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We formulate the dynamical symmetry breaking of the standard model by a top-quark conden-
sate in analogy with BCS theory. The low-energy effective Lagrangian is the usual standard model

with supplemental relationships connecting masses of the top quark, W boson, and Higgs boson
which now appears as a t t bound state. Precise predictions for m, and mH are obtained by abstract-
ing the compositeness condition for the Higgs boson to boundary conditions on the
renormalization-group equations for the full standard model at high energy.

I. INTRODUCTION

The top quark is now known to be more massive than
77 GeV within the context of the standard model. There-
fore, its coupling to the elementary Higgs scalar is large,
at least of order g2, the SU(2) gauge coupling constant at
low energies, and possibly larger. Strong coupling sug-
gests that the symmetry breakdown of the standard mod-
el may be a dynamical mechanism which intimately in-
volves the top quark, and several authors, ' most notably
Nambu, ' have recently experimented with this idea.
Essentially one implements a BCS or Nambu —Jona-
Lasinio mechanism in which a new fundamental interac-
tion associated with a high-energy scale A is used to
trigger the formation of a low-energy condensate (t t ).
The bootstrapping of the symmetry-breaking mechanism
to the top quark introduces no fundamental Higgs-scalar
bosons and, by virtue of its economy, leads to new predic-
tions which are in principle testable, or which constrain
or rule out the mechanism altogether. In particular, we
are able to derive predictions for m, and mH in this
scheme.

This is the minimal conceivable dynamical breaking of
the standard model in terms of the relevant number of
field degrees of freedom, in which we treat the gauge bo-
sons as fundamental. The usual Cabibbo-Kobayashi-
Maskawa structure and ferrnion mass spectrum is readily
accommodated, but bona+de predictions of mixing angles
and light-quark masses are not derivable until one
specifies the dynamics at the scale A more precisely. The
usual one-Higgs-doublet standard model emerges as the
low-energy effective Lagrangian, but with new con-
straints that lead to nontrivial predictions.

We begin with an analysis of the gauged
Nambu —Jona-Lasinio mechanism applied to the stan-
dard model, within the approximation of keeping only
the effects of the fermionic determinant as described
below. This yields the "bare" mass relationship, but the
most important new results which emerge are the com-
positeness conditions pertaining to the Higgs-boson
bound state, with an otherwise conventional low-energy
effective Lagrangian for the standard model. We
translate these conditions into boundary conditions at the
scale A on the renormalization-group equations far the

full theory, which now includes the eff'ects of gauge-boson
and Higgs-boson loops, etc. Certain renormalization-
group trajectories are thereby associated with the ex-
istence of composite structure. These lead to precise pre-
dictions for m, and mH, which are very insensitive to the
scale of new physics A.

We show that the compositeness condition is the state-
ment that the induced wave-function renormalization
constant ZH for the Higgs field H must vanish at the
scale A (see related earlier works as in Ref. 4). It is just
this condition, coupled to our demand for a symmetry-
breaking solution to the theory at low energies, which en-
ables one to "predict" the mass of the top quark and the
mass of the dynamical scalar Higgs boson. The compos-
ite theory is eff'ectively a strongly coupled (Higgs-Yukawa
and quartic Higgs-boson couplings) standard model near
the scale A. The low-energy predictions that emerge are
governed by infrared renormalization-group fixed points.
The top quark is predicted to lie near 230 GeV for
A-10's GeV. We discuss in some detail the consistency
of these predictions with the collection of experimental
results that constitute the so-called p parameter bound,
and we conclude that it is premature to rule out top-quark
masses as high as -250 GeV.

Our preliminary goal is to make precise the definition
of the minimal dynamical-symmetry-breaking scheme be-
ginning with a well-defined quantum field theory at the
scale A. We imagine that at some high-energy scale A
the standard model contains only the usual quark, lepton,
and gauge-boson degrees of freedom, but no fundamental
Higgs scalar. We then introduce a new effective four-
fermion vertex with a coefficient G of order 1/A . This
interaction must, of course, be fully gauge invariant. If
we consider, for discussion, the approximation in which
all quarks and leptons other than the top quark are mass-
less we may then define the theory at the scale A to be

L =Lk,„„,, +G(% 'I'tRa )(t ~%'L t )

where i runs over SU(2)L indices, (a, b) run over color in-
dices, and 1.&;„„;,contains the usual gauge-invariant fer-
mion and gauge-boson kinetic terms, but there is no
Higgs field in L. The model readily generalizes to a more
realistic mass spectrum, as well as a multiple effective
Higgs-doublet scheme as described below in Sec. III.
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%'e first consider a solution based upon the effects of
the fermionic determinant alone, i.e., a fermion bubble
approximation. This is equivalent to a large-N„&„ex-
pansion in the limit in which the QCD couphng constant
is set to zero, and it captures nonperturbative features of
the theory from the point of view of a small-coupling-
constant expansion. We demand a self-consistent dynam-
ical solution to the gap equation for the mass of the top
quark„given in terms of an induced vacuum matrix ele-
ment of the form (tt). This will generate poles in the
scalar and pseudoscalar channels, corresponding to a
physical state with a mass of 2m, and zero-mass Gold-
stone bosons, respectively. From the vector-boson
vacuum-polarization analysis we determine the elec-
troweak vector-boson masses in terms of the top-quark
mass. Moreover, we will see that the low-energy-induced
Lagrangian has all of the renormalization properties, and
is indistinguishable from, the standard model with a sin-
gle Higgs doublet. The essential results of this analysis
are presented in Sec. II, while the full technical details
are given in Appendixes A and B.

The central result is that the physical Higgs boson is
composite and both the top-quark and Higgs-boson
masses become related to the observable electroweak
scale. Here we do not address the usual problem of the
gauge hierarchy, i.e., how we can naturally maintain the
hierarchy of scales Mii «A. It should be noted, howev-

er, that the quadratic divergence fine-tuning problem is
isolated in the gap equation sector of this analysis; once
the gap equation is satisfied for a symmetry-breaking
scale of order M~, there is no further fine-tuning needed.

We emphasize that the predictions of the fermionic
determinant analysis are inherently limited. The discus-
sion of this approximation will be presented in Sec. II,
but we emphasize that it is intended only as a schematic
for the full theory, i.e., the fermionic determinant
analysis should be viewed only as a model discussion of
the actual physical situation. It neglects, e.g., radiative
corrections due to gauge bosons and propagation of the
composite Higgs boson itself. It is only upon abstracting
the compositeness conditions to the full theory that we
obtain reliable predictions for m, and rnH

Thus we begin in Sec. II with a digest of the fermionic
determinant analysis, with the full technical details given
in Appendixes A and B. In Sec. III we write the effective
Lagrangian in terms of the induced low-energy composite
particles. In Sec. IV we present the analysis of the full
theory and give precise results that include all of the
eQects in the standard model. We discuss the viability of
the results in light of the most stringent limits on m,
from the "p parameter" analysis in Sec. IV 8. In Sec. V
we present our conclusions and compare our results to
other recent works.

II. FERMIONIC DETERMINANT APPROXIMATION

The present discussion summarizes how the
dynamical-symmetry-breaking mechanism through top-
quark condensation works in the approximation of keep-
ing only fermionic loops, or, equivalently, to leading or-
der in 1/N, with the @CD coupling constant set to zero.

FIG. 1. Diagrammatic representation of the gap equation.

=26N, m, d l(l —m )
(2n)

(2.2)

The result of evaluating Eq. (2.2) with a momentum-
space cutofT' A is

N,6 '= [A —m ln(A /m )],
8m

(2.3)

which has solutions for sufficiently strong coupling,
6 &6, =8m /N, A2 where G, is the "critical" coupling
constant.

Here, we regard 6 and A as fundamental parameters of
the theory and we solve for m, . Normally, for very large
A, perhaps of the order of the grand-unified-theory
(GUT) scale 10' GeV, we would expect the solution of
this equation to produce a large mass, m, -A in the
broken-symmetry phase. We see that a solution for
m, -Mz for such large A constitutes a fine-tuning prob-
lem in that 6 ' —6, ' must then be very small. This is,
indeed, the usual fine-tuning or gauge-hierarchy problem
of the standard model. The gap equation contains a
quadratic divergence, corresponding to the usual Higgs-
boson mass quadratic divergence in the standard model.
However, the fine-tuning problem will be isolated in the
gap equation; i.e., once we tune 6 to admit the desirable
solution we need cancel no other quadratic divergences in
other amplitudes.

8. Scalar and Goldstone modes

Let us now assume that the parameters 6, A admit a
solution for m, to the gap equation, Eq. (2.3). We now
consider the sum of scalar channel fermion bubbles of
Fig. 2 generated by the interaction Eq. (1.1):

FIG. 2. Bubble sum generated by the four-fermion interac-
tion.

This- section is mostly a digest of results, and a more de-
tailed discussion is given in Appendixes A and B. We
presently ignore all gauge-boson and composite-Higgs-
boson radiative corrections. The "bare" relationships
emerge between the composite-Higgs-boson, top-quark,
and W-boson masses. These relationships are only ap-
proximate, and in Sec. IV we will give the precise predic-
tions, after abstracting the compositeness conditions to
the full theory.

A. Gap equation

We will begin by summing the planar bubble diagrams
in which the four-fermion interaction of Eq. (1.1) is
iterated. We first consider the solution to the gap equa-
tion for the induced top-quark mass. This is indicated as
in Fig. 1:

(2.1)
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r, (p')= —
—,'G —

( —,'G)'i f d x e't'"( T tt(0)tt(x))„„„„„d

+ 0 ~ ~ (2.4)

A useful technical trick for evaluating this amplitude
while simultaneously implementing the gap equation is
given in Appendix A. The result is

I,(p )= (p —4m, )(4~}
1

C

X f dx in{A /[m, x(—1 —x)p ]j
0

(2.5)

I, is the propagator for the dynamically generated bound
state, a scalar composite of tt. In particular, owing to the
pole at p =4m, , we see that the theory predicts a scalar
bound state with a mass of 2m, (Ref. 1). This is a stan-
dard result quoted for the Nambu-Jona-Lasinio model.
We emphasize that this bound state is the physical, ob-
servable, low-energy Higgs boson, and the prediction
holds here only to leading order in 1/N, in the absence of
gauge-boson corrections.

This physical particle is a bound state of tt, arising by
the attractive four-fermion interaction at the scale A of
Eq. (1.1). One might think that this is a loosely bound
state, since it lies on top of the threshold for open tt and
apparently has vanishing binding energy to this order.
However, this is not a nonrelatiuistic bound state, and
normal intuition does not apply. The prediction
mH =2m, cannot be viewed at this stage as a very precise
one. In fact, the essential point is only that this is a
composite-Higgs-boson model and we will give a more

precise determination of its mass in Sec. IV upon consid-
ering the full renormalization-group behavior of the com-
plete theory.

Since the mechanism is a dynamical breaking of the
continuous SU(2) X U(1) symmetry, it must imply the ex-
istence of Goldstone modes. Moreover, the symmetry
breaking transforms as I=—,

' and will produce the same

spectrum of Goldstone bosons as in the standard-model
Higgs sector. A Goldstone pole thus appears in the bub-
ble sum for the neutral-pseudoscalar channel:

I (p )= —
—,'G

—
( —'G) i

2

X "X e' " T ty5t 0 ty5t & connected

+ 0 ~ ~ (2.6)

r, (p') = (p')(4~)-'1

2Nc

X f dx in[A /[m, —x(1—x)p ]j
0

(2.7)

and the Goldstone pole at p =0 is seen to occur explicit-
ly.

Moreover, charged Goldstone modes appear in the
flavored channels corresponding to the quantum numbers
of the 8'boson:

By similar manipulations as in Eq. (2.5) and use of the

gap equation we find

rz= —
—,'G —( —,'G) i fd x e'~"(Tb(1+y5)t(0)t(l —y5)b(x))„„„„„d+

whence
r

I F(p )= (p )(4m) f dx(1 —x)in[A /[(1 x)rn, x—(1 —x)—p ]j8N, . o

(2.8}

(2.9)

where we have assumed mb =0.

C. Vector bosons

Thus far we have considered only a conventional
Nambu —Jona-Lasinio model for the symmetry group
SU(2)XU(1) in the absence of gauge fields. Now let us
consider the model with the gauge coupling constants re-
stored. Of course, we have a dynamical Higgs mecha-
nism and the gauge bosons acquire masses by "absorb-
ing" the dynamically generated Goldstone poles. We ob-
tain a second prediction of the theory in the form of a re-
lation between the F-boson mass and the top-quark
mass.

Consider now the inverse propagator of the gauge bo-
sons. We rescale fields to bring the gauge coupling can-
stants into the gauge-boson kinetic terms; i.e., we write
the kinetic terms in the form ( —1/4g )(F„„). We are

not integrating over the gauge-boson fields and need
specify no gauge fixing at this stage. Thus, for the 8'bo-
son we have

, D„,(J) '=, (p~.—g„.s
g2 82

+—' f d~x ( T )~y„bL (0)bt y, tt (x ) ),
(2.10)

where g2 is the SU(2) coupling constant. For the T
ordered product we again expand in the interaction La-
grangian of Eq. (1.1) and sum the planar bubbles, Fig. 3.

FIG. 3. The planar loops contributing to gauge-boson propa-
gators.
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We assume the top quark has a mass satisfying Eq. (2.3),
and the gap equation is satisfied in the loop expansion,
which maintains the gauge invariance. This sum can
thus be written in terms of the flavor bubbles evaluated in
Eq. (2.9) (see Appendix A).

It is useful to write the induced inverse 8'-boson prop-
agator in the form

Dw( )
—i —

( /p2 g ) p2 f 2(p2)
g 2(p')

(2.11)

The 8'-boson mass is the solution to the mass-shell condi-
tion

Mw~=p =g 2(p }f (p } (2.12)

while the Fermi constant is the zero-momentum expres-
sion

GF

Sf (0)
(2.13)

and

X ln I A /[xmb + (1—x )m,

—x(1—x)p']]

(2.14)

f (p2}=N, (4n ) f dx[xmb+(1 x)m, ]—
Xlnt A /[xmb+(1 —x)m,

—x(1—x)p ]I .

(2.15}

At this stage of the approximation it is useful to note the
quantitative result for m, in terms of GF. Equation (2.13)
combined with Eq. (2.15}gives

1'(0)=
4&26~

1

=N, (4m) f (1—x)m, lnIA /[(1 —x)m, ]J
0

= —,'N, (4m) m, ln(A /m, ) . (2.16)

For example, with A= 10' GeV one finds m, = 165 GeV.
To what extent is this an accurate prediction for m, ?

For one, it is valid only in leading order of 1/N, with

g3 =0. This result, moreover, neglects the full dynamical
effects of gauge bosons and the composite Higgs boson,
which should be included in the renormalization-group
running belo~ the scale A. We note that this result is
substantially less than our full standard-model result as
obtained in Sec. IV.

Note, therefore, that our normalization conventions re-
late f(0) to the standard-model Higgs vacuum expecta-
tion value (VEV) U as follows: U =(GF&2) '~ =246
GeV=2f (0). In the bubble approximation we find

1 1 +N, (4m) f dx 2x(1 —x)

Analogous results are obtained for the neutral gauge-
boson masses, but they contain no additional information
beyond that described here, a consequence of the conven-
tional I =

—,
' breaking mode. The only technical challenge

in the analysis is that we now have the mixing between
the U(1) and neutral SU(2) gauge bosons induced by the
difference between the top-quark and b-quark masses.
We give the full analysis of this in Appendix A. More-
over, the usual p parameter relationship for m, is ob-
tained.

In Appendix 8 we observe that the evolution of the
coupling constants g, and gz [as seen in Eq. (2.14)] is
equivalent to that given by the renormalization group for
the truncated model in the bubble approximation (i.e.,
without gauge coupling constants). Thus, the effective
Lagrangian at scales below A must produce this evolu-
tion. We thus turn now to a discussion of this effective
Lagrangian.

III. LOW-ENERGY EFFECTIVE LAGRANGIAN

A. Induced Higgs scalar

L =Lkinetic+gio('lL t„H+H. c. ) moH H . —(3.1)

If we integrate out the field H we produce the four-
fermion vertex as an induced interaction with
6 =g,o/mo. Note here that mo-A, and positive, im-
plies an attractive interaction. For low-energy phenome-
na we may wish to keep the effective Higgs field and in-
tegrate out the short-distance components of the fermion
fields. The analysis of Sec. II may be interpreted as im-
plying that at scales below the cutoff A Higgs field H de-
velops induced, fully gauge-invariant, kinetic terms and
quartic interaction contributions in the effective action.

In Sec. II and Appendixes A and B we derived the
low-energy effects of dynamical symmetry breaking pro-
vided by a suSciently attractive four-fermion interaction
involving the top quark as defined in Eq. (1.1). We con-
sidered a model based on a conventional sum of the fer-
mion bubble diagrams associated with the leading large-
N, limit with g3 =0. This simple model generates
dynamical masses for the top quark and gauge bosons of
the standard model, as well as a bound state correspond-
ing to the usual physical Higgs scalar of mass 2m, . In
Appendix 8 we show that the fermion bubbles yield their
conventional contribution to the running of the gauge
coupling constants and the explicit cutoff dependence can
be absorbed by appropriate renormalization of these cou-
plings. The effective Higgs vacuum expectation value,
~ f(0), has the normal isospin structure related to the p
parameter but remains sensitive to the cutoff A as its
dependence cannot be absorbed by renormalization. Our
calculations imply that the effective low-energy dynamics
is, in fact, just the usual standard model with certain con-
straints on the fundamental parameters of the theory.

We can see the connection with the standard model by
using a Yukawa form of the four-fermion interactions as
defined at the cutoff scale A, through the help of a static,
auxiliary Higgs field H (see, e.g., Eguchi ). We can
rewrite Eq. (1.1) as
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Indeed, we can exactly reproduce the results of the previ-
ous section if use the large-S, limit to compute the fer-
mion loop contributions.

The full induced effective Lagrangian will take the
form

tic coupling A,o, as seen in Eq. (3.3) is consistent with the
contribution of a single quark-doublet contribution to the
renormalizaton-group equation. The conventional Higgs
and Higgs- Yukawa coupling constants should be
identified with

L =Lk;„„;,+gro(tr)Ltt(H+H. c. )+bLs,„, 0/ZH, g, g—to I (/ ZH (3.&)

+Z„ID„HI' m'—H'H '—(H'H)', (3.2)
satisfies, in the full standard model, the one-loop

renormalization-group equation

where D„ is the gauge-covariant derivative and all loops
are now to be defined with respect to a low-energy scale
p. Here ALs, „s, is the usual fermion loop contribution to
the renormalization of the gauge coupling constants as
given in Sec. II C and Appendix B. A direct evaluation
of the induced parameters in the Lagrangian gives

Ztt =(4n) groN, ln(A /IJ. ),

mH=mo —(4n) g,o(2N, )(A —p, ),

A,o=(4n. ) g,o(2N, )ln(A /p ) .

(3.3)

The Lagrangian of Eq. (3.2) is exactly the same as the
usual low-energy standard model, except that we are not
free to renormalize the two induced parameters ZH and
A,o, which must have an explicit dependence upon A, van-

ishing when p~A. The mechanism for spontaneous
symmetry breaking is now seen in the effective Higgs-
boson mass which is driven by the additive quadratic
dependence upon A to a finite, negative value by the fer-
mion loop contributions; the bare mass mo requires the
usual fine-tuning to produce a finite VEV of the Higgs
field (or top-quark mass).

We may use the above tree Lagrangian to estimate the
physical spectrum of the low-energy theory. First, we re-
scale the field H~HIQZH in Eq. (3.2) and then denote
the real, physical neutral component of H as
H =h /&2. We then find

m, =g„(h') /+2Z„,
m„'() = 2mH /Z„—=A,,(h') '/ZH2

=2( //(Z0g,H() )m, =4m, ,

f =m z /(g ( +g z ) = ) ZH ( h ) ~ = ) (ZH Igi )mi

=(N, /2)(4 )re, ln(A /p ) =f

(3.4)

which agree with the previous results for the divergent
parts in Sec. II. Indeed, we have previously noted that
the running of the gauge coupling constants are as ex-
pected in the leading-X, approximation. Full agreement
with the previous section's results can be achieved by
adding the low-energy fermion loop corrections to the re-
sults of Eq. (3.4).

At this point it is useful to anticipate the discussion of
Sec. IV concerning the renormalization-group evolution
of the quartic Higgs-boson coupling constant. The high-
energy renormalization-group running of the Higgs quar-

16ir A, =(12k, +4N, Agt 4N,—g, ),cl

8 1np
(3.6)

where the fermion loops contribute the last two terms.
Combining Eq. (3.3) for ZH and A,o, with Eq. (3.5) and
performing the differentiation with respect to lnp, one
sees that A. satisfies the renormalization-group equations
with only fermion loop effects.

We have seen that the introduction of the four-fermion
terms at the scale A can be written in terms of the static
Higgs field with Yukawa couplings to the fermions. In
the large-X, limit the theory evolves at low energy to a
complete standard model with a dynamical Higgs field.
The appropriate renormalization-group equations are just
those obtained in the usual standard model. The compos-
iteness conditions ZH=A, O=O are associated with the
boundary conditions for the running coupling constants
at the high-energy scale A. The composite Higgs theory
can be identified with entire renormalization-group tra-
jectories of the full standard model. This statement is ex-
act in the large-t, limit as we have shown by explicit cal-
culation.

We now conjecture that this same identification can be
made beyond this approximation. At low energy the
standard model is not dominated by the fermion loop
contributions, and radiative corrections from virtual
gauge and Higgs propagation are essential. However, we
expect that the renormalization-group trajectories for the
composite Higgs theory should be associated with the
vanishing of ZH and A,o for the full theory just as the nor-
mal Landau ghost poles are associated with the existence
of composite gauge bosons. Our treatment of the full
renormalization-group equations is given in Sec. IV.

B. Generalizations

where 0 =e; H~ . The standard Cabibbo-Kobayashi-
Maskawa structure can be readily input. Also, axion and
familon degrees of freedom can occur at the generalized

The dynamical model presented here may be general-
ized in several directions. First, it is readily seen that the
full standard-model couplings for fermions, including
light quarks and leptons, may be incorporated into the
structure of the four-fermion Lagrangian. The Yukawa
couplings in Eq. (3.1) may be generalized to the full set of
massive fermions:

+guP(@i quark'
( 2 3+)H/+H C )

+g down()T) i quark~)( —1/3)Hc+ H C )lJ L

lepton(tT) i lepton j ( —1)Hc+H c ) m 2~1'H (3 7)
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level of Eq. (3.7}. Integrating out the static auxiliary
Higgs field produces the fundamental four-fermion in-
teraction.

More general four-fermion interactions may require
more than one auxiliary Higgs field which then may also
become dynamical at low energies. However, while we
can always introduce elementary spectator Higgs dou-
blets into the standard model which do not couple to
quarks or leptons, all of the composite Higgs bosons must
couple to matter fields. Thus, the dynamical mechanism
is less general than the standard model; i.e., the four-
fermion interactions admit a limited number of "square
roots. " An analysis of the allowed dynamical Higgs bo-
sons will be given elsewhere.

The fermion mass matrices observed at low energy de-
pend upon the specific structure of the four-fermion in-
teractions introduced at high energy, and no obvious
simplification occurs from the composite Higgs mecha-
nism. We will return to these issues elsewhere.

IV. PREDICTIONS OF THE FULL STANDARD MODEL

constant for the Higgs-Yukawa (Higgs-quartic) interac-
tions, and the overbar will henceforth denote quantities
in the conventional normalization conditions.

In the present case, however, the Higgs field is dynami-
cal with a vanishing wave-function renormalization con-
stant at the scale A. It is useful, therefore, to adopt an
"unconventional" normalization convention which does
not set ZH =1. At the scale A we have a finite coupling
constant 6 =gr0/mH. That is, we have the following
conditions at A (in terms of the unconventional normali-
zation):

g~p~const, Ztt ~0, A,O~O (4.3)

1
ZH

g ', (p')
(4.4)

It is easy to see that the transformation H~H/g, (p, )

with the running Higgs-Yukawa coupling g, (p ) trans-
forms the conventional normalization into that required
by Eq. (4.3). We thus have

A. Renormalization-group boundary conditions

A(p }
—4( 2)

(4.&)

We have seen in Sec. III that the interaction of Eq.
(1.1) can be described by an induced auxiliary Higgs sca-
lar. Below the scale A the field H acquires gauge-
invariant kinetic terms and quartic interactions. The
dynamical origin of the Higgs field thus irhplies special
boundary conditions on the Higgs-Yukawa and Higgs-
quartic coupling constants at the Higgs compositeness
scale A.

Consider again the Lagrangian of Eq. (3.2):

L =Lk;«„,+g,o(%' t. tRH+H. c. )

where the tilde will henceforth denote the normalization
convention appropriate for compositeness.

The conditions Eqs. (4.4) and (4.5) allow us to discuss
the compositeness conditions Eq. (4.3) in terms of the
usual running couplings g, (p ) and A,(p ) of the standard
model. It is clear that Ztt ~0 requires g, (p, ) to blow up
at A. We may utilize the full one-loop P functions
(neglecting light-quark masses and mixings) of the stan-
dard model:

(4.6)

(4 1) and, for the gauge couplings,

ZHY Z4H
Rr= gt0& ~

2 ~0 &

QZBZ)1.ZtR
(4.2)

where Z~r(Z4~) is the proper vertex renormalization

We include here the gauge-invariant kinetic terms of the
Higgs doublet and its quartic interaction as well as the
wave-function normalization constant ZH and the top
quark will have its own gauge-invariant kinetic terms
separately for left- and right-handed fields with wave-
function normalization constants Z«and Zrz.

Conventionally one normalizes the kinetic terms of a
field theory at any scale p with a condition that the kinet-
ic terms have free-field theory normalization. That is, we
may exercise our freedom of rescaling the various fields,
H, O'L, tz, etc. , to define ZH=1 and Z,I =Zr& =1, etc.
This is accomplished by, e.g. , computing one-particle-
irreducible (1PI) matrix elements of the kinetic terms
treated as local operators and obtaining perturbative ex-
pressions for the Z;, and then absorbing these overa11
multiplicative factors into the fields, H ~H /QZ&,
O'L ~%'&QZ,L, tR tR /QZ, R, etc. The coupling con-
stants, such as g, and k are then renormalized as usual:

with

g
16m = —c gdt

C6 3/gC1 1 3'

(4.7)

(4.8)

where Nz is the number of generations and t =in@.
One can see from Eq. (4.6) that once g, is sufficiently

large, it will diverge as it evolves to a higher scale.
Neglecting the small gauge contributions for sufficiently
large g, we have

dgr
16m. = -'g

dt

equivalently,

dZH

dt
9 =const & 0 .

16m

(4.9)

ZH thus decreases asymptotically with a linear slope in
t =in@ and becomes zero at the Landau singularity of
g, (p ) at A. Although one-loop P functions do not per-
mit an extrapolation all the way to ZH =0, a large part of
the linear decrease toward the compositeness scale is fully
reliable (e.g., Z~ 0.08 is within the perturbative regime
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of a, 51). Indeed, lattice gauge theory has generally
confirmed that perturbation theory is quantitatively reli-
able in analyzing the initial conditions leading to these
fixed points. This behavior is illustrated by the solid
lines of Fig. 4 where the full Eqs. (4.6) and (4.7) are used
to numerically plot Z.

The precise value of the top-quark mass will be given
by running g, (p ) from very high values at a given com-
positeness scale A down to the mass-shell condition

g, (m, )v/&2=m, . For large g, the P function Eq. (4.6) is
positive and changes slope drastically with changes in g, .
Large initial values for g, at A become small if one goes
to smaller scales and the nonlinearity focuses a wide
range of initial values into a small range of final low-
energy results. Once g, becomes smaller, the slowly
changing gauge couplings are important. For an estimate
one can assume that the gauge couplings are constant
which indicates why the solutions are attracted toward
the "efFective low-energy fixed point":

g, (Mz ) =0.127+0.009,

g 2(Mz ) =0.44620.020,

g 3(Mz ) = 1.44 +0.19 .

(4.11)

16m =12[A, +(g, —A }iL+B—g ~], (4.12)

where

We calculate errors both from the uncertainties of the ex-
perimental input and by varying the initial conditions at
A. For high A the uncertainty in a3(Mz) dominates the
error while for A the errors become bigger due to the use
of perturbation theory. The quoted perturbative errors
are obtained by varying the top-quark mass so that
a, =g 2/4n becomes unity at the scale A, instead of
infinity. Further small corrections are expected from
higher-order contributions to the fixed points.

The Higgs-boson mass will likewise be determined by
the evolution of X given by

(4.10)
4g &+4~& ~ 6g i+sg &g2+ g2 (4.13)

In general, the couplings are only evolved over a finite
range of t and the effective fixed point will not always be
reached for all initial values. However, for the case of the
composite Higgs bosons, as discussed here, the fixed-
point is always reached. The action of the effective fixed
point makes the top-quark-mass prediction very insensi-
tive to the initial high values of the coupling constant
close to A. Considering ZH~O, the uncertainties of
higher orders can be viewed as an uncertainty in the pre-
cise position of A [see Fig. (4)].

In Table I we give the resulting physical m, obtained
by a numerical solution of the renormalization-group
equations as a function of A. We use Mz =91.17 GeV
and the gauge couplings

= 12g, (x —x )(x —x+ ),
x~ =(—1%&65)/8, x+ =0.88, x = —1.13 .

(4.14}

(4.15)

Since the right-hand side (RHS) of Eq. (4.14) factorizes

In Fig. 5 we present the results of numerically integrating
Eq. (4.12) with the corresponding evolution of g, .

To understand the behavior of the solutions for X it is
convenient to define x =Ag, . The compositeness con-
ditions of Eq. (4.3) require that X=A/g 4~0 as @~A.
Consider Eq. (4.12) with A =B=0:

16m' =12g, (x +x/4 —1)2 dx
dr

.5—

e) r~
rr

f)

10 20
in(p/Mz)

30

FIG. 4. The renormalization-group evolution of the wave-
function normalization constant ZH (solid lines) and quartic
coupling A, (dashed lines) for three different scales A. Initial
values of A, are chosen to be precisely on the fixed point. Both
quantities go to zero at p= A.

I l I 1 l I I l .I I I I

10 80 30
)nQ/M, )

FIG. 5. The evolution of A, for different initial values and
A=10" GeV. In (a) the initial value is chosen slightly above
the fixed point and X diverges at A. In this case the composite-
ness condition cannot be satisfied. Case (b) corresponds to evo-
lution on the low-energy attractive fixed point. The cases (c)-(f)
show that the low-energy result is insensitive to the initial con-
ditions at A. Zz is also plotted as a solid line.
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TABLE I. The predictions for the physical top-quark and Higgs-boson mass for different scales A. One-loop P functions are used

with g, (Mz) =0.127+0.009, g2(Mz)=0. 446+0.020, a, (Mz)=0. 115+0.015, and Mz =91.17 GeV as input. The numbers are ob-

tained for the central value of these input data and requiring the on-shell condition m(m) =m. Variation of the gauge couplings
within their errors results to a very good approximation in a change of +6 GeV for the top-quark mass and +4 GeV for the Higgs-
boson mass. The rows labeled "pert." show the change in the result if we change the couplings at the cutoff to unity instead of
infinity, as a measure of the errors induced by using perturbation theory.

A (GeV)

mr " (GeV)
Pert.
m jP"' (GeV)
Pert.

10"

218
+2
239
+3

1017

223
+3
246
+3

1015

229
+3
256
+4

10"

237
+3
268
+5

10l I

248
+5
285
+8

10"

255
k6
296
k9

10'

264
+7
310
+11

10'

277
+9
329
+15

10

293
+12
354
+21

10

318
+16
391
+32

10'

360
+25
455
+56

104

455
+45
605

+142

into g, F(x), and g, is diverging as we approach A, we
can see that the variable x =kg, grows faster than g,
for x )x+. Thus A, is diverging as it approaches A and
we cannot satisfy the compositeness conditions on this
trajectory. For x=x+ we have an ultraviolet unstable
fixed point, and since the P function (4.14) vanishes, x
remains constant and therefore X=g, x+. On the other
hand, for x ~x &x+, Eq. (4.14) shows that x is driven
toward the fixed-point x . In this case A. evolves as

g, x and will tend to zero as it approaches A. The ra-
tio X/ZH approaches a constant, indicating that the two
quantities do not run independently.

For the physical-Higgs-boson mass we have again two
mechanisms which make the prediction very stable. If
we start with the compositeness condition at A then the
preceding discussion shows that the ultraviolet unstable
fixed point x+ becomes attractive as we evolve down-
wards in scale. This means that A, is attracted toward

g, x+ =ZHx+. Once the couplings become smaller the
effect of the smoothly varying gauge couplings is impor-
tant which further reduces the sensitivity to the precise
initial value at A. Thus we conclude that the composite-
ness condition forces the low-energy values close to the
infrared-stable fixed point. This corresponds to the
dashed lines in Fig. (4) and the dashed-dotted line (b) in
Fig. 5. The resulting Higgs-boson masses as a function of
A are also shown in Table I together with their errors.

Also the CHARM II Collaboration has published a new
determination of sin 8II, for v —e (Ref. 8). Inclusion of all
these new data leads to Fig. 6 where curve (a) corre-
sponds to the Amaldi et al. analysis of neutrino deep-
inelastic scattering. The allowed region can be contrast-
ed with Fig. 5 of Ref. 7 prior to the precise measurement
of Mz and is now significantly more restrictive. For our

4 I I I I
)

I I I I
)

I I I I
)

I I I I

300—

dent determinations of sin HII, have significantly larger
errors, are thus of less statistical weight, and may for the
purposes of discussion be ignored presently, though they
are included in our figures. Of central importance is the
magnitude of the quoted errors of the v DIS, as we corn-
ment upon below in (ii).

The inclusion of the precisely measured value of
Mz=91. 17+0.18 by the SLAC Linear Collider (SLC)
(and now CERN LEP) drastically changes the statistical
weight of sin 8~ as defined through the formulas

sin HII cos 8 II, = A /(1 —ER )Mz, A
ma

&ZG,

(4.16)

B. Phenomenological constraints

The resulting prediction of the full standard-model
analysis is a top-quark mass that might be considered
large in comparison to certain pubhshed theoretical
upper limits. Indeed, it has been claimed that the p pa-
rameter limit implies m, 5 180 to 200 GeV (Ref. 7), and
this is the most stringent quoted limit. Our principal
comments concerning the p parameter limit are as fol-
lows.

(i) The quoted limit of Amaldi et al. arises from a two-
parameter fit to a confidence-level distribution. This
confidence-level distribution is derived from comparing
the results of a global analysis of neutrino deep-inelastic
scattering (v DIS) to sin OII, =ma/[&26F(1
—b,R )Mz~, ]. Here b,R parametrizes the radiative correc-
tions which bring these two independent determinations
into agreement, and is a function of m, . Other indepen-

200—
a)

100—

0 I

.2
) I I

.21
) I

.22
2sin e~

I

.23 .24

FIG. 6. Allowed regions (at 90% C.L.) for m, and sin 0~ for
three error hypotheses in the v DIS experiments. These are
drawn for (a) m, =1.5+0.3 GeV [equivalent to Amaldi et al.
(Ref. 7) with precise Mz and mH =250 GeV]; {b) m, =1.3+0.5

GeV apropos (Ref. 8); (c) disregarding deep-inelastic-scattering
data to indicate its overall statistical weight in the limit on m, .
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plot in Fig. 6 we choose mH-—260 GeV as suggested by
our model.

(ii) One should understand that the high statistics of all
of the v DIS experiments owes to copious data in the re-
gime where the charm quark is being excited in charged-
current processes (particularly the narrow band beam
CERN experiments). Yet no description of the charm
threshold is perfect below -80 GeV. Other effects, such
as hard-gluon radiative corrections, may be significant.
We further emphasize here that m, should be viewed ap a
parameter in the slow rescaling analysis, and should not
be taken literally as the physical charm mass. The mean-
ing of the ascribed error in the parameter m, =1.5+0.3
GeV is unclear from the discussion of Ref. 7.

The Chicago-Columbia-Fermilab-Rochester (CCFR)
Collaboration has obtained data at energies in and well
above the charm threshold region and future determina-
tions of sin I9+, from this data may be subject to less un-
certainty in the charged-current processes. Their present
fit to the parameter m, is m, =1.31+048 GeV. For the
sake of discussion, taking exclusively the results of Ref. 8
would imply an approximate doubling of the overall
v DIS errors which would drastically reduce its statistical
weight as well as shifting the central values, leading to a
lower mean sin 8~. Thus, through the m, dependence of
AR (Ref. 9), this would translate into a higher upper limit
than derived in Ref. 7.

Simply to give the reader a feeling for this sensitivity to
quoted errors, we note that upon replacing m, =1.5+0.3
GeV by 1.3%0.5 GeV, the v DIS data correspond to the
increase in the 90%%uo confidence level m, ~ 200 to m, S 250
GeV in Fig. 6. Thus, in Fig. 6 we give the curves (b)
representing the confidence-level contours for m, with
the liberalized error assumptions, We also present the
determination sans v DIS in curves (c) to give the reader
a feeling for the overall v DIS statistical weight in deriv-
ing the top-quark-mass limit. We emphasize that we do
not argue here against the applicability of v DIS in obtain
ing a precision test of the standard model, nor that the
analysis of Ref. 7 is herein superseded, but rather we wish
to emphasize the important sensitivity to the quoted er-
rors and, in turn, to uncertainties in the underlying ha-
dronic processes.

In the left box denoted (A) of Fig. 7 we have displayed
several other determinations of sin 8~ from, e.g. , atomic
parity violation, ve scattering, etc. The combined results
from four deep-inelastic-scattering experiments for two
different values of the fitting parameter m, (1.5+0.3 GeV
and 1.3+0.5 GeV) are also shown. The box denoted (B)
shows the resulting combined values for the two fitting
parameter assumptions. These are then to be compared
with box (C). The combined scattering data of the box
(B) have a small top-quark-mass dependence which is not
displayed here (less than 20% for the indicated range of
m, in the right box). Note the relatively strong depen-
dence of these results on both m, and its error due to the
change of the central value and statistical weight.

In box (C) we show sin 8~ as obtained from Eq. (4.16)
for various values of m, . The dependence on the top-
quark mass arising through hA is ~ m, for large m„' the

0.26

vp

~ ~ ve
0.24 —*

APv " v DIS mu GeU

100150 200 250

0.22

I&

vi 0.20

m, =1.5 1 3
+0.3 +0.5 1 5 1 3

GeV yp3 y05
GeV

0.18

0.16 —(A) scattering experiments (B) comb. (C) rad. corr (D)—

FIG. 7. Comparison of sin 8~ from different experiments
with M~, Mz, and radiative corrections. Box (A) shows data
from different experiments (the mild radiative corrections for

m, =45 GeV and mH = 100 GeV are included here as in Ref. 8).
The lower ve point represents a combination of CHARM and

BNL E-734 accounting 80% of the world's data on ve reactions
with well-controlled systematic errors [see Abe et al. (Ref. 8)].
Box (B) shows the combined result to be compared those

displayed in box (C). Box (D) shows sin'0~ =1—M~/Mz.

M~ =80.73+0. 15+0.009(m, —230) . (4.18)

If, ultimately, the theoretical top-quark-mass predic-
tion proves to be too high then it is sti11 possible, albeit
possibly less compelling, to maintain this mechanism by
assuming that the gap equation (2.2) is saturated by a
fourth generation. The top quark then plays no impor-
tant role itself in the symmetry breaking of the standard
model and should have a mass between current lower
bounds, but presumably much less than the predictions

Higgs-boson-mass dependence is very mild and we choose
200 GeV. To the far right in box (D) we give the present
experimental value for the definition sin Ha
=1—Ma, jMz using the combined results of the UA1,
UA2, and Collider Detector at Fermilab (CDF) Colla-
borations for M& and Mz. One can see that, upon com-

paring to the previous data, the errors here principally in
the 8' mass are too large to lead to a significant top-
quark-mass bound, but this situation may change in the
not-too-distant future.

Thus, the oft-quoted limit on m, arises essentially in

comparing the v DIS results of box (B) to the results in

box (C) which are sensitive to m, . The resulting limit

hinges crucially upon the experimental errors in v DIS.
We see from Fig. 7 that it does not appear to be in
significant conAict with these data to allow m, to be as
large as 250 GeV.

In summary, we feel that it is premature to reject pre-
dictions of a very heavy top quark, up to at least -250
GeV, based upon the present status of the precision mea-
surements to date. Note that, by incorporating the data
with our prediction, we favor A~10" GeV. The phe-
nomenological predictions for sin 8~ and M~ are sum-
marized by the equations

sin 0~=0.215+0.002+0.00017(230—m, ), (4.17)
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TABLE II. Predictions for a degenerate fourth-generation quark doublet with the same input data as in Table I. The top-quark
and the fourth-generation leptons are assumed to be much lighter than this quark doublet. The variation of the gauge couplings re-
sults in a change of k7 GeV for the quark masses and %5 GeV for the Higgs-boson mass.

A (GeV)

mf""' (GeV)
Pert.
m JI""' (GeV)
Pert.

10"

199
+1
235
+1

10"

202
k2
241
+2

10'

206
k2
248
+2

10"

212
+2
258
+3

10"

220
+3
272
+4

1010

226
+4
282
+6

10'

233
+5
294
a7

10'

243
+7
310
+10

10

257
+10
333
+15

10

277
+14
365
+22

10'

312
+22
423
+39

104

388
+39
553
+99

for the masses of the fourth generation. In Table II we
present the corresponding predictions for the masses of a
degenerate fourth doublet. The resulting modified pre-
dictions for the Higgs-boson mass as well as the corre-
sponding errors are also shown.

V. CONCLUSIONS

Our principal conclusions are as follows.
(1) The gauged Nambu —Jona-Lasinio mechanism

within the framework of the standard model, dynamically
broken by a strongly coupled top quark which forms a
condensate (, tt ), may be implemented in the fermion
loop approximation (or large N, with vanishing g3). It
yields primitive relationships between M~ and m, and
the cutoff A, and the Higgs-boson mass is determined as
mH =2m, . The latter relationship has been emphasized
by Nambu. ' From our point of view, the relationships
obtained in this part of the analysis are crude, but
correctly indicate that the low-energy effective Lagrang-
ian is the standard model with conventional running of
coupling constants and with the special compositeness
condition ZH ~0 as p~A.

(2) We infer that ZH ~0 as p, ~A is the general com-
positeness condition for the Higgs boson of the full
theory. The conventional normalization Z+=1 implies,
equivalently, that g, and X diverge as @~A. This con-
straint, in turn, implies that the low-energy values of
these coupling constants are controlled by the
renormalization-group infrared fixed points. Consequent-
ly, the low-energy results are insensitive to the detailed
behavior of g, and X as p —+A.

(3) We give our results for the full standard model as
functions of the scale of new physics (or Higgs-boson
compositeness scale), A, . Our favored results for m, are
the lower values, as constrained by phenomenological
considerations; hence, m, =230 GeV and mH =260 GeV
with A=10' GeV. The mechanism may be adapted to a
fourth generation, or a multiple dynamical Higgs-boson
scheme, though our primary impetus is in the connection
with the top quark since the lower-mass limits on the top
quark are suggestive of a strongly coupled system. '

(4) As per the discussion of Sec. IV B, we believe that
existing phenomenological bounds on m, are not yet
suf5ciently restrictive to eliminate this scheme for large
scales A~10" GeV and m, &250 GeV. A better under-
standing of the v DIS experiments could possibly rule out
our mechanism involving the top-quark dynamics.

As our discussion has indicated, the compositeness of
the auxiliary Higgs field leads to predictions for the top-

qu~rk and Higgs-boson masses which are equivalent to
effective fixed-point arguments. There is some confusion
in the literature on what these fixed points really mean.
We emphasize that for us, the fixed point in g, is that pre-
viously considered in Ref. 5, and is quite distinct from
that originally proposed by Pendleton and Ross." The
proposal of Pendleton and Ross focused upon a relation-
ship between g, and g3 which causes the ratio of these
coupling constants to be fixed for all scales. It is thus a
"reduction of coupling constants" in the language of
Kubo, Sibold, and Zimmermann. ' The reduction is real-
ly a far-UV constraint; i.e., one assumes that g, must
smoothly go to zero with g3', hence, the rate of change of
lng, /g3 must vanish asymptotically. Our mechanism is
not a coupling constant reduction in this sense, and g3
only acts to control g, as we approach the infrared.
Nonetheless, we were driven to consider the infrared
fixed point from a specific compositeness condition imple-
mented at A. We should remark, however, that with
respect to X, the Higgs-quartic coupling constant, our
mechanism does involve, in some sense, a reduction of
coupling constants from A, to g, in the sense of Ref. 12,
but here the couplings are diverging together, rather than
approaching zero uniformly. Note that previously fixed-
point ideas have been used primarily to give probabilistic
values of low-energy parameters irrespective of their
high-energy values. We have shown presently that cer-
tain renormalization-group trajectories actually follow
from compositeness constraints. The derived masses are
closely related to the limits obtained from "triviality
bounds, " in particular, for a given scale A these are
equivalent to the simultaneous uppermost allowed values
of m, and mH (Ref. 13).

Marciano has recently considered ideas that appear
somewhat related to those discussed here, ' but in fact
difFer substantially in implementation and conclusions.
In the first part Marciano reemphasizes the Pendleton-
Ross trajectory"' independently of consideration of
dynamical symmetry breaking, and gives improved values
using up-to-date input parameters. In the second part of
the discussion he considers the Higgs boson to be corn-
posite. Here we are in fundamental disagreement on two
points. (i) At scales p«A the physical Higgs boson,
with gauge-invariant kinetic terms, must appear in the
effective action, so that effects of its propagation should
be kept in loops; hence the full standard model with the
effects of a pointlike Higgs boson in the renormalization-
group equations is relevant. These effects are neglected
in Ref. 14. (ii) The compositeness conditions are bound

ary conditions on g, and A, , following from ZII ~0 as de-
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scribed here, and not the asymptotic smoothness assump-
tions implied in Marciano's work (effectively as in Refs.
11 and 12).

Miransky, Tanabashi, and Yamawaki have indepen-
dently proposed the idea of a top-quark condensate driv-
ing the breaking of the electroweak interactions, and ob-
tain somewhat different results than those presented here.
The authors of Ref. 2 focus upon the idea of large anoma-
lous dimensions for the four-fermion interaction which is
interpreted as a signal for dimensional transmutation and
the occurrence of a scalar Higgs bound state. We do not
share this viewpoint. Indeed, the formation of a low-mass
scalar state, and top-quark-mass term, is fundamentally
tied to the fine-tuning of the gap equation which then
leads to the large-distance propagating composite parti-
cles. Without this fine-tuning it makes no sense to talk
about the scalar-boson state, as then the bubble diagrams
produce only a perturbative, local renormalization of the
four-fermion interaction. Anomalous dimensions refer
only to the local, short-distance renormalization effects,
and do not have anything to do with large-distance
dynamical propagating fields. For example, in QCD we
only consider the short-distance gluon radiative correc-
tions as comprising the anomalous dimension of a given
operator, e.g. , as in the nonleptonic weak interactions,
and which may be arbitrarily large; we do not consider
the pion propagation to arise as a consequence of, or play
a role in the anomalous dimension. Thus, we believe that
there is a confusion in Ref. 2 of short- and long-distance
effects and a lack of discussion of the relevant mechanism
which leads to long-distance propagating bound states,
i.e., the fine-tuning of the gap equation. [We note that
this should not be confused with the mechanism of walk-
ing technicolor (TC) in which large anomalous dimen-
sions are used justifiably to separate the scales of TC and
extended technicolor (ETC).j The vacuum structure of
the low-energy theory depends on the fine-tuning of the
composite Higgs-boson mass and both symmetric and
broken-symmetry phases of the theory can only be under-
stood on the basis of the dynamics of the composite
Higgs field. Although our general approaches are simi-
lar, it is not clear that the work of Miransky, Tanabashi,
and Yamawaki includes the fu11 dynamics of the effective
field theory at low energies as required by our analysis.
We should further remark that BCS theory has recently
been invoked by other authors' to conjecture a pattern
of quark and lepton masses and mixing angles, an ap-
proach that is orthogonal to our attempt to understand
dynamical mechanisms of electroweak symmetry break-
ing.

We have seen that our mechanism favors a large top-
quark mass, suggesting a correspondingly large value of
A-10' GeV, and a smaller value of sin 0~-0.21 to
0.22. These results suggest a number of questions for fur-
ther analysis, including the possible role of grand unified
theories, such as Georgi-Glashow SU(5), where our four-
fermion interactions could arise from the high-energy
GUT symmetry breaking. Of course, the gap equation
solutions for a low-energy electroweak symmetry break-
ing demands a fine-tuning, equivalent to the usual gauge-
hierarchy problem. Perhaps one is led to a supersym-
metric version of this discussion [and we remark that in
the case of SUSY SU(5) the fixed-point predictions for m,
do not radically change' ]. Or, the nature of the dynami-
cal breaking may be subtle and possibly a new mecha-
nism can be found to solve the fine-tuning problem which
locks 6 into approximate equality with 6, . It seems to
be interesting to explore those theories that will provide
the efFective interaction of Eq. (1.1), which was the start-
ing point for our analysis, with an eye to understanding
the origin of the small quark masses and mixing angles.

APPENDIX A: FKRMIONIC BUBBLEAPPROXIMATION

The present discussion shows how the dynamical-
symmetry-breaking mechanism through top-quark con-
densation works in a fermionic bubble approximation in
detail. We presently ignore all gauge-boson and
composite-Higgs-boson radiative corrections, keeping
only fermion loops.

We first recall the solution to the gap equation for the
induced top-quark mass. This is indicated as in Fig. I
and Eq. (2.1):

m, = —
—,'G(tt )

=2GN m Jd I(I —m )
(2n )

(A2)

We shall use Eq. (A2) in what follows. The result of
evaluating Eq. (A2) with a momentum-space cutoff A is
as given in Eq. (2.3).

We consider the sum of scalar bubbles of Fig. 2 gen-
erated by the interaction Eq. (1.1):
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I, (p )= —
—,G —

( —,'G) i J d x e'~"( T tt(0)tt(x) )„„„„„+ (A3)

We see that we may formally sum the series to obtain

I,(p )= —
—,'G 1 —2GN, d I(l m, )

' —GN, (4m, ——p ) Jd l(I m, ) '[(p—+l) m,jl—
(A4)
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Here the second and third terms in the denominator of Eq. (A4) come from a rearrangement of the terms in the
numerator of the Feynrnan loop integral and a shift of the loop momentum for the fermions. We thus see that the first
two terms in the denominator of Eq. (A4) cancel by virtue of the gap equation (A2}. Thus, performing the loop integra-
tions we arrive at

I,(p )=— (4, —p )(4 ) f d 1 IA/[, — (1— )p ]I
C

Analogously we obtain the results of Eqs. (2.7}and (2.9}.
Turning to the 8'-boson vacuum polarization, we have

D„,(p) '= (p"p" g""p—)+ f—d x( T tt y„bt (0)bt y„tl (x)),
gz

(A5)

(A6)

where g2 is the SU(2) coupling constant. For the T-ordered product we again expand in the interaction Lagrangian of
Eq. (1.1) and sum the planar bubbles, Fig. 3. We assume the top quark has a mass satisfying Eq. (2.3), and the gap
equation is satisfied in the loop expansion, which maintains the gauge invariance. Notice that this sum can thus be
written in terms of the flavor bubbles evaluated in Eq. (2.10):

D, (p) '= (p"p"—g""p )+— fd p Tr[y (1—y~)(P+g) 'y„(l —y~)(pl+km, '
)—']

—
—,'r, (p'), fd'I Tr[y„(1—y, )(P+y)-'(1+y, )(1—m, )-']

X
& f d q Tr[y„(1—y&)(P+g) '(1+ys)(g —m, ) '] . (A7}

An evaluation of these expressions leads to

D, (p) '=(p"p "/p —g"') p +p N, (4m) f dx 2x(1 —x)lnIA /[(1 x)m—, x(1——x)p ]J

m~2N, (4—n') f dx(1 —x)in[A /[(1 x)m—, x(1——x)p ]J (A8)

0 ( Tj„'(0)J'„(x)) ( Tj '(0)j'„(x))
'

(" —"" ')+ —'i dx
1/g

&

' ( Tj'(0)j'.(x) ) ( Tj'(0)j'„(x))
l

D„„(p)
gtSj

(A9)

where g, is the U(1}coupling constant. Here the currents are the usual SU(2) and U(1) neutral currents in the unmixed
basis,

We see that the overall inverse propagator is transverse, corresponding to a gauge-invariant Higgs mechanism.
Nonetheless there is a zero for nontrivial momentum, corresponding to the induced W-boson mass. From these follow
Eq. (2.11) to Eq. (2.16).

Analogous results are obtained for the neutral-gauge-boson masses. Presently we consider the inverse propagator of
the neutral gauge bosons as a 2 X 2 matrix of the form

»g~

j„=tly„tl —bl y„br,
J =—(tt, y tt. +bt. y bt. }+—(tay ttt } ', (btty—„b-tt )

(Alo)

(Al 1)

D'„,(p) '=(p "p "/p' g"")—
where

and the numerical factors in the individual terms of j„are the U(1) weak hypercharges. Agan we expand in the interac-
tion Lagrangian of Eq. (1.1) and sum the planar bubbles, Fig. 3. This can be evaluated to yield

1/g 2(p'}
2 t'2( 2)

0 1/g~(p~) p —1 1 ' p

1+ —,'(4m) f dx 2x(1 —x) ~4N, ln(A /[m, —x(1—x)p ]]+—', N, lncA /[mb —x(1—x)p ]I (A13)

and

1+—,'(4n) f dx 2x(1 —x)( ", N, lncA /[m, x—(1—x)p ])+—,'N—,lnIA /[mt, x(1—x)p ]I—) (A14)
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and we include, for completeness,

+N, (4m) f dx 2x(1 —x)lnIA /[xmb+(1 x—)m, x—(1—x)p ]J .
g 2(P')

Finally,

f 2(p2)=,'N, (4m) f dx 2x(1—x)p ln
mt,

—x(1—x)p + ,'N, m—, (4n) f dx 1nIA /[m, x(—1 —x)p ])
m,2 —x (1 —x)p 0

+ ,' N,—mb2(4m) f dx lnI A /[mb x—(1—«)p ]]

(A15)

(A16)

APPENDIX B: RENORMALIZATION
OF GAUGE COUPLING CONSTANTS

We thus see that the gauge couplings are subject to log-
arithmic evolution between the scales A and M&. We
may write the low-energy gauge coupling constants from
Eqs. (A13) and (A14):

1 1 + ,'N, (4n—) [41n(A /m, )+ ', ln(A -/mf, )]
g2(0) g2

(81)

and

1 =1 + & N, (47K)
—

2[ 2oln(A2/m 2)+. & ln(A2/m 2)]

(82)

We also have the running of g2 from the W-boson propa-
gator, Eq. (2.14):

1 1 2+N, (4n ) f dx 2x(1 —x)
g 2(0)

X ln [ A /[xmb + (1—x)m, ] I .

(83)

We see that the high-energy renormalization-group
running of g2 and g2 implied by the net coeScients of the
lnA in Eqs. (83) and (A13) is identical. Thus the high-
energy running in the unbroken phase corresponding to
momenta p )&m, will be consistently that given by ei-
ther of Eq. (83) or Eq. (A13) for a single SU(2) gauge cou-
pling constant. Moreover, the high-energy running of g2
is consistent with a single-generation quark-doublet con-
tribution to the usual P function:

16m g = — + n+ —nI g2
22 &c

Blnp 3 3 3
(84)

and

f (p ) =N, (4n ) f dx [xm&+(1 —x)m, ]

X ln {A /[xm&+ (1—x )m,

—x(1—x)p )] . (A17)

Note that f (p ) [f(p )) may be interpreted as the decay
constant of the neutral [charged] Goldstone mode.

where n (n&) is the number of quark (lepton) doublets.
Thus, the coefficient of lnA in Eq. (83) or Eq. (A13) cor-
responds to n = 1 in the second term on the RHS of Eq.
(84).

Similarly, the high-energy running of g, may be read
off from Eq. (82) and again is consistent with a single
quark doublet contribution to the usual renormalization-
group equation:

16@2 g, =( ,",N, nq+n—&)g, .
8 1np

(85)

The fact that this is just the normal renormalization-

group running of these coupling constants from the single
isodoublet of quarks in the standard model (neglecting all

other contributions, such as gauge-boson loops) indicates
that the low-energy effective Lagrangian at this order is

just the standard model.
The further renormalization effects below the scale m,

are radiative corrections that show up at low energy, e.g.,
neutrino scattering for Q &&M~. These involve, essen-

tially, the extrapolation from the on-shell W and Z
masses to the low energy measured sin |)a, and GF.
Does the model lead to new effects here?

We see that

XlnIA /[xm&+(1 —x)m, ]I

E,=f (0)+ (4m) m, +m&

2m] mb
2 2

ln( mb2/m, ')
mb mf

The difference, f (0)—f (0) is essentially the usual
correction to the p parameter due to weak isospin break-
ing effects and arises as a radiative correction to many
physical processes. There are thus no additional correc-
tions associated with the dynamical-symmetry-breaking
mechanism beyond the usual standard-model results.
This is analogous to well-known results of Carter and
Pagels' for other dynamical-symmetry-breaking schemes
such as technicolor.

f (0)= ,'N, (4m) —[m,ln(A /m, )+m&ln(A /mb)] (86)

and

f (0)=N, (4m) f dx[xmb+(1 —x)m, ]
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