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Radiative corrections and semileptonic 8 decays
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A prescription for approximating electroweak radiative corrections to weak decays is given.
The method is illustrated for r evv and a simplified (structureless) model of 8 Mev, M D
or x, where the complete O(a) corrections are known. Our procedure is shown to provide a prop-
er description of radiation damping near the electron's end-point energy and a reasonable estimate
of radiative corrections for much of the spectrum as well as the integrated rate. As a practical
application, it is appHed to the semileptonie decays 8 Xev, where an exact O(a) treatment of
radiative corrections is very difficult, but an estimate of their e6'ect is important for the extraction
of V„b and leptonic branching ratios. We also discuss an 18% enhancement of Y(4S) 8+8
relative to 8 8 due to large Coulomb corrections near threshold.

As weak-decay measurements reach high precision, it
becomes important to include electroweak radiative
corrections in the comparison of theory and experiment.
For purely leptonic' and a few very special semileptonic
decays (such as superallowed nuclear P decays ), a full
analysis of the one-loop electroweak corrections in the
standard model and QED bremsstrahlung is straightfor-
ward, but nontrivial. However, for most semileptonic
weak decays, hadronic structure and other strong-in-
teraction complications make a reliable lowest-order
decay-rate analysis dificult and a complete 0(a) calcula-
tion of electroweak corrections virtually impossible.
Given that situation, we have devised a simple prescrip-
tion for approximating some of the most important as-
pects of electroweak radiative corrections for the generic
weak decay Y Xev. Here, we describe that technique,
illustrate it by examples, and apply our prescription to
semileptonic 8 decays. We also take this opportunity to
discuss 8+8 vs BeB production at the Y(4S) and show
that the former is enhanced by about 18% due to large
Coulomb-threshold corrections.

Before giving our prescription, we outline some of its
virtues and shortcomings. (i) It incorporates leading-log
short-distance loop corrections via a simple enhancement
factor. (ii) Soft virtual- and real-photon corrections are
summed to all orders following the well-known exponen-
tiation formalism of Yennie, Frautschi, and Suura. In
that way, radiation damping near the electron spectrum
end point as well as some QED modifications of the spec-
trum shape are properly described. (iii) An infrared ex-
ponentiation factor is introduced which helps normalize
QED corrections to the high-energy electron spectrum
and total decay rate. What our prescription does not do is
attempt to incorporate hard-photon bremsstrahlung which
mainly modifies the low-energy electron spectrum. That
contribution is, in any case, very uncertain for semilepton-
ic 8 decays due to hadronic structure effects. Also, we do
not consider strong-interaction uncertainties at all, even
though they are clearly important. Instead, we assume
that a lowest-order decay rate which incorporates strong
interactions via form factors or perturbative QCD is
given, and our task is to include electroweak radiative
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where Q is the average quark or lepton doublet electric
charge (of the fundamental decay isodoublet pair) and
mz 91 GeV. For standard quark doublets Q & ( &—
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beyond the aln(mz) correction in (2) by summing up all
leadin logs of the form a"In"mz via the renormalization
group and even include perturbative QCD corrections to
that factor. However, those additional modifications are
not significant at the level of our considerations, so we do
not include them. The first step in our prescription is,
therefore, to reexpress all lowest-order weak-decay rates
in terms of G„and for semileptonic processes to include an
enhancement factor
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For purely leptonic decays such as ~ evv, which we sub-
sequently consider, Q

——,
'

in (2), so there is no
enhancement factor.

corrections.
We begin our discussion by considering the short-

distance leading-log electroweak corrections to the generic
decay Y Xev, where Yand Xmay be hadrons or leptons
and X may be a single- or multiparticle state. By short
distance, we mean virtual loop effects coming from high
frequencies & mi . In the standard SU(2)L x U(1) model,
such corrections are finite and calculable. Employing a
current-algebra approach, Sirlin has carried out a gen-
eral analysis. He showed that when weak decay rates are
expressed in terms of the muon decay constant G„defined
by the muon lifetimes s
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they are enhanced by a short-distance correction factor
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Below the scale my, additional electroweak corrections
are of QED origin and nominally 0(a); but they can be
significantly enhanced by infrared logs and collinear
singularities. The first of these arise from low-frequency
(-energy) photonic virtual loop corrections and brems-
strahlung effects. Following the Bloch-Nordsiecks pre-
scription of adding real and virtual soft-photon contribu-
tions, infrared divergences cancel order by order in pertur-
bation theory. In fact, as shown by Yennie, Frautschi,
and Suura, s virtual and real soft-photon corrections sepa-
rately exponentiate and completely cancel at that level.
Exponentiation, thereby, eliminates infrared divergences
and introduces a residual electron-spectrum radiation-
damping factor of the forms's'0

(E E ) (2a/x)f(l/2p)ln[(l+p)/(I —I))]—Il
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where some arbitrariness still resides in a constant c, to be
subsequently specified. By introducing the electron ener-

gy E, in the denominator of (5), rather than a fixed mass
such as mv, we suppress the high-energy electron spec-
trum but actually enhance the low-energy decay rate.
That properly mimics the fact that bremsstrahlung effects
tend to shift high-energy electrons to lower energy and
thus change the spectrum shape without significantly
modifying the total integrated decay rate. The second
step in our prescription, therefore, entails multiplying the
lowest-order differential decay rate dI /dE, by the factor
in (5).

To be more specific, we need to fix the constant c in (5).
That parameter does not significantly affect the electron
spectrum shape, but does give an overall normalization. If
possible, it should be fixed experimentally by a best fit to
the data. Otherwise, we propose to pick c such that the
factor in (5) becomes unity at the average electron energy
E, as determined by the lowest-order spectrum

dIO ~ dI0e &' e J' (6)

where E,„ is the electron end-point energy and Ig

) P, (/E, is the electron velocity. Missing from (4) is a
mass scale. That quantity is not specified by exponentia-
tion and is thus ambiguous. We choose to employ a slid-
ing energy scale via the following radiation-damping fac-
tor in the differential decay rate (and use P=1 —
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Following our prescription, we estimate the electroweak
corrections as follows. GF is replaced by G„(there is no
short-distance enhancement). The radiation-damping
factor in (5) is applied with c v, since x 0.7 for the
spectrum in (10). In that way we obtain the "approxi-
mate" decay spectrum
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To see how well our prescription works, we can compare
with the complete 0(a) calculation of radiative correc-
tions by Kinoshita and Sirlin and Berman:s'2

That requirement gives

Emax Ee
(7)

E,
which means the spectrum is suppressed for E, & E, and
enhanced for E, (E„but the total decay rate is not
significantly modified by (5).

Before illustrating our prescription, we mention one
further correction factor that should be applied if the ini-
tial state Y in Y Xev is neutral. In that case, there is
an additional static Coulomb interaction between the
charged X and e final states. " At the high-energy end of
the electron spectrum, that long-distance effect gives rise
to an overall Coulomb-correction factor of approximately

1+me, (s)
which represents about a 2.3' enhancement. It differ-
entiates for example 8 and 8 —semileptonic decays. If a
decay ensemble contains an admixture of 80 and 8 —de-
cays as, for example, '2 in the case of data taken from
Y(4S) 808 or 8+8, the correction factor in (8)
should be weighted by the percentage of 8 8 We. later
brieffy discuss what fraction is expected on theoretical
grounds.

As a first illustration, we consider the decay i~ evv.
For an unpolarized r decaying at rest, the lowest-order
differential decay rate is given by (neglecting m, /m, and
m,2/m)2v effects)
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Despite the difference in appearance, the spectra in
(11)and (12) are actually quite similar. That is illustrat-
ed in Fig. 1, where both are compared with the lowest-
order result. Our approximation in (11) actually gives a
better representation of the corrections near x 1 since it
contains an all-orders summation. Of course, one can
overcome the shortcomings of (12) near x 1 (it diverIIes)
by exponentiating the singular part of the correction. ' '6, , 14

As a further illustration of the good agreement between
(11) and (12), we give in Fig. 2 a plot of their ratio as a
function of x. Our method fails at small x because it
misses hard-photon contributions that populate the low-

energy spectrum; otherwise, the agreement is very good.
In the case of r pvv, radiative corrections are not as

important. To illustrate that point, we compare in Fig. 3
the lowest-order decay rate in (10) with the corrected
spectrum in (12) as well as the corrected spectrum for

pvv obtained by replacing m, with m„. It is clear
that care must be taken in comparing electron and muon
spectra, since the latter is not as sensitive to radiative
corrections.

As our next example, we consider the decays 8 Mev,
where M is either a ir or D meson. Since this exercise is
meant only to test our prescription, we study a somewhat

simplified model in which the initial- and final-state
mesons are considered pointlike. That neglect of hadronic
structure is not a bad approximation near the electron end
point, but it clearly misrepresents the low-energy spec-
trum.

Adopting that approximation, the lowest-order differ-
ential decay rate for 8 Mev is given by (neglecting
electron mass effects) '5

dI (8 Mev) GFrria 2 5x (1 x) I f+ I

I vb I'q'
dx 32m' l —gx

(13)
where x E,/E „, E „(mg —m~)/2m', g—mk/m$, Vb is the Cabibbo-Kobayashi-Maskawa ma-
trix element (V„b for M x, V,b for M D), and f~+ is a
form factor which should have x dependence, but we take
it to be constant (structureless). Our notation and nor-
malization are borrowed from K, 3 decays where
f+(0) 0.98. Estimates of fy for 8 xev give a smaller
value' =0.27.

Our prescription for approximating radiative correc-
tions is to multiply (13) by the correction factors in (3)
(with mi ma) and (5). In addition, for i) =1 our condi-
tion on c gives c-—23, so we have i 7

II

df'(8 Mep) G&mii, , 2 ' M '2 5 x (I x) 2a mz 1 —x
dx 32m 3

1 —rlx x mg 2x/3

' (2a/X) [1n(m8X/m, ) —1)

(14)

for charged 8 decays, while for neutral 8 decays, an addi-
tional I+ma correction factor should be appended. " For
comparison, we can use a complete 0(a) calculation of
radiative corrections for this simple model by Ginsberg. "
Such a comparison is illustrated in Fig. 4 where
Ginsberg's result has been (arbitrarily) normalized to
agree with (14) at x 0.6. One formula does quite well in
correctly describing the high-energy electron spectrum
shape. Because of strong-interaction uncertainties we do

I

not worry about the low-x regime.
Having used two examples to illustrate and test our

scheme, we now tackle a practical problem, radiative
corrections to inclusive semileptonic decays 8 X,ev and
8 X„ev, where Xz represents an inclusive hadron state
containing q. A precise knowledge of the electron spec-
trum shape, particularly near the end point, is important
for extracting V„b/V, b and measuring semileptonic
branching ratios. In our approach, the radiative correc-
tions are approximated by the same correction factors as

00 I I I I I 1 1 I I
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X

FIG. l. dI /dx is shown for Eq. (10) (solid curve), Eq. (11)
(long dashes), and Eq. (12) (short dashes). The results are
given in units of G„2m,'/192n3.
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FIG. 2. The ratio between Eqs. (11) and (12) is shown as a
function of x.
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in (14), but with c as yet undetermined,
r ' (2a/a) [In(ntBX/m, ) —

1 I

1I+ 1
X Nlg CX

(15)

and an additional factor of (1+»a) for neutral-8 decays.
One strategy for employing (15) is to take c= -', and

apply (15) (actually its inverse) as a correction to the
data. The corrected data can then be compared with
lowest-order model predictions for the spectra. Alterna-
tively, theoretical predictions can be modified by the fac-
tor in (15) and then compared with experiment. To illus-

trate the latter possibility we consider realistic spectra for

00 I I I I I I i f 1

00 01 02 03 04 05 0.6 0.7 08 09 10
X

FIG. 3. dl /dx is shown as a function of x for the Born term

of r ev, v, (solid curve); the first-order correction given by Eq.
(l 2) (short dashes) and the similar first-order correction applied
to r li v„v, (long dashes). The results are in units of
G„m,'/192»'.

8 X„ev and 8 X,ev.
For the case 8 L„ev, the free-quark-model calcula-

tion of Altarelli er al. ,
' b uev with QCD and Fermi-

motion corrections seems most appropriate, particularly
near the electron end point. On the other hand, semilep-
tonic 8 decays into charm are known to be dominated by
D, D, and D resonances. ' So, for 8 X,ev we use
the Isgur er al. ' resonance model as a good representa-
tion of the lowest-order spectrum. Correcting those
lowest-order differential decay rates with the factor in
(15) leads to the modifications illustrated in Figs. 5 and 6.

Radiative corrections are particularly important for
8 X,ev near the electron spectrum end point. Since
that region can be a background for extracting V„b from
8 X„ev data, it is imperative that radiative corrections
be included. To be more specific, the decay 8»ev has
an electron end-point energy of 2.64 GeV, while 8 Dev
ends at 2.31 GeV. However, if we restrict the data to
2.31-2.64 GeV, the statistics are quite limited. In addi-
tion, detector resolution can lead to 8 X,ev background
even in that region. Therefore, the experimenter must
have a good estimate of both spectra near their end points
to work with. Also, to precisely determine the semilep-
tonic branching ratios for 8 Dev, 8 D ev, or
8 D ev, data must be fitted near the high-energy
electron spectra to eliminate secondary electrons from
charm decays. Accurate measurements necessitate in-
clusion of radiative corrections.

Precision 8-decay studies require high statistics. They
are, therefore, generally carried out at e+e facilities on
the Y(4S) resonance. Its mass, 10580 MeV, is just above
BB threshold, so decays into 8+8 and 8 8 are
kinematically allowed. In fact, the relatively large Y(4S)
width of 24 MeV suggests that those two modes essential-

ly saturate its decays. To analyze and interpret the data
often requires knowledge of the relative 8+8 and 8 8

04-
0
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FIG. 4. dl /dx for 8 Mev, given by Eq. (13) is shown

(solid curve) as well as the estimated correctjon of Fq. (14)
Oong dashes) and the calculated correction from R,ef. 15 (short
dashes). The results are given in units of (G„2m)/192»')
~ I v;b I'IfW I'.

00 05 10 15 20 25 30
E

dI/dE is shown for 8 X,ev using the model of
8 (solid curve); as well as the corresponding radiative

corrected spectrum (long dashes). dl/dE is also shown for
&~ev using the model of Ref. 12, (short dashes) and the

corresponding corrected spectrum (dashed-dotted curve).
curves are in units of (G„~me4/24»')

~
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production rates on resonance. For the recently measured
mass difference mtt+ —mtta= —0.4 ~ 0.6 MeV, which is

consistent with zero, one expects both decays to have simi-

lar kinematic and P-wave suppressions and, hence, ap-
proximately equal branching ratios. However, there is an
important difference which seems to have been over-

looked. Coulomb corrections to 8+8 production near
threshold are quite large. In fact, they enhance that

FIG. 6. As an illustrative example, we show dI /dE near the

end point for B E,ev (solid curve, uncorrected; dashed curve,

corrected) and B X,ev (short dashes, uncorrected; dashed-

dotted curve, corrected) using the same models as in Fig. 5.
Here we take () V„s (/( V,i, ( =0.1) and give results in units of
(G„'mg/ 24tr') ( V„t, [.

Y(4S) decay rate relative to Boa by a factor 2'

1+ xa
2

(16)

where
&/2

=0.065 .
m v(45),

(17)

which implies branching ratios of approximately 54% and
46% for 8+8 and 8 8, respectively.

In conclusion, we note that 8 physics has become a ma-
ture subject. High-precision requirements mandate the
inclusion of electroweak radiative corrections both for 8
production as well as decay. Fortunately, the dominant
effects are easily estimated and, if necessary, can be fur-
ther improved. They should, therefore, not hinder the un-
raveling of b phenomenology and whatever surprises it
may hold.

We wish to thank Sheldon Stone for suggesting this
problem and for helpful discussions. This manuscript has
been authored under Contract No. DE-AC02-76CH-
00016 with the U.S. Department of Energy.
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