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Anomaly-free left-right-symmetric models with gauged baryon and lepton numbers
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A left-right-symmetric extension of the standard electroweak interaction model is presented in

which baryon- (8-} and lepton- (X-) number conservation are considered as spontaneously broken

gauge symmetries. The gauge, global, and the mixed gauge-gi'avitational anomalies in the model are
canceled by invoking new fermion matter that carries baryon as well as lepton numbers. We find a
class of models in which the exotic fermions carry the same electric charges as the N families of con-
ventional fermions but different 8 and X charges. The Higgs structure in this case allows a light
massive neutral boson with a lower bound of 120 GeV.

In nature, all indications are that elementary-particle
interactions conserve baryon (B) and lepton (X} num-
bers. This observation may be taken as indicative of the
fact that the SU(2)L XU(1)„gauge symmetry of the stan-
dard model of electroweak interactions' is only an
efFective residual gauge symmetry that has been success-
fully probed at the presently attained low energies. It is
conceivable that B and X numbers are the charges of
gauge theories. Such a possibility has been discussed in
Ref. 2 and later in Ref. 3. In the latter case the gauged
U(1)z and U(1)~ are simply added to the standard model
and do not play any role in the definition of electric
charge. We follow the idea of Ref. 2 in which B and X
play an important role in the definition of electric charge.
In order to incorporate baryon- and lepton-number con-
servation as gauge symmetries the quarks are assigned a
baryon number of —,

' units and the leptons are assigned
one unit of lepton number. The lepton number in the
present context is defined as the sum of the individual
lepton number of each generation of leptons: i.e.,

~ —~(e)+g(p)+~(r)

with conventional weak interactions described by
SU(2)L-gauge symmetry for the left-handed doublet, the
full syrnrnetry of the elementary-particle interactions is
SU(2)L XU(1)„XU(1)t)XU(1)& where U(l)t( couples to
the right-handed fermions only. Note that if we do not
take the lepton number as the diagonal sum of the lepton
numbers of the individual species of leptons as in Eq. (1),
then the full symmetry of electroweak interactions is
SU(2}L XU(1)z XU(1)t) XU(1), XU(1)„XU(1), and the
observed lepton number that appears in Eq. (1) is the
spontaneously broken low-energy manifestation of the
lepton-number gauge symmetry U(1},XU( 1 )„XU(1 ) .
In this paper we will consider only the simple case of
treating the lepton number as in Eq. (1) and treat the gen-
eral case in a future publication. The emergence of U(1)tt
that couples only to right-handed ferrnions is very sugges-

tive of the fact that nature may be symmetric between left
and right and the gauge structure SU(2)I X U( 1 )z
XU(1)&XU(1)& may have descended from the left-

right-symmetric gauge symmetry of electroweak interac-
tions which we take to be

6 =SU(3)c X SU(2)L X SU(2)tt XU(1)tt XU(1)g (2)

with gauge couplings gc, gL, gz, gtt, and g& and SU(3)c
is the color group which describes the strong interaction
of quarks. Under 6, the left (RL ) and the right (Rz ) rep-
resentation of the conventional quarks and leptons are
taken to transform as

Quarks: q(z
=

&
=(3,2, 1,—,',0),

i L

= (3, 1,2, —,',0),
i R

(3)

~em TL+TR+ 2 ~8 2 TX (4)

where TL z tt~ are the diagonal generators of SU(2}L,
SU(2)z, U(1)t), and U(1)&, respectively.

In order to entertain the possibility of the observed
violation of parity due to spontaneous symmetry break-
ing, we impose the discrete symmetry left~right. This
reduces the gauge couplings to three since gL =gR at the
scale where left-right symmetry is restored.

In this extension of the standard model, the gauge

Leptons: L;z = =(1,2, 1,0, 1),
L

r

e;
L;tt = =(1,1,2, 0, 1),

i R

where i is the family index.
The electric charge operator which is the generator of

the unbroken U(1), group in this theory is
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N
mc P;[mR; T2(mL;) —mL;T2(mg;)]+ —=0 .

(7)

anomalies of the quarks and leptons no longer cancel.
This is also the point of departure from the conventional
left-right-symmetric model in which, as in the standard
model, the anomalies of the quarks cancel the anomalies
of the leptons. Electroweak and strong interactions
based on 6 in Eq. (2) predict new fermionic matter for
the consistency of the theory.

In order to see which anomalies survive, let the gauge
fields of 6 be denoted by 6 (a=1, . . . , 8), Wt, Wz
(i =+,—,0), 8, and L. Also let the anomaly coefficients
with three gauge fields at the vertices of the anomaly tri-
angle be denoted by A (6 ), A ( W 6), . . . . Since the
fermion currents coupling to G, B,I. are vectorlike and
the fact that SU(2) is by nature anomaly-free the only sur-
viving anomaly coefficients are A (8WL ), A (8W„),
A (LWL ), and A (L Wtt ). For one family of conventional
quarks and leptons the values of these coeScients are

A (8WL )= —,', A (8Wtt ) = —
—,',

A (LWt )=—,', A (LW„)=—
—,
' .

For the theory to be renormalizable, all anomalies
must be separately canceled. This can be arranged by in-
troducing exotic quarks and leptons. Let the representa-
tion of one of the exotic family of fermions be

F; = (mc;, mL; mx;, a;,P;)t,

+(mo, mtt;, mt;, a, ,p; )tt,

where i is the family index of the exotic fermion, rn's are
the dimensions of the group representations, and a and p
are the baryon and lepton numbers, respectively. We
have chosen the representation such that the theory is
manifestly left-right symmetric. The constraints to be
satis6ed by these exotic representations that cancel the
anomalies of N families of conventional quarks and lep-
tons are

N
mo a; [mtt; T2(mt; }—mL; T&(mtt; )]+—=0,

2

From Eq. (7), we obtain

3a —,'(m —1)m (m +1)= N, —

P—,'(m —1 )m (m +1)= N. —

From these equations, we immediately see that 3a+p=O
and the baryon and lepton numbers have opposite signs
to the conventional quarks and leptons. If a= —

—,
' and

P= —1, we have

m =2,N =1; m =3,N =4; m =4,N =10;.. . . (12}

Thus the family number is constrained.
Quarklike and leptonlike fermions We n. ow consider

a very interesting case in which there are fermions which
transform under SU(3)c X SU(2) t X SU(2 )x exactly like
the conventional quarks and leptons. We call them the
quarklike fermion F& and leptonlike fermion F& (one
family of leptoquark fermion), respectively. They differ
from the conventional quarks and leptons in their
different 8 and X assignments:

(3,2, 1, —,',0}„+(3, 1,2, —,', 0)L + (1,2, 1,0, 1)g

+(1,1,2, 0, 1)L . (9}

This solution of anomaly cancellation is by no means
trivial since mirror fermions occur naturally in schemes
of grand unification with at least three families of conven-
tional quarks and leptons. In the model under con-
sideration, three mirror fermion families are required to
cancel the anomalies of three families of conventional
quarks and leptons.

Fermions in SU(2) representation with dimensionality
m. Here we consider the case in which fermions trans-
form under SU(2)t „as m and under SU(3)c as 3 and 1

which carry baryon numbers only or lepton numbers
only, respectively. We also demand that just one such
family is required to satisfy Eq. (7). This family is

(3,m, l, a, O)t +(3, 1,m, a,O)it+(l, m, 1,0,P)t

+(1,1,m, O, P)~ . (10)

T2(m) =
—,', (m —1)m (m +1) . (8)

Here summation over i is implicit and T2(m) denotes the
second Dynkin index of the SU(2)L s representation and
is equal to

U
Fg= D . (3,2, 1,a, b)L+(3, 1,2, a, b)„,

N
F~= E . (1,2, 1,x,y)L+(1, 1,2,x,y)g .

(13)

There are many choices of exotic fermions which satis-
fy Eq. (7). The simplest solutions are the exotic-fermion
family transforms under the gauge group as (a)
(1,2, 1,—N, N)L +(1,1,2, —N—, —N)z, or (b) (3,2, 1,

N/3, —N/3)t +(3, 1,2,——N/3, N/3)z. These solu-—
tions do not have equal numbers of representations trans-
forming as a singlet and triplet under SU(3)c as for con-
ventional fermion families. In the following we will con-
sider some solutions which contain equal numbers of
SU(3)c singlets and triplets.

Mirror fermions Under 6, mirr.or fermions transform
in exactly the same way as conventional quarks and lep-
tons but carry opposite chiralities:

Using the definition of Q in Eq. (4), we have

a b=2QU —1,—x —y =2Q~ —1,
QU=Qo+1 Q~=Qz+1.

(14)

For one family of leptoquark fermion to cancel the
anomalies of N families of conventional quarks and lep-
tons, the baryon and lepton numbers of the leptoquark
fermions must satisfy the equations

3a +x +N =0, 3b +y +N =0 .

The equations imply 3QU+Q~=2 which is independent
of the number of families of conventional quarks and lep-
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tons and also independent of 8 and X numbers assigned
to leptoquark fermions. Using Eqs. (14) and (15},we can
write the B and L numbers of the leptoquark fermions as

F&= (3,2, 1,a, a —2QU+1)I
/R

(21)

+(3, 1,2, a, a —2QU+1)z
,

(16}
F~ = (1,2, 1, —3a N, ——3a —N+6QU —3)L

"'

N' N —I+(1,1,2, —3a —N, —3a N+—6QU —3}It
"' "

where the superscripts indicate the electric charges of
U, D, N, E. It is interesting to notice that it is possible to
have the leptoquark fermions carrying the same electric
charges as the conventional quarks and leptons (QU =—', ,
QD= —

—,', Q~=O, Qz= —1). Further we can have the
quarklike fermions in the leptoquark fermion family
transform exactly as the conventional quarks; this implies

a= —' b=0 x= —N —1
3 P y= —N. (17)

The family number is related to the baryon and lepton
numbers of leptonlike fermions. Alternatively, we can
demand the leptonlike fermions to transform exactly as
the conventional leptons. In this case, we have

N N 1a= ——,b= ————,x=O, y=l .3' 3 3' (18)

These leptoquark fermions are, after all, not very exot-
ic. At low energy, they would look just like the conven-
tional quarks and lepton. Their difference lies in the
gauge interactions at high energies when 6 is embedded
in a grand unifying symmetry.

In the models considered above, there are even num-
bers of SU(2)-doublet Weyl fermion representations and
therefore by Witten's theorem are free from the SU(2}
global anomaly. ' Note also that, due to the left-right-
symmetric particle content,

Q 8(RI, ) —+8(Ra;)=0,

QX(RL;)—QX(Ra;) =0,
(19)

S: (1,1, 1, 1, 1), P: (1,2, 2, 0,0),

(1,2, 1, ——,', —,'), P„: (1,1,2, —
—,', —,') .

(20}

The vacuum expectation values (VEV's) of the Higgs
fields, consistent with the extremum of the potential, are

where 8 (R; ) and X(R; ) are the baryon and lepton num-
bers of the representation R; and the sum is over a11 rep-
resentations of the fermions. Thus the above models are
also free from the mixed gauge-gravitational anomalies. "

The gauge bosons and the fermions of the theory ac-
quire masses through spontaneous symmetry breaking.
The relevant Higgs-scalar representations are a neutral
singlet S, two SU(2) doublets PL, Pz and a bidoublet

PL z =P. Their transformation properties under G are

The vacuum expectation value of P not only gives masses
to the conventional quarks and leptons but also to the
leptoquark matters. In this sense the choice of the Higgs
scalars is the most economical. Depending on the rela-
tive hierarchy in the magnitude of the various VEV's, the
following modes of symmetry breaking are possible:

(a) G =SU(2)r XSU(2)a XU(1)z
IR

=SU(2)l XU(1)r = U(1),
(22)

(b) G :SU(2)L XU(1)'XU(1)"

- U(1),:SU(2)L XU(1)r

The first mode of descent of 6 proceeds via usual left-
right symmetry with the baryon-lepton number as its
Abelian generator. ' Phenomenological constraints on

from muon decay, the E-long and K-short mass
difference, ' imply that the 8'z mass and one neutral-
gauge-boson mass are in the & 1-TeV range. Thus in the
mode of descent characterized by (a), Wz and two neu-

tral bosons are in the ) 1-TeV range.
The second mode of descent characterized by (b) is the

more interesting one from the phenomenological point of
view. Although rlz »~, , a2, (, riL, there exists the possi-
bility of a second neutral boson Z2 that has a lower
bound of 120 GeV (Ref. 14). The second neutral boson
couples to conventional fermions that are vectorlike and
mixes with the neutral boson Z of the standard
SU(2)L XU(l)r model. The new interactions do not
affect the atomic parity-violation measurements and mea-
surements of the forward-backward asymmetry in the re-
actions e+e ~p p and e+e ~v+~ . Planned mea-
surements of the fractional shifts in the mass and width
of the standard boson at SLAC and CERN LEP to an ac-
curacy of l%%uo or less will place further stringent con-
straints on the mass and coupling of the Z2 boson.

With the above Higgs-boson representations, the lepto-
quark fermions do not mix with the conventional quarks
and leptons if aW —,', or aA —Nl3 in Eq. (16). Weak in-

teractions conserve the flavor of the leptoquark fermions.
For the solution of Eq. (17), the quarklike fermion F&
mixes with conventional quarks and, for solution of Eq.
(18), the leptonlike fermion F& mixes with conventional
leptons. At present the lower bound on the masses of lep-
toquark fermions is 26 GeV from KEK TRISTAN (Ref.
15) in search for exotic e+e ~UU, DD, EE.

In the models presented above, although B and L are
spontaneously broken, there is no 8- or 5-violating pro-
cesses perturbatively in these models. This is because the
Higgs bosons with different 8 and X numbers do not mix
even after spontaneous symmetry breaking and also the
gauge interactions do not violate the 8 or X number.
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Therefore no baryon asymmetry will be generated by ex-

changing gauge and Higgs bosons. However, signi6cant
baryon asymmetry may still be generated by nonpertur-
bative effects due to tunneling between vacua with
different baryon numbers. '

In conclusion, we have presented a left-right-
symmetric electroweak model in which baryon and lep-
ton numbers are treated as spontaneously broken gauge
symmetries. A variety of representations that cancel the
anomalies of X families of conventional fermions are
presented. Our favorites for anomaly cancellation solu-

tions are leptoquark representations. Such solutions are
not possible in the model discussed in Ref. 2. The Higgs
structure in this case is the most economical one consist-
ing of a singlet, two doublets, and a bidoublet. In this
model there exists the possibility of a light massive neu-
tral boson with a lower bound of 120 GeV.
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