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Scalar field in the Frolov-Markov-Mnkhanov black-hole space-times
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The expectation values of the stress-energy tensor for a massless scalar field are investigated in a
two-dimensional section of the Frolov-Markov-Mukhanov space-time representing a black hole
with an interior de Sitter nucleus. The problem of regularity on the de Sitter Cauchy horizons is
discussed.

I. INTRODUCTION

Singularities arising in general relativity are mostly re-
garded as an artifact of classical theory. They simply sig-
nal the breakdown of the classical Einstein equations and
should not appear in a more correct framework given by
a self-consistent quantum gravity theory. Unfortunately
no such theory is available at the moment. This however
has not refrained authors from speculating on how singu-
larities arising in the classical treatment of gravitational
collapse may be avoided. The mechanism proposed for
this goal can be either vacuum polarization' or some
more fundamental "new law of nature" which should
prevent space-time curvature from growing behind an
upper bound of Planckian magnitude. In any case the
picture which emerges is the following. As a result of the
gravitational collapse of a massive body a black hole is
formed. In its inner core when the curvature reaches or-
der unity (in Planck units) quantum effects should pro-
duce a smooth transition towards a constant curvature
(de Sitter) region which is indeed regular.

A crude model which mimics this behavior is that of a
black hole described by the Schwarzschild solution
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global structure of such space-time is depicted in Fig. 1

where an asymptotically Bat space-time is connected by a
black-hole interior to a collapsing and then reexpanding
de Sitter universe.

Physically more interesting models which take into ac-
count black-hole formation and Hawking evaporation are
also discussed in Ref. 3.

In this paper we shall discuss in some detail within the
context of the semiclassical approach to quantum gravity
(i.e., quantum field theory in curved space-times) the be-
havior of a quantized massless scalar field P propagating
in these black-hole space-times. Particular interest will
be devoted to the behavior of the expectation values of
the associated stress-energy tensor operator (T,b(P))
near the de Sitter horizons. Consistency of the above
models at the semiclassical level requires the fact that
(T,b(p)) be finite as r~AApr, .eliminary account of
this investigation was given for the static configuration in
Ref. 6 and the result found there (reviewed in Sec. III)
was rather disappointing: ( T,b ) is finite on the Cauchy
horizons only if the transition region is located very close
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down to a critical radius ro-M', k&ra&2M. Inside
this radius the space-time is described by the de Sitter
solution given in static coordinates by
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The transition region between the Schwarzschild and the
de Sitter geometry is here supposed to be of short (time-
like) extent and is modeled as a spacelike surface layer ly-
ing on a hypersurface of constant time ro =const. Using
Israel's junction conditions one can show that such a
static configuration is indeed allowed by the field equa-
tions and that it is stable against small variations of the
physical parameters entering the model. The intriguing

FIG. 1. Conformal diagram obtained by gluing the de Sitter
space to the Schwarzschild one on the junction hypersurface of
constant radial coordinate (ro=const). Hs—{r=2M) are the+

event horizons of the black hole, while HD (r =A, ) are the Cau-

chy horizons.
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to the black-hole horizon r =2M. Here we treat more
general (nonstatic) configurations in order to overcome
this difficulty.

II. QUANTUM STRESS TENSOR
IN TWO-DIMENSIONAL SPACE-TIMES
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ds = —C(Q, D )du dv, (2.1)

where u(v ) is a retarded (advanced) null coordinate and
C is the conformal factor.

The field equation for ii) assumes simply the flat-space
form

Let us consider a quantized massless scalar field P
propagating in a two-dimensional space-time whose
metric can be written quite generally in the form

X„„=XU„=O. (2.11c)

X,b represents therefore a certain distribution of con-
served massless radiation propagating along
u =const, V=const rays.

Let us now consider the case for which two-
di.mensional space-tine is a two-dimensional section
8=const, )=const of a de Sitter space-time given in stat-
ic coordinates r, T by

B„B„/=0. (2.2)
r 2

dS = 1 dQ dV
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2
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If u, u range from —~ to + ~, the field operator P can
be expanded in the normal modes:
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and R is the two-dimensional Ricci scalar

R =4C-'(Ca„a„C—a„Ca„C) .

(2.4)

(2.5a)

(2.5b)

(2.5c)

(2.6)

This expansion defines a "vacuum" state
I u, v ). Now the

expectation values of the renormalized stress-energy-
tensor operator T, (bt)iifor the scalar field in the above
state are given by the expression

where now

Q=T r
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(2.13a)

(2.13b)

and
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From Eqs. (2.5) we immediately obtain

Q„„=Q„„=—(48m.A, ) (2.15)

(u, v
I T„„lu,v & =(u, v

I T„„lu,v &

= —(48mi(, ) (2.16a)

so if the field P is in the state I u, v ) the expectation
values of T,b($) are

u = A(u ), v =8(u) (conformal gauge) . (2.7)

The double null form of the metric (2.1) is preserved by
reparametrizations of the form
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In terms of the new null coordinates u, v the metric be-
comes

ds = —CA'8'du du, (2.8)
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This alternative expansion defines a new "vacuum" state,
call it Iu, u ), with respect to which the ( T,b ) are given
by

(u, u
I T,b Iu, v ) =Q,b

—(48m. ) 'Rg, b+X,b, (2.10)

where a, b =u, u; Q,b is given as before by Eqs. (2.5) and
the state-dependent term X,b of ( T,b (p ) ) is

where a prime indicates differentiation with respect to the
relevant variable.

One can also expand P in terms of the set of normal
modes:

(r' —A.') '& T„,& I
& ~,

(2.17a)

(2.17b)

(2.17c)

Regularity on the future de Sitter horizon HD is ex-
pressed by similar inequalities with u and v interchanged.
One can easily check that ( u, u

I T,b I u, u ) diverges on
HD as condition (2.17c) is not satisfied. Similarly one
finds an analogue divergence on Hz .

A quantum state I u, v ) will therefore lead to physically

As is evident the tensor ( u, v I T,b I u, u ) does not have the
de Sitter-invariant form, i.e., ( T,b ) -g,b, and even worse
it behaves badly on the horizons r =k.

In fact quite generally ( T,b ) will be finite on the past
horizon HD in a coordinate system regular there if, as
r~A, ,
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acceptable values for ( T,b ) on the horizons if, as r ~A, ,

Q,b+X,b =0, (2.18)

i.e., X,b~(48m. A, )
' in a way that Eq. (2.17c) and the

analogous equation for the (u, u ) component are satisfied.
It is evident that if X,i, =(48m)(, )

' identically the
( T,b ) are not only regular throughout space-time but
also of the de Sitter-invariant form. Such a state is the
analogous of the Israel-Hartle-Hawking state in the
Schwarzschild space-time and is constructed using
Kruskal normal modes

d = — 1 — d d
r

(3.3)

where

and

u =t —r,*, v =t+r,' (3.4)

propagating in our space-time is the Israel-Hartle-
Hawking vacuum.

The two-dimensional metric in the Schwarzschild re-
gion is given in double null form by
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The Israel-Hartle-Hawking state
~
u, u ) is defined by an

expansion of P in terms of Kruskal modes
III. EXTERNAL BLACK HOLES
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Let us consider following Ref. 3 the space-time de-
scribed by the Penrose diagram in Fig. 1. It represents an
eternal black hole whose inner core is constituted by a de
Sitter region. The transition from the Schwarzschild to
the de Sitter phase occurs along a spacelike hypersurface
r=rp=const&2M, where M is the mass of the hole.
This surface has topology R '+S (a cylinder} and
represents an infinite (in the t direction) tube of radius ro.

The space-time of the model is therefore described by
the metric

where now

u = —4Mln
4M ' 4M

(3.7)

Now using Eqs. (2.5) and (2.11) we can easily calculate

Q, i, and the state-dependent part X,s. The result reads

(u, v~ T,„~u,u) =(u, u~T„~u, u )
T
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for r & rp with A, & rp & 2M.
According to the investigation of Ref. 5 this space-time

represents a solution of Israel's matching equations and
this solution is classically (meta}stable.

However, it is not at all granted that this resulting
space-time is semiclassically regular. With this we mean
simply that the expectation values of the stress tensor
(T,i, ) of some matter test field iI) propagating in this

space-time are well behaved throughout the space-time.
One might in fact expect dangerous divergences occur-
ring along the Cauchy horizons r =k of the space-time of
Fig. 1, leading to instabilities. We shall now show by a
two-dimensional analysis of the problem how to make
these horizons nonpathological by fine-tuning the loca-
tion of the transition region so that Eqs. (2.17) are
satisfied.

The static black hole can be considered to be in a
thermal equilibrium with its own radiation at the Hawk-
ing temperature T=(8aM } ', so that the relevant quan-
tum state in which evaluate ( T,b ) for the test field P

r 2

i.2
—1 du dv, (3.9)

where u and v are given by Eqs. (2.13).
From the relation between the two sets of null coordi-

nates ( u, u ) and I u, u j determined on the boundary

du, 4M'
du

where

dv, 4M+
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One easily shows that ( u, v
~ T,b ~

u, v ) is regular
throughout the Schwarzschild region of space-time, in
particular, on the black-hole horizons r =2M.

The Kruskal modes Eq. (3.6) propagate across the
boundary surface r =rp in the de Sitter region. The latter
is described by the metric
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one can evaluate with the aid of Eqs. (2.11) the state-
dependent part of ( u, U

~ T,b ~ u, U ) in the de Sitter region

X„„=X„„=(768m.M ) 'a

On the other hand, from Eqs. (2.5) one has

Q„„=Q,„=—(48m.A, )

(3.12)

(3.13) II

C)

EWPORATION

Now the stress tensor will also be regular on the de Sitter
part of space-time if Eq. (2.18) is satisfied. This can be
rewritten in the form

ra+(16M —
A, )ro —32M =0 . (3.14)

One can easily see that in the allowed interval
A, &ro &2M Eq. (3.14) admits only one solution for ro
(Ref. 6).

Unfortunately this value for ro required by regularity is
very close to 2M, the black-hole horizon.

Physical considerations lead however to expect the
transition region to be located in the very interior of the
hole at nearly Planckian curvature, ' i.e., ro-M' . So
the classical (meta)stable model discussed in this section
lacks physical consistency when quantum-field-theory ar-
guments are included.

ds = —f(u, U )du du . (4.2)

Here f is an arbitrary (for the moment) function and

[ u, U J are a set of null coordinates:

FIG. 2. Conformal diagram for an evaporating black hole
formed by gravitational collapse with a de Sitter interior (see
Ref. 3 for details).

IV. PHYSICAL BLACK HOLE

u=t —p,
U=t+p,

(4.3a)

(4.3b)

2
ds2= — 1 — du dU

i!2
(4.1)

for r &R(r), where R(r) is the boundary between the in-
terior de Sitter metric and the exterior region. The latter
is described by the metric

In a realistic physical situation a black hole is supposed
to be formed by collapsing matter. Furthermore if quan-
tum effects are taken into account, one also expects the
hole after formation to lose its mass by Hawking
evaporation.

The space-time of the physical black hole then clearly
differs from that depicted in Fig. 1.

Because the life of the hole is characterized by an evo-
lution (formation, evaporation), one should not expect
the transition region to occur necessarily along an
r =const surface.

We shall see that by relaxing this hypothesis one can in
some cases overcome the impasse encountered in the pre-
vious section.

Here we shall consider a more general situation than
before in which the de Sitter interior metric of the hole is
matched to an arbitrary exterior metric representing ei-
ther the space-time of the collapsing matter or that of an
evaporating black hole and examine under which condi-
tions the regularity requirement Eq. (2.18) can be
satisfied.

The relevant Penrose diagrams are given in Ref. 3. We
reproduce in Fig. 2 one of them which will be relevant for
our conclusion.

The space-time of the model therefore will be described
by the de Sitter metric

where

N =f(1—
p )C+R

RC=1-
A2

(4.5)

(4.6)

and an overdot means derivation with respect to the exte-
rior time. So R = (dR/dr)l(dr—ldt); r is a parameter
along the matching surface.

Now consider a "vacuum" state ~u, u ) defined by ex-
panding the field operator P in terms of normal modes
constructed with the null coordinates u, U:

( 4 )
1 /2 —is»u (4 )

—i /2e —icuu (4.7)

In the model considered here J is a Cauchy surface (see
Fig. 2) and the outgoing modes are simply the reflection
throughout the (nonsingular} origin r =0 of the ingoing
modes. These modes coming from the exterior region
enter and propagate in the interior de Sitter domain and
naturally define the appropriate vacuum in this region.

As we have seen previously for practical use we need
only know how to identify an ingoing null geodesic
U =const (u =const) in the exterior region with the cor-
responding null geodesic v =const ( u =const } in the de
Sitter region to construct the state-dependent part of

where t is some exterior time and p a spacelike coordi-
nate.

Matching the interior and exterior metric across the
separation surface one gets

(4.4)
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Concentrating ourselves only on the ingoing modes we
have from Eqs. (2.13b) and (4.3b) that at the boundary

—1

dV dV dV

dV dt dt
=C '(N+R )(1+p) (4.8)

3 (8 } = 3 (C ) (1+') +O(C),
2 (a')'

II I I 2

(1+p) +O(C),(B')' 4R '
1 d

dv &+1 dt '

(4.9a)

(4.9b)

(4.10)

as usual all functions appearing should be regarded as
evaluated at the boundary r =R ( r ).

We can now construct the state-dependent part of
(u, u~T, ~ub, V), namely, X„, see Eq. (2.11b), in the
above limit:

lim X„„=(48rr)
ac

R~A,

2

=(48rrA. ) (4.11)

But this value is precisely —Q„, so

lim Q„„+X„,=0
R ~A.

(4.12)

which is exactly what condition (2.18) requires.
Physically this means that the positive-energy radia-

tion corning from the moving boundary (X„„)cancels ex-
actly the infinite negative-energy vacuum polarization
(Q„„) on the horizon. Similarly under the same hy-
pothesis one can show that ( u, v

~ T,b ~ u, v ) is regular on
the future de Sitter horizon. Let us finish by considering
two examples where our hypothesis is not satisfied and
the regularity condition is not satisfied.

This is the desired expression which by further deriva-
tion will allow us to compute the state-dependent part
X,b of ( u, u

~ T,b ~
u, u ) in the de Sitter region.

Since we are interested primarily in the regularity con-
ditions Eqs. (2.17), we shall give here only the limiting
behavior of X,b as the de Sitter horizon is approached.
The X„„ term describes massless radiation propagating
along v„„„rays. Let us suppose that as the generator of
HD is approached C —+0, i.e., R(r)~A, , the matching
surface crosses the past de Sitter horizon as in Fig. 2.
Furthermore let the functions describing the exterior
metric be well behaved in this limit. So for C~0 we ob-
tain, from Eq. (4.8) by subsequent differentiation,

The first is represented by taking the Schwarzschild
metric in the (r, T) coordinates as exterior one and
matching it along a r=const surface to the interior de
Sitter metric. For this case C=const and B'=const so
that X„=Oidentically.

The second example is obtained by considering the
Vaidya metric as representing the exterior evaporating
black-hole space-time:

r

ds = — 1 — du +2du dr .
r

(4.13)

Let us further suppose as argued in Ref. 3 that the
matching surface r =R (v ) evolves according to

' 1/3
2M(u ) &z (4.14)R(v)=

So that in this case CWconst and C=O as the surface
crosses the horizon.

It is easy to see that matching the Vaidya metric (4.13)
to the de Sitter one along the surface (4.14) one gets

R1—
2

'2
—2R' +2R' — 1—, dv, R

du
=0

(4.15)

which admits as a solution 8'—:du /du = l.
Even in this case X„„=O and the interior de Sitter

space-time cannot be semiclassically regular.
Here we make a final comment on the limits of the ap-

plicability of the semiclassical approach we used to reach
our conclusions.

As we said at the beginning, the transition from the
Schwarzschild-like to the de Sitter region is supposed to
occur at some ro-M' where the curvature of black-
hole space-time grows to order unity. For a solar-mass
black hole ro —10' in Planck units or 10 cm. In this
regime one might expect the space-time geometry to
remain effectively classical and be governed by the semi-
classical Einstein equations, the source being the expecta-
tion values of the quantum stress tensor (T,b). Con-
sistency clearly requires ( T,b ) to be finite.

The Cauchy horizon, on the other hand, is located at
some r=A, &ro (probably k«ro). Its actual value is
presently unknown but one might expect it to depend on
the various fields entering the theory. ' In order that our
semiclassical approach be trustworthy even at the Cau-
chy horizon one should require this value to be greater
than order 1 (10 cm }; otherwise still unknown
quantum-gravitational effects need to be taken into ac-
count.
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