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Quantum chromodynamics (QCD) efFectively reduces to a nonlinear meson theory in the color-
number N, ~ ao limit. The nucleon and 5 masses arising as solitons from such a theory usually

turn out to be too large if phenomenological values are used for the meson parameters. Within a
static-baryon approximation, however, we find that soft nonperturbative self-consistent unitary
hadron-loop corrections (corresponding to quark-loop higher-I/N, orders in QCD) can lower these

masses by the kind of magnitude needed to make them consistent with experiment, whereas a first-

order 1/N, correction is much smaller.

In 1960 Skyrme proposed a theory in which baryons
appear as Snite-energy soliton solutions of a nonlinear
meson field theory, with an extra term involving multiple
derivatives of the meson field to guarantee classical stabil-
ity. ' More recently, Witten pointed out that an effective
meson theory of this type may be a good approximation
to quantum chromodynamics (QCD} when the number of
colors, N„becomes large. With parameters taken from
low-energy meson physics, however, one usually finds
baryon/meson mass ratios which are too large compared
with the experimental values; ' a similar situation pre-
vails for quenched quark-loop lattice calculations.

Part of this discrepancy may arise from short-range
gluon-exchange effects. We shall see, however, that an
important contribution can also come from soft (long-
range) hadron loop diagrams. These effects, which arise
from sea-quark loops in the underlying QCD theory, go
to zero in the N, ~ 00 limit; this is in fact the usual argu-
ment for neglecting them. In Fig. 1, for example, the
gluon loop (a} has a factor N„which is absent for the
corresponding quark loop (b). But, on the other hand, (b)
has a flavor-number factor Nf, which is absent for (a).
The quark-loop suppression is therefore actually
governed, not by 1/N„but by N&/N, (Ref. 6). This is
hardly small with Nf -2 3and N, =3, —and suggests that
a "perturbative" or iterative treatment of loops may give
misleading results. This is true even if we have relatively
narrow resonance widths; calculations show that, con-
trary to popular belief, such widths can be readily ob-
tained even with fairly large loop corrections. We shall
therefore use a self-consistent nonperturbative approach
for dealing with loops. We shall nevertheless see, howev-
er, that, in a certain sense, the small-1/N, approximation
continues to be valid and useful as an "input" for our cal-
culation.

If we do take quark (q} loops into account we have,

e.g., the pion-nucleon mN~~N and ~N~Nm quark-
loop sums of Fig. 2; we can also have q~qq diquark
loops and "cross terms" linking up alternating (a) and (b)
subsums. These sums give, in turn, hadron-loop general-
ized infinite-ladder sums T of the form of Fig. 3, where
the upper and lower "ladder" exchanges A, B, . . .
should themselves be T sums.

The low-mass ( ~rn) contributions L to the vertical-
line exchanges (a, . . . ), (b, . . . ), (b', . . . ), . . . of Fig. 3
are related through crossing symmetry and self-
consistency to the mass spectrum in the Mandelstam s
channel (where &s is the energy} which arises when we
sum Fig. 3 or some similar set of graphs. They therefore
implicitly take into account the quark loops of Fig. 3.
The high-mass ( )m ) contributions H to (a, . . . ), . . . ,
on the other hand, should not include quark loops, since
this would lead to double counting with Fig. 3(b), which
explicitly contains such loops; similarly for
(b, . . . },(b', . . . ), . . . and the higher graphs of Fig. 3.
Here rn is the efFective threshold above which Fig. 3(b}
begins to give important mass-exchange contributions.
[Actually we can always take a higher value of m, but we
must then also remove the corresponding low-mass
( m ) contribution from Fig. 3(b); similarly for
(b, . . . }, . . . and the higher graphs of Fig. 3.]

In practice we can approximate H by its high-t Regge
behavior

ImEI(s, t}=bc(s)(t+g) 8(t —m ),
where g is independent of the Mandelstam momentum-
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FIG. 1. {a) Gluon-loop and quark-loop contribution to the
gluon (6) propagator.

FIG. 2. Quark-loop contributions to mN scattering. The
lines represent quarks and it is understood that gluon lines (not
shown explicitly) must be added in.
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where co=0. Since N exchange dominates for isospin
(I)=spin(J)= —', , and 5 exchange for I=J= ,', —we will

approximate Eq. (3) by

FIG. 3. Hadron-loop generalized infinite-ladder sums for the
process 12~34 arising from quark-loop contributions such as
Fig. 2. The lines represent hadrons, and &s is the energy of 12
or 34 in the s channel.

transfer variable t, and ao(s) is the leading Regge trajec-
tory interpolating the s-channel mass spectrum in the ab-
sence of the internal quark loops of Fig. 2. In particular,
the lowest state lying on the ao(s) trajectory should then
be the corresponding 1owest classical Skyrme baryon,
since this is what arises as a soliton from our effective
tree-graph meson theory without any loop corrections in-
volving baryons.

If we now make a static nucleon-mass mz &&m, co ap-
proximation, we find that Eq. (1) gives, when inserted
into a fixed-s dispersion relation in t, a contribution

Ph ( co', co",co ) =yo(co+ coo) /(coo —co)(co+co'+ co"—co )

(2)

to the nN~Nm off-shell P-wave amplitude f(co', co",co),
at least if we drop nonpole and higher-e pole contribu-
tions; Eq. (2) reduces to h(co, co, co)=h(co) and f to
f(co,co, co)=f(co)=e' sin5/q on shell, where 5 is the
(real) phase shift in the elastic-scattering region,
co=&s —m~, q =co —m, 9=m —m~, (coo+mt') is
the mass of our soliton, which is associated with the
co=coo pole in Eq. (2), and yo is related to bo/ao at the
same energy. The last denominator factor in Eq. (2)
arises from the t =m threshold in Eq. (1). The low-mass
N and b, [=6(1232)]L exchanges in (a, . . . ), on the oth-
er hand, give a contribution to f of

yX =y N/(cow+co'+co" co)+y~/—(co~+co'+co" co) (3)—

where y"=y~+yg and co =co~ for I=J=—,
' and

cu„=co& for I =J=—,'. We have dropped all meson ex-

change, which has been estimated to give a small contri-
bution for low co (Ref. 8).

Figure 3 now gives the sum

f(co', co",co) =/[A, (co', co",co)+h(co', co",co)]

+P B(co',co",co)+

where

mB(co', co",co) =f dco"'q"' [A,(co', co"',co)+h(co', co"', )]
m

X [k(co"',co",co)

+h (co"',co",co ) ]/(co"' —co)

and where we have approximated the ladder exchanges
A, B, . . . by simple N and m exchanges in Fig. 3(b), . . . ;
we have introduced a sharp cutoff at co"'=A to (roughly)
take into account the Regge nature of the original
A, S, . . . and the L-meson exchanges which we dropped
in (ct, . . . ), (b, . . . ), . . . . These mesons can give contri-
butions to Fig. 3(b) with fairly low thresholds. With our
no-double-counting prescription, this is turn means that
we must take

m =(co„+mz) +1/Za„'

which is half-way between our exchanged-state in Eq. (3}
and the next state on the (approximately linear) Regge
trajectory a„(t}on which it lies.

If we treat Eq. (5) as an expansion in the coupling-
strength parameter P that we are associating with each of
the exchanges (a, . . . ), (b, . . . ), . . . in Fig. 3, and form
its [1,1] Fade approximant, we obtain

f(co', co",co) =/[A(co', co",co)+h (co', co",co)]/I 1 PB(co',—co",co)/[A(co', co",co)+h(co', co",co)]J, (8)

which is constructed so as to reproduce Eq. (5) up to or-
der P, if expanded in P. Equation (8) satisfies elastic uni-
tarity exactly below co=A for m'=co"=co, and in fact
reduces exactly to Eq. (5) for factorizable models. (See
Appendix A. )

If yo/y" is small and coo&&co,&, as we sha11 confirm
later, we can set

h(co, co'",co)/A, (co,co"',co) =h(co)/A. (co)

within the integral of Eq. (6) for co'=co"=co, since the
only region where h is then important is co =coo,
co"'))co„,co, where Eq. (9) should be reasonable. Indeed
in Appendix A we argue that approximate h /A, universal-
ity may be valid more generally. Equation (8) then gives

f(co)=P&( )co/(dc)o,

where

(10)

and

d(co)=1 h(co)/[A(co)+—h(co)] QI(co)/A(co) —(11)

trI(co) = f dco"'q"' [A(co"')] /(co"' —co) . (12)

A resonance or bound-state pole wi11 then occur at co=co,
if

d(co„)=0, (13}

since we then have f(co) =y/(co„—co) nearby, with cou-
pling residue
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y = —P&(co„)/d'(co„) . (14)

Crossing symmetry then relates this to the y" of Eq. (4)
through

X
Yrj X X arr kr )'r r (15)

where the sums g are over I'=
—,', —,', and J' = —,', —,', and

2
3

1

3
4
3

e

3 .
(16)

From a basic point of view, yp and ~p would now be an
input and the above equations would then be used to cal-
culate y and co, . But we can equally well do the reverse.

We next assume that, at least for low co, I(co) =const.
This should work even better if higher-energy inelastic
and meson-exchange effects are added to Eqs. (6) and
(12), and gives y=y" in the h ~0 limit, a result which
also follows from superconvergence. (See Appendix B.)
Since we still want y =y" when hAO, as required by the
experimental ~NN and ~Nh couplings, as well as by su-
perconvergence, we must also require

T

d h (co)

dco A,(co)+h(co)
(17)

in Eq. (11). This gives

cop=2(&+co, )/(I+yp/y) —p) . (18)

(20)

In the limit of small yp/y", Eq. (20) gives
coo'=co&+I/4m&a„'. If we take the I=J=—,

' Skyrme
mass of 1493—1519 MeV of Lacombe et al. , for exam-
ple, we then obtain mN =933-959 MeV, compared with
the experimental value of 940 MeV. [A first-order 1/N,
correction, where the above external and exchanged
baryon masses are replaced by the corresponding un-
corrected solitons, only gives mN = 1265—1291 MeV,
with ap=a„']. Our m~ is somewhat sensitive to yp/p",
however, so the detailed agreement should not be taken
too seriously (see below). Using Eq. (19) we also find that
the mass difference of Lacombe et al. between the
I=J=—,'and I=J=

—,
' Skyrmions gives

m ~
—mN =279—293 MeV, independent of yp/y"; this

again is in good agreement with experiment.
To actually determine yp/y" we use Eqs. (11)—(13).

Since we are assuming I(co) =const, we will evaluate Eq.
(12) at co=m, where our omitted higher-energy effects
are expected to be least important and where the integral
simplifies considerably. From Eq. (13) for I=J=
where co„=0,co&, we obtain A = 10.4m and
yp/y"=0. 16, which is indeed small ( «1), as assumed

Using Eq. (7), which gives co —co„=I/4mNa„'=2m„ in
the static mrc »co, co„approximation, we then have soli-
ton masses mN+0 with

33 ll
cop

—
cop =m&=m& —mN

and

above. However, it is large enough to shift our calculated
mN to 1091—1117 MeV, although mz —mN is of course
unchanged. The agreement with experiment for mN is
not quite as good as it was for yp~0, but we still have a
considerable improvement over the uncorrected Skyrme
model. Moreover, inelastic effects would have the effect
of lowering A, yp/y", and mrr, thereby improving the
latter further.

In conclusion, we find that, because of important feed-
back effects which are usually not taken into account in
other approaches, self-consistent nonperturbative unitary
loop corrections can give significant mass reductions for
the Skyrmions which arise from a classically stabilized
effective nonlinear meson field theory. It is interesting to
note that we continue having an approximate solution
even when yp/y"=0 exactly. This would correspond to
a situation where we do not have a classically stable soli-
ton solution of our meson field theory, but have, instead,
a "quantum stabilization" of the type proposed recently
by Jain, Schechter, and Sorkin. Because of our static
mN »m„approximation we are not actually able to cal-
culate the m /mrr ratio, as we would with a more accu-
rate relativistic calculation. But it should be possible to
relate the off-shell amplitude of Eqs. (5) and (8) to the
"profile function" F assumed by Jain, Schechter, and Sor-
kin, permitting perhaps a way of actually calculating F.

Future calculations, with or without nonzero yp, might
involve going beyond [1,1] Pade approximants and the
static approximation. In our calculation above we used,
in principle at least, NoNn and bpNir couplings as basic
H inputs in Eqs. (1) and (2). But, actually, the basic cou-
plings arising from a Skyrme model would be NpNpm,

kpNpm, etc. By generalizing our AN Nrr calculations
to "processes" such as mN~Npn. , however, we can relate
NpNp7T ~ ~ . to NpNm, . . . just as we related NpNm,
to NNm, . . . in our calculations above.

Finally our self-consistent nonperturbative loop-
correction techniques could be readily generalized and
adapted to other approaches, such as lattice-@CD, bag
and hadronic-string models and even potential calcula-
tions. Here again the quenched-loop approximation
would be used to construct an 0-type "input" into our
loop calculations, but this time for mesons as well as
bar yons.
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Lawrence Berkeley Laboratory for their hospitality. This
work was supported in part by the U.S. Department of
Energy.

APPENDIX A: FACTGRIZABILITY
AND h /A, UNIVERSALITY

Regge-resonance duality relates the couplings I „.. .
of the resonances or bound states ct, . . . of Fig. 3(a) to
the couplings b(s) of the leading Regge trajectory a(s)
interpolating the s-channel mass spectrum arising from
the sum of Fig. 3 (Ref. 10). It uses finite-energy sum rules
(FESR's) derived from fixed-t dispersion relations
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f dt [ImL(s, t) —b(s)v "0(v)]0(t —t )v ' ' =0,
(Al)

where the integer & =0 for the lowest moment,
v=(t —u )/2+g=t+(s —$m,. )/2+( with t-indepen-
dent g, m,. =mass, and S; =spin of the external particle i
(=1,2, 3,4) in Fig. 3, with S, +Sz~S&+S4 ordering,
i = 1,2, 3,4 in the sum g, and t is midway between a state
such as a, which contributes I,5(t —m, ) to ImL, and
the next state (or Regge recurrence) on the Regge trajec-
tory a, (t) on which it lies. We can combine such duality
[between a, . . . ;b, . . . ;b', . . . ;. . . and factorizable
a(s)-Regge couplings] with the usual approximate con-
tractibility of the a, . . .;b, . . . ;. . . exchanges into
kinematically facto rizable "contact" interactions for
(even moderately} high t in general graph theory. " This
leads to the factorizable structure

f =P(A, +h )

+P (A, '+h')g[Pk(k'"+h"')]"k(A, "+h"), (A2)

where P', P" are 12a, 34a couplings, and PPO' is the fac-
torizable Regge residue one would have in the absence of
loops.

The K,M, N, P are independent of the external lines
within the above approximation. For P"=P', Eq. (A2)
can therefore be reduced to a quadratic equation for
Po/P', whose solution is then also independent of the
external lines. Since P' is related by FESR duality to the
couplings of the states a, . . . of Fig. 3(a), we conclude
that h/A, also has a universality property, as in Eq. (9),
even if we do not rely on the static-model Eqs. (2) and (4).

Finally, we note that, with ImL =I,5(s —m,i), com-
bining the 8'=0 and 8=1 FESR of Eq. (Al) gives

for general angular momentum J, with
(A, '+h')(A, "+h")=(A,+h )(A,"'+h"'), k related to a loop
integral, and n =0, 1,2, . . . in the infinite n sum g.
Equation (A2) gives an exact Eq. (8) and gives a J-plane
Regge pole with factorizable residue

O'0" =OX P"+O'M, PO'+PA ~, 0"+POP~, ,P'0'

APPENDIX 8: STATIC-MQDKI. SUPKRCGNVKRGENCK

The amplitude f(co) obeys a useful "superconver-
gence" relation. We first note that Eq. (5} leads to an
f(co) which is analytic in co except for poles and an
e&m "right-hand" cut in the physical-scattering re-
gion. An improved version of A, incorporating resonance
width and background would also lead to an co& —m„
"left-hand" cut, since the exact f(co) satisfies the crossing
relation

fIJ()=g g &IIPufi J'( (81)

as in Eqs. (15) and (16). Cauchy's theorem then leads to
the dispersion relation

vrf (co) = f dao'[Imf(co')/(co' co)—
coL

+Imf ( —co')/(~'+co)], (82)

where bound-state poles are included by adding 5 func-
tions to Imf(ru') and at the same time extending the
lower limit mL of the integral below co=m to include
them.

Since unitarity demands that f(co) be bounded by co

at infinity, as can be seen, e.g. , from f(co)=e' sin5/q,
the co

' coefficient of Eq. (82) must vanish at large co, so
we have the superconvergence relation

Im m' —Im —co' =0 . (83)
coL

If we assume that Imf (co) is dominated by N and 6, and
make a (narrow-width) 5-function approximation for 6,
we obtain y =y", with y" given by Eq. (15). This result is
obtained whether or not we take the h ~0 limit.

The above static model ignores the relativistic meson-
exchange effects of Fig. 2(a). Such effects have been es-
timated to be small for low-co ~X scattering, however.

a(s) =S, +Si—1+v, /(r —m, ) .

If (=const and a'=a,', Eq. (A4) gives r =m, +1/2a',
exactly halfway between the state a and its Regge re-
currence.
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