime is
classical. As discussed in Sec. III, the dominant contri-
bution to the functional integral over metrics is then ex-
pected to come from saddle points at which the four-
metric is complex. They will have complex action, of the
form I =Ix(A,h;;)—iS(A,h;;), where Ip and S are real.
In a region of superspace where the wave function pre-
dicts classical spacetime, the real part of the action will
vary much more slowly than the imaginary part which
satisfies the Lorentzian Hamilton-Jacobi equation. We
neglect the dependence of I on h;; in what follows. The
saddle-point approximation (5.2) thus leads to an expres-
sion of the form

~IR(A) iS(AK,)

Yolh;]= [dAe (5.3)
More generally, it will lead to a sum of expressions of this
form, depending on how many saddle points contribute,
but this will not affect what follows.

Consider the integrand of (5.3). Each term e
an approximate WKB solution to the Wheeler-DeWitt
equation for a particular value of A. It is peaked about
the set of Lorentzian solutions to the field equations with
Hamilton-Jacobi function S (A,h,j) and cosmological
constant A. The total wave function of the Universe
(5.3), therefore, represents an ensemble of classical
universes in which all possible values of the cosmological
constant are realized. The real part of the Euclidean ac-
tion of the saddle point, Ir(A), provides a 2\Ive(il%hting

R

(AR L

—Ig(A) .
e * 7 in the sum over A. More precisely, e may

be thought of as the probability that a particular value of
A will be realized along one of the classical trajectories
about which the wave function is peaked.

Clearly to predict that A=0, the distribution e
must be very strongly peaked about A=0. To this end, it
is argued that the leading-order contribution to the path
integral comes from saddle points for which I is the ac-
tion of half of a four-sphere. These saddle points have
the crucial property that (the real part of) their action is
negative. In particular, I = —c /A, where ¢ =242/
It then follows that e '* " is indeed strongly peaked
about A=0. This argument, involving just a single ex-
ponential, is often referred to as the Baum-Hawking argu-
ment.?%54

Now let us return to include the effect of the sum (ii)
over disconnected manifolds without boundary. Cole-
man argues that this sum leads to the insertion into (5.3)
of a factor of the form

fﬂg#ve —IlgAl |

where the functional integral in the exponent is now over
connected manifolds without boundary. Equation (5.3) is

—Ig(A)

Z(A)=exp (5.4)

JONATHAN J. HALLIWELL AND JAMES B. HARTLE 41

now of the form

Wolh;1= [dAZ(A)e BN (5.5)
Again it is expected that the functional integral in (5.4) is
dominated by four-sphere configurations. Z(A) is thus
of the form

Z(A)=exp(e’/N) (5.6)

(the factor of 2 is there because these are now whole
spheres not just hemispheres). This is Coleman’s cele-
brated double-exponential distribution. As a result of in-
cluding it, the peak at A=0 observed in (5.3) becomes ex-
ponentially enhanced in (5.5).

The results described above depend primarily on the
saddle-point approximation to the path integral. In par-
ticular, they rely crucially on the assumption that the
path integral is dominated by saddle points whose action
has negative real part. Clearly the existence of these sad-
dle points cannot be affected by the choice of contour.
There has, however, been some confusion in the literature
surrounding this point. It is sometimes suggested that
choosing a contour along which the real part of the ac-
tion is everywhere positive definite—as one tries to do in
the conformal rotation, for example—is not consistent
with having a negative action saddle point, because that
contour naively appears never to receive a contribution
from configurations with negative action. There is no
such inconsistency. Even if the prescribed contour is one
along which the (real part of the) action is everywhere
positive, it can always be distorted into one along which
the action is at some stage negative. This is typically the
case in one-dimensional examples when the prescribed
contour is distorted into a steepest-descent contour, for
example. There, the integral along a contour with every-
where positive action is approximated by an integral
along the distortion of that contour in the immediate
neighborhood of a negative action saddle point. A relat-
ed point of confusion concerns the convergence of the
path integral. It has been suggested that the fact that the
action goes negative at some stage—at a saddle point, for
example—is not consistent with convergence. This is no
inconsistency here, either. Failure to converge would re-
sult only if action was allowed to become arbitrarily nega-
tive at some point along the contour.

Although the existence of negative action saddle points
is not affected by the choice of contour, the question of
whether or not a given negative action saddle point sup-
plies the dominant contribution to the integral will de-
pend very much on the contour. In particular, it is true
only if the prescribed contour may be distorted into a
contour for which the saddle point in question is a global
maximum of the integrand. The sort of difficulty that
can arise is that, as discussed in Sec. III, there exist sad-
dle points with the “wrong” sign for the action. For
every saddle point with Re(V'g ) >0 and negative action,
as used in (5.3) and (5.5), there exists another saddle point
with Re(V'g )<0 and positive action. Clearly if the
prescribed contour may be distorted into a contour dom-
inated by one of the latter saddle points and not one of
the former, then the weighting factors in the sum over A
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would be of the form e ¢/A. A=0 would not then be
predicted.

Fortunately, in the case of a Baum-Hawking argument,
the possibility of such a contour can be ruled out by the
considerations of the previous section. For if one were to
choose a contour dominated by a saddle point with
Re(V'g ) <0, yielding a factor of the form e ~¢/A, the real
part of the matter action would be negative and, as al-
ready argued, QFTICS would not be recovered. The ap-
proximate wave function (5.3) is obtained by considering
just one saddle point along the contour. One and the
same saddle point determines the sign of both I; and the
matter action: negative I is tied to positive matter ac-
tion, and vice versa.

This saving feature does not obviously apply to the
Coleman argument, however. Although in the funda-
mental path-integral expression (5.1) the contour is sup-
posedly fixed once and for all, when one passes to the
effective theory the path integral splits into two parts.
One considers the sum over large connected manifolds
with boundary (i) and, separately, one considers the in-
tegral over disconnected manifolds (ii) leading to the fac-
tor (5.4). While it may, in principle, be possible to derive
the appropriate contours for each of these integrals from
the contour specified in the fundamental expression (5.1),
it seems unlikely that this will be possible in practice. In
the effective theory described by these two path integrals,
therefore, the contour is once again up for grabs. In par-
ticular, it seems that one is allowed to choose it
differently in each of these two integrals. Thus although
the fourth criterion rules out the possibility of negative
Re(V'g ) saddle points in the sum over connected mani-
folds with boundary, it does not obviously rule out this
possibility in the sum over spheres leading to the double
exponential factor (5.6). By an appropriate choice of con-
tour, therefore, it is conceivable that a result of the form
exp(e ~2¢/A) could be obtained in place of (5.6).

A related point concerns the sign of the action of the
wormholes. If Re(Vg ) >0, the wormholes have positive
action. This is important because it means that large
wormholes are suppressed, consistent with the assump-
tion of a separation of length scales. In the same way
that Re(V'g )<0 means positive action for spheres,

Re(Vig )<0 also means negative action for the
wormholes. Large wormholes would not then be
suppressed.

These considerations all point to a possible restriction
on the contour, if A=0 is to be predicted: it is that none
of the dominating saddle points should have Re(V'g ) <0.
As already noted, this is related to the recovery of
QFTICS discussed in Sec. IV.

VI. SUMMARY AND DISCUSSION

There is no satisfactory covariant Hamiltonian quan-
tum mechanics for closed cosmologies from which the
contour for the no-boundary wave function may be de-
rived. No otherwise compelling prescription for its
choice has been advanced, such as the Gibbons-
Hawking-Perry prescription for asymptotically flat space-
times. It therefore seems natural to search generally for

suitable integration contours that define the no-boundary
wave function, subject to five physically motivated cri-
teria. This search was the subject of this paper.

The first two criteria—convergence, and that the wave
function be annihilated by the constraints—were dis-
cussed in Sec. II. Because the Euclidean Einstein-Hilbert
action is not bounded from below, the convergent con-
tours are necessarily complex. Beyond this restriction, it
is easily seen that convergent contours exist. They may
be exhibited explicitly in simple models.

The demand that the wave function be annihilated by
the constraints restricts the domain of integration of the
contour. The domain must be diffeomorphism invariant.
This means that for each field component, the contour
must be infinite in length, closed, or have a range con-
sistent with the periodicity of the functions entering the
integrand. It may not have finite gauge-variant end
points.

The requirement that classical spacetime be a predic-
tion was discussed in Sec. III. For classical spacetime to
be predicted, it is necessary that the semiclassical approx-
imation to the wave function be oscillatory, and, hence,
that the contour be dominated by one or more saddle
points at which the four-metric is complex. Complex
solutions to the Einstein equations are thus of interest.
We discussed the conditions for their existence, how to
find them, and how to interpret them. Through studying
simple examples and special cases, we argued that a com-
plex solution usually exists for generic boundary data, al-
though real Euclidean or Lorentzian solutions exist only
under special circumstances. This nonexistence of a real
Euclidean solution for generic boundary data is perhaps
the single most important fact for the prediction of classi-
cal spacetime. In the space of complex four-metrics the
action is doubled valued. This means that to every solu-
tion of the Einstein equations, there correspond two sad-
dle points of the path integral, one with Re(V'g )> 0, the
other with Re(Vg )<0. These two saddle points are
identical in all respects except the sign of their action.
We argued that because we allow the contour to be com-
plex, both types of saddle point are candidate contribu-
tors to the path integral.

In Sec. IV we asked what restrictions might be im-
posed on the contour by insisting that in the limit that
gravity becomes classical conventional quantum field
theory be recovered in that spacetime background. At
saddle points of the sum over metrics for which
Re(V'g ) >0, QFTICS is generally recovered. At the sad-
dle points for which Re(V'g ) <0, however, the (real part
of the) matter action would generally be negative definite
and QFTICS would not be recovered. This suggested
that a sensible choice of contour should not be dominated
by a saddle point with Re(V'g ) <0. This restriction was
found to rule out certain sum-over-histories forms of the
tunneling boundary condition proposals of Linde and
Vilenkin.

Finally, in Sec. V, we asked to what extent the
wormbhole calculations of Coleman, Giddings, and Strom-
inger, Hawking and others are sensitive to the choice of
contour. Or more precisely, what constraints on the con-
tour could be imposed by demanding that A=0 be pre-
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dicted? The main conclusion was a restriction on the
contour identical to that of Sec. IV: that the path in-
tegral not be dominated by saddle points with
Re(Vg ) <0. The reason here is that a distribution for A
involving factors of the form e!/A, peaked at A=0, is a
prediction only at the saddle points for which
Re(Vg )>0.

We may now draw together all that we have learned
about the contour from the considerations of this paper.
If one is to define the wave function of the universe using
a path integral, then the contour should satisfy the fol-
lowing:

(a) The integral along it should converge;

(b) the contour for each gauge variant field component
should be infinite, closed, or consistent with a periodicity
of the integrand;

(c) when the bounding three-geometry is large, the in-
tegral along the contour should be dominated by one or
more complex saddle points for which the imaginary part
of the action varies much more rapidly than the real part;

(d) the dominating saddle points should in addition be
such that Re(V'g )>0.

These requirements are the essential content of the five
criteria proposed in Sec. I, transcribed into a form direct-
ly applicable to specific examples.

Do requirements (a)-(d) fix a class of contours leading
to a unique wave function of the universe? It seems not.
In the space of complex four-metrics, the integrand is a
very complicated analytic function with many poles for
the closed contours to encircle and many inequivalent
directions in which the contour may go off to infinity.
Requirements (c) and (d) on the nature of the dominating
saddle points will reduce the available freedom to some
extent, but it seems most unlikely that a unique wave

function will remain. This is immediately apparent in
simple models in which the contours may be explicitly ex-
hibited. It means that the no-boundary proposal, as it is
currently defined, does not imply a unique wave function
of the universe. One could say that there are many no-
boundary proposals depending on how the contour is
chosen. A unique no-boundary wave function will be ob-
tained only after extra information singling out a contour
is put in. As in simple examples, however, it may be that
inequivalent contours can give essentially equivalent
semiclassical predictions. These are all we are likely to be
able to deal with in quantum cosmology in the near fu-
ture.
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