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We study the diagram for the chiral phases of QCD on the plane of temperature and chemical po-
tential. The calculation is based on the extension of a composite-operator formalism already em-

ployed for zero temperature and density. We find that, moving along the critical line for increasing
chemical potential, one encounters a point separating second-order and first-order chiral phase tran-
sitions. The overall phase diagram is found to qualitatively reproduce the pattern for the Gross-
Neveu model. Our study suggests the occurrence of metastable phases.

I. INTRODUCTION

Field theories with spontaneously broken symmetries
are generally expected to exhibit symmetry restoration
for large temperature and/or chemical potential. ' In
particular, special interest has been focused on the study
of the phase diagram of QCD in the (A., T)t plane of chem-
ical potential 2 and temperature T (Ref. 3), because of its
possible relevance to high-energy heavy-ion collisions and
to the physics of the early Universe. For the standard
model to be consistent with experiment, it is essential
that chiral symmetry be spontaneously broken at
T =k=0. On the other hand, for high temperatures
and/or densities, asymptotic freedom suggests that the
interaction among quarks and gluons becomes weak, so
that chiral symmetry is expected to be restored. Lattice
results about the phase transition have been contradicto-
ry, especially concerning its nature. Recent results sug-
gest a first-order transition for small current quark
masses.

There is therefore a need for alternative studies, by em-
ploying a different approach to the problem, in which
ones tries to incorporate the main known features of
QCD and which allow one to evaluate analytically quan-
tities such as the fermionic condensate as a function of T
and X. Such a dependence might be tested in heavy-ion
collisions at high energies. In fact, the existence of criti-
cal temperature and chemical potential may already be

suggested by certain high-energy cosmic-ray events.
In the present paper we will provide some analytic in-

sight into the m.echanism of chiral-symmetry breaking
(CSB} for a QCD-like theory at finite temperature and
density. The analysis will be performed in the frame-
work of the composite-operator formalism at finite tem-
perature and density, based on a modified effective ac-
tion within the functional formalism developed by
Cornwall, Jackiw, and Tomboulis. '

By evaluating the effective potential, we study the fer-
mionic condensate versus temperature and chemical po-
tential. We employ a simple ansatz for the fermionic
self-energy, which should contain the essential relevant
features. We find a phase diagram which is in qualitative
agreement with results occurring in the literature. '

Also, in the whole (A, , T) plane, our phase diagram repro-
duces the phase pattern of the Gross-Neveu model as
found by Wolff. "

This paper is organized as follows. To make it self-
contained, we give a short review of the composite-
operator formalism at T =X=0 in Sec. II. In Sec. III we
extend this formalism to finite temperature and density.
In Sec. IV we discuss the variational ansatz for the fer-
mionic self-energy X and we explicitly evaluate the
effective potential. In Sec. V we study the phase struc-
ture of the theory for varying T and k. Conclusions are
given in Sec. VI. In Appendix A, for convenience of the
reader, we list some properties of special functions,
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whereas in Appendixes B and C we derive explicitly some
of the formulas given in the text. X(q )= —3C~ f g (p, q)

(2~) (p —q)'
(2.5}

II. EFFECTIVE ACTION
FOR COMPOSITE OPERATORS.

REVIEW OF THE ZERO-TEMPERATURE
AND ZERO-DENSITY FORMALISM

A successful method to study CSB in QCD-like gauge
theories is provided by the effective action for composite
operators. In this kind of theory one expects that the
breaking of chiral symmetry is dynamical as due to for-
mation of fermion condensates. This phenomenon can-
not be easily seen in a perturbative series since it neces-
sarily requires at least an infinite subset of Feynman dia-
grams. The effective action for composite operators, first
introduced by Cornwall, Jackiw, and Tomboulis' (CJT},
provides for a formalism especially appropriate to the
study of dynamical symmetry breaking. In fact this gen-
eralized effective action can be expressed as a formal
series consisting of a systematic resummation of graphs
with a fixed number of loops. This formalism deals with
a nonlocal order parameter for which a nonlocal source is
introduced in the generating functional. In Ref. 9 a
modified version of the CJT effective was given. Since
the effective potential corresponds to the vacuum energy
only when the source function vanishes, an ambiguity is
present of adding an arbitrary polynomial of the source
function itself, satisfying some suitable conditions. In
particular, the choice of Ref. 9 corresponds to a function-
al which has the same local extrema of the CJT function-
al but possesses the convenient property of boundness
from below.

The formal expression for this effective action, in the
case of a Euclidean fermion gauge theory at zero temper-
ature and density, is

I = —Tr ln(S 0
' —X )

—Tr( XS)—I z($), (2.1)

I2
5S

(2.2)

At the physical point, Eq. (2.2) is the Schwinger-Dyson
equation for the fermion propagator with X the fermion
self-energy. By taking I 2 at the two-loop level (single-
gluon exchange) and parametrizing the fermionic propa-
gator as

$(p)=i& (p')p+8(p') (2.3)

one finds that, in the Landau gauge, no renormalization
of the wave function is required at this order [I z does not
depend on A (p )], and the effective action is completely
expressed in terms of X:

I (X)= —Tr ln(SO ' —X)——,
' Tr(XB) (2.4)

with 8 related to X by

where So and S are the free and the full fermionic propa-
gators, respectively, I 2(S) is the sum of all the two-
particle-irreducible vacuum diagrams of the theory evalu-
ated with fermionic propagator equal to S, and X is the
dynamical variable of the theory, defined by the equation

In Eq. (2.5) C2 is the quadratic Casimir constant of the
gauge group and g(p, q) is the running gauge coupling
constant. The variational method consists in making use
of a parameter-dependent test function for X to investi-
gate the stability of the theory. We will here adopt the
following ansatz for X at zero T and A, :

(2.6)

= 2~'c=
2 2 7 (2.7)

where g is the gauge coupling constant renormalized at
the scale p.

In order to fix the values of the parameters c and p we
will follow the same procedure of Ref. 12. We analyze
the more realistic situation in which both spontaneous
and explicit breakdown of the chiral symmetry takes
place, by including current quark masses for the three
lightest flavors. In this massive case the effective poten-
tial is UU divergent and from the renormalization condi-
tion in the small-mass limit one is able to fix the value
c=0.554. By inserting this value in the effective potential
for massless quarks, one finds that chiral symmetry is
spontaneously broken via a minimum of V located at
g;„=4.06, and the point y=0 is a local maximum. In
order to determine the mass scale p from the experimen-
tal data, one has to derive the explicit expressions for the
masses and for the decay constants of the pseudoscalar

This ansatz is different from that used in Ref. 9 but it will
be more suitable for the generalization to finite tempera-
ture and density. In Eq. (2.6) p is a momentum scale and

y is a constant field to be taken as variational parameter.
Its value at the minimum of the effective potential is re-
lated to the fermion condensate renormalized at the scale
p. As in Ref. 9, we assume the momentum dependence of
X in the ultraviolet region as predicted by the OPE
analysis, and a constant behavior for p ~0. To make the
calculations simpler, we shall here neglect the logarith-
mic corrections coming from the renormalization-group
analysis. Also, in this simplified study, we will not con-
sider the "running" with the momentum of the gauge
coupling constant. Asymptotic freedom wi11 be present
in the theory through the assumed dependence of the
coupling from T and A, . As it happened for the zero-
temperature and zero-density study of the CSB in QCD
(Ref. 9), we expect that the inclusion of the
renorrnalization-group corrections in the momentum
dependence will not change the qualitative picture of the
chiral phase diagram.

In the case of QCD with massless fermions at
T=A, =O, from the analysis of the effective potential V
[obtained using the ansatz (2.6)] as a function of y, one
finds that the theory possesses two phases: the chirally
symmetric phase and the broken phase to the diagonal
flavor subgroup, depending on the value of the gauge
coupling constant. In particular one finds that CSB
occurs for
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p=282 MeV . (2.8)

From the relation between g,„and the fermionic con-
densate at p (see Ref. 9), for massless quarks one gets the
numerical value

&Olqqlo)„= ",cy;„=(197MeV)' .3p (2.9)

octet mesons which are the pseudo-Goldstone bosons of
chiral-symmetry breaking. These expressions constitute
a system of coupled equations which we have solved by
an approximation method. The experimental inputs are
the decay constant and the mass of the charged pion, the
charged-kaon mass, and the electromagnetic mass
difference between the neutral and the charged kaon.
The outputs of the numerical fit for the octet meson
masses (agreement within 3%%uo} are the masses of the u, d,
and s quarks and the mass parameter p which turns out
to be

nq = (A.T +A/.m). .
Xn
9

(3.2)

Let us add a further comment on the parameters g and g:
as stressed in Ref. 14, in the intermediate region of tem-
peratures and densities, we have no hint for the depen-
dence from the coupling, so that we have to let them be
arbitrary unless we guess some interpolation formula.
Since in this model we are more interested in a qualitative
rather than in a quantitative picture of the CSB pattern,
we shall prefer to leave them arbitrary, studying in the
following how possible choices of their values affect the
dynamics.

Let us now generalize the expressions (2.1)—(2.5) to the
present case. The calculations will be performed in the
imaginary-time formalism and, for our purpose, it is use-
ful to use Poisson's formula' (the introduction of the
chemical potential implies the shift pa~pa+ iA, )

III. EXTENSION TO FINITE TEMPERATURE
AND DENSITY

, «pp, +ipse 2m (21 +1)m.
& po- lk (3.3)

We now extend the preceding model, for vanishing
current quark masses, to finite temperature and density.
In this case, as suggested by asymptotic freedom and
renormalization-group considerations, we expect the
strong force to become weak at high temperatures and/or
densities. We shall assume that in the UV region the cou-
pling constant g depends logarithmically on the tempera-
ture T and the chemical potential A, in the same way as it
usually depends on the momentum. ' We take into ac-
count this assumption by writing

2

g (T, A, )=
2 21+in(1+(T Ip, +(A/iz )g l2b.

(1 integer and P=l/T) which allows for an equivalent
version of the Dolan-Jackiw finite-temperature Feynman
rule:

dp f( ) 1+f dp~ n(21+1)
(2n ) P i (2n. )' P

4d p ~
ilpp„+tpl.

(2m )

(3.4)

Using Eq. (3.4) and the same procedure as for T =A, =O,
one gets the extension of Eq. (2.5):

where b =24m l(11N —2n), with N the dimension of the
fundamental representation of the gauge group SU(N)
and n the Aavor number. This expression gives the
desired UV and T =A, =O limits, with two parameters g
and g. As an example which is consistent with this as-
sumption, we recall the expression of the baryon density
as computed from the thermodynamics of a free gas of
quarks and gluons (see, for instance, Cleymans, Gavai,
and Suhonen ). The expression for massless quarks is

X( ) 3 2(TX}C g( )if P P, o+

(2m } (p —q}

Inverting Eq. (3.5) one gets the formal expression

3g (T,A)C2

and thus the generalization of the effective action is

(3.5)

(3.6)

r(r)= — f P r(p)a r(p) —2mrn y( —)'f P ln 1+
3g (T, A. )Cz (2m) ~ (2m) p

(3.7)

(where 0 is the four-dimensional volume). Equation (3.7)
shows that I 2 has the same functional dependence on X
as for zero temperature and zero density (see Ref. 9) and
that the l=O term in the sum reproduces the one-loop
zero-temperature functional. Thus the effective action
can be finally expressed as

r(r) =r'"(r)+r,'„'(x), (3.8)

where I ' ' depends on the temperature and on the chemi-
cal potential only through g (T,A, ), since it is the same
functional of X as in Sec. II, whereas I &„" is the new term
to compute, and the subscript reminds us that it comes
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from the one-loop term c(r, s)
V(y, r, s)=

I I„"(X)= 2—QNn g ( —)'f ln 1+ &'( )

I~O

&Ippo+ Ipk,
Xe

IV. EFFECTIVE POTENTIAL

(3.9)

dxx ln 1+
3

x'
2 0 x +2x +x

+ VI„"(~,r, s),

where [see Eqs. (2.7) and (3.1)]

= 2~'=
c ( r, s ) = =c +—', ln( 1+fr + gs ) .

g (r, s)

(4.2)

(4.3)

The explicit computation of the effective potential can
be performed once we have chosen a test function for X,
which is the variational input in our approach (see Ref.
9). Unfortunately the finite-temperature Schwinger-
Dyson equations for the self-energy (in principle both the
temperature and the density may require including a vec-
tor component in the decomposition of the self-energy)
are very hard to treat and we must limit ourselves to at-
tempt the generalization of Eq. (2.6}:

V,„(y,r, s)=8r g z„g 2
cosh

k=1 1=1 r

XK2
I+zk

iargQz„~ (—, (4.4)

Computing the last term in Eq. (4.2) one gets (see Appen-
dix B)

X(p)=y(&, A, )f(p') . (4.1) where E2 is a modified Bessel function and zk =z„(y) are
the roots (reversed in sign) of the cubic equation

With these assumptions, recalling that the effective po-
tential is defined by V=I /0, putting V=4m V/Nnp, ,
Cz = —', for N=3, and n = 3, and using Eqs. (2.6) and (3.7),
we are left with (r = T/p, s =A. /p)

x +2x +x+y —0 . (4.5)

Let us notice that VI„"(y,r, s) can be equivalently ex-
pressed as (see Ref. 2)

3

V~i„"(7t,r, s)= 4r g—f dx x ln 1+exp ——[s+(x +zk)'i ]
k=1 r

+ln 1+exp ——[ —s+(x'+zk)' ] (4.6)

v'3
z, = ', +,'(f++f )+i -(f+ f )-, —(4.7}

23 =Z2

which can be obtained by making use of the Dolan-
Jackiw rule in the fermionic case. It is possible to obtain
one formula from the other by using integral representa-
tions for the modified Bessel functions. This shows the
close relationship among the two formulations. The ex-
pressions involving sums of modified Bessel functions are
mostly used in the low-temperature regime, by inserting
the asymptotic expansions of E„(z) and of the polyloga-
rithm functions, whereas the integral representation is
more convenient in the high-temperature region. '

To get an insight on the large-y behavior of the
effective potential (as well as on other properties useful in
the following), let us solve explicitly Eq. (4.5):

where

+ 1 X'+
27 2 4 27

1/2 1/3

1/2 1/3 (4.8)

27 2 4 27

Thus, in the y~ ~ limit, we get [using the prescription
(4.4) for the phase of zk ]

i (X~-X'" ~ (X)-X'"e'""
z3(y)=z;(y) .

(4.9)

This implies that Re(x +zk )' [see (4.6}] is always posi-
tive. In this way we find that there always exists a value
g=y(r, s), for any pair of fixed r and s, such that V in-
creases as y for y)y, as in the T=A. =O case, since the
finite-temperature and -density corrections vanish in this
limit.
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V. PHASE TRANSITION AT FINITE TEMPERATURE
AND CHEMICAL POTENTIAL

B~P 2c —1+-'»(1+P')+ -'m' r'
t)X z=o

2x +1

+x +1 I+exp —+x +1
r

=0. (5.1)

Solutions to this equation for some values of g are given
in Table I. Since the critical temperature is less than one,
it is also useful to adopt the equivalent expression

c —1+—,
' ln(1+fr )+ ,'m r—

X z=o

00 co
( )I

+4 g ( —)'Ko — +Sr g Ki
1=1 I=I

Let us now study the stability properties of the vacuum
beginning with the two limiting cases rAO and s=O, s+0
and r=0, and 6nally going to the general case.

It turns out from the numerical analysis that, for grow-
ing temperatures but zero chemical potential, the
minimum of the effective potential, y;„(r), goes to zero
continuously and then it remains zero. From the relation
(2.9) between the fermion condensate (Pf)„and y;„(r),
it follows that chiral symmetry is restored via a second-
order phase transition. (See Fig. 1.) This turns out to be
true for any choice of the parameter g (see Fig. 2).

To And the critical temperature r, it is suScient to
look at the second derivative of the e6'ective potential at
the origin. That is we have to solve the following equa-
tion in r:

10

08

04

02

0,0
00 OI 02 03 04 0.5

which reduces to a finite sum using the expansion (A10)
for large I/r. This formula can be derived from Eq. (4.4)
using Eq. (A9).

After the symmetry has been restored, no other transi-
tion occurs, and in particular, the e8'ective potential
comes out to be a tnonotone (increasing) function of g for
any r ) r, . Furthermore, the curvature in the origin, for
high r, can be worked out in an analytic way. In fact ex-
panding the second derivative of V for high rl+zk
(small 13p+zk ), one gets (see Appendix C)

2V
+—' ln(1+fr )4

FIG. 2. Behavior of the normalized condensate at zero chem-
ical potential vs temperature for some values of the parameter (.
The condensate approaches zero with continuity.

(5.2)
II

Zk Zk
X

(I + 1)

which gives, at the origin, '

(2n + 1) '+' (5.3)

2V
+-,' ln(1+(r2) — » g(3)+O((gp) )

(5.4)

(here g is the Riemann function), which is positive for

TABLE I. The critical point r, vs g.

FIG. 1. Typical evolution of the effective potential for in-
creasing temperature at zero chemical potential. The case
shown is for (=0.6. [In this figure V is defined in such a way
that V(0) =0.]

0
0.3
0.6
0.9
1.2

0.44
0.41
0.38
0.36
0.35
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high r. Combining this with the asymptotic behavior of
the potential, one can conclude that the absolute
minimum remains at the origin also for very high temper-
ature (see Fig. 1).

The critical temperature does not depend strongly
from the value of g (see Table I). A possible indication
for the parameter g can be obtained by considering the
region of very low temperatures. In fact, there, the lead-
ing contribution in T to the effective potential comes
from the two-loop term containing g (T) which goes as
T, whereas the V,'„" term goes as T e ' . Evaluating
the minimum of V for T~0 one finds that the behavior
of the condensate is of the form (i/ft) r = (PP)o

l

+ A (g)T . Comparing this behavior with that given in
Ref. 18, we find (=1, implying a critical temperature
T, =0.36p.

Let us now consider the second limiting situation, zero
temperature and finite chemical potential. In this case we
have to distinguish between the case in which Eq. (4.5)
has real roots and that in which it has complex roots. It
turns out that for g ~,4, the roots are real and positive,
whereas for g &,4„one root is real and positive and two
are complex conjugate. In the first case it is possible to
get the analytic expression for the density correction to
the efFective potential by taking Eq. (4.6) for r ~0:

3 (
2

)
I /2

VI„"=4 g 0(s —z„)f x [(x +zi)'i —s]dx
k=1

= Q 8(s —z„) —(s' —z„)' ( —,'z„—s )+ ln
J& =1

2/&

s+(s' —z„)'"

k=1

Il
V]n (5.5)

On the other hand, for y ) —,'„one obtains, after some algebra,

V(1) V 1+8@ $2 2r
1n 1n 2

2 3j2
2 2i

X ——'s s —z
3 2r 4

(s —z2, —
z2, /4s )

2 2 2 1/2

+ f dx x~[[(x +z ) +z~ ]' +(x +z „ (5.6)

(zz„,z2; are the real and imaginary parts of z2). In particular we easily get information about the stability of the point
g=0, occurring in the region where the roots are real. In fact, by taking the second derivative of V with respect to g
[see (4.2) and (5.5)],

2V =—', c+—', ln(1+ps ) —1+ g 8(s —zz) zi", s(s —
zl, )' +lnx'

/& =1

z/&

(zkzi, +zk )s+(s' —z„)'" (5.7)

and using the expression of the zk's and of their deriva-
tives in g=O one finds two cases:

2V
2~X z=o

=—', c+—,
' ln(1+ps )

—1+2s for s 1,
(S.8)

2V =—', c+—,
' 1n(1+ps )

—1+Zs
~X r=o

—2s+s —1 for s ) 1 .

Thus, starting from s=O, the maximum in g=0 becomes
a minimum as the chemical potential increases. Precise-
ly, from Eq. (5.8), it is easy to see that the transition point
is always located below s=0.56, which corresponds to
/=0. This point will be denoted as s, . In addition to
this, Eq. (5.8) shows that for s) 1 the origin is always a
stable minimum, which becomes narrower as s increases.
The numerical analysis shows that, even when the point
g=0 has become a minimum, it is not the absolute one.
Thus the chiral symmetry is still broken and it gets re-

stored via a first-order phase transition when the absolute
minimum become as deep as the one at y=O. This point
will be denoted as sz. As an example, for (=0.6, the
chiral symmetry is restored at s2 —-0.75. Decreasing the
value of g, sz becomes sensibly larger. Finally for s )sz
another metastable region (corresponding now to the
minimum outside the origin not being the absolute one) is
present. This region disappears at higher values of s.
The corresponding point will be denoted as s3 ~ For in-

stance, for (=0.6, we find s3-—3.3. Finally, as g de-
creases, s2, s 3 approach ~ and chiral symmetry is never
restored in this limit. A list of values of s, , s2, and s3 is
given in Table II. In Fig. 3 we show the typical evolution
of V with the chemical potential, whereas Fig. 4 repro-
duces the behavior of the (normalized) condensate for
some values of g, showing that it always vanishes with a
jump, and that for s & s2 it remains equal to zero.

Let us now look at the general case of finite tempera-
ture and chemical potential, r&0, s&0. The previous
analysis can be easily generalized by studying the phase
diagram in the (s, r) plane. We start by looking at the
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TABLE II. The points s „sz,s, vs g. ly&s/ ~~o

0
0.3
0.6
0.9
1.2

Sl

0.56
0.53
0.51
0.49
0.47

Sp

2.22
0.75
0.68
0.63

S3

5.0
3.3
2.7
2.3

1,0

0.8

0.6

line 1, (represented by a dashed line in Fig. 5), defined as
the set of points at which the second derivative of the po-
tential at the origin vanishes. This line signals the transi-
tion from a minimum at the origin of the potential to a
maximum. The end points of this line wi11 be denoted by
(O,r, ) and (s, , O). For small values of s, by continuity
from the case of the vanishing chemical potential, /& is
the critical line corresponding to the phase transition
from the unbroken to the broken phase. Notice that the
transition is second order, corresponding to the minimum
outside the origin going smoothly into the minimum at
the origin (see Fig. I). However there must exist a pointt:(s„—r, ) on 1, at which the situation changes. In fact,
we know that at r=0 the phase transition occurs at
s =s2%s, . That is, if we cross 1, at the right of t (see Fig.
5}, starting from the broken phase, the minimum at the
origin is no longer the absolute one: more than one
minimum is present. We will call the phase in which
more than one minimum is present a metastable one. In-
creasing again the temperature, at fixed chemical poten-
tial, the minimum at the origin will become the absolute
one, but at least one of the minima outside the origin will
still be present. That is we encounter a second metastable
phase. The separation line 12 (continuous line in Fig. 5}
of the two metastable phases is, of course, the true criti-
cal line. In fact it separates the broken phase (absolute

0.4

0.2

0.0
0.0 0.2 0.4

I
I

I

I
I

I
I
I

I

I

I

I
I

I
I
I

I
I
I
I

) 2
0.6

1

I

I

i

I

I

I

I

I

I

I

I

I

I

I

I
I

0.8 1.0

FIG. 4. Behavior of the normalized condensate at zero tem-
perature vs chemical potential for some values of the parameter
g. The condensate always vanishes with a jump.

minimum outside the origin) from the unbroken one (ab-
solute minimum at the origin). Furthermore, 12 joins
(O, r, ) to (sz, O), and it separates from 1, at the point t. If
we continue to increase the temperature, all the minima
outside the origin disappear, and we end up into a pure
unbroken phase. The line dividing this phase from the
metastable one will be denoted by ls (dashed line in Fig
5). Clearly 1s coincides with 1, and 12 up to the point t.
After this point the three lines separate and 13 ends up at
(ss, O}. The existence of metastable phases has the impli-

05

0.5

0.4
I

03

0,0 I

5

x 0.2

-0,5

OI

0.0
0.0 03 06 09

S3 ——)
12

-10

FIG. 3. Typical evolution of the effective potential for in-

creasing chemical potential at zero temperature. The case
shown is for /=0. 6. [In the figure V is defined in such a way
that V(0}=0.]

FIG. 5. The phase diagram in the plane (s, r). The curves I&

and 13 (see text) are denoted by dashed lines, the critical curve,
l&, by a continuous one. The coordinates of the point t are
s, =0.27 and r, =0.33. In the present case )=0.6 and /=0. 6.
An analogous structure is found for the other values listed in
the tables.
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where Y„are th e spherical harmonics and
ors. ey satisfy the parity relation
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0.8

s=o.
s=s, =

s = 0.4

C (
—x)=( —)"C'(x)1

and orthogonality condition

(A2)

0.6

0.4

dQ&C„' P q)C„' (k.g)=2m 5dII C' „' . = tt „„C„'(Pk).
n) 1

(A3)

0.0
00 01 02 03

I

04 05

A special case is

Co(x)=1 .

The ffollowing expansion holds:

(A4)

FIG. 6. Beh avior of the normalized condensat

temperatures at diffe
he curves are founfound for increasing

a i erent chemical otentia
f 11

' '
1

1'ica ines into the phase dia ra
1

th iddl i fo d lo thun a ong the vertical line crossing th e point t.

lP x

' n/2

e = $ i "(n+1)C„'(P x
n=0 4

2 2
p x

n+1 4

where

(A5)

cation that the tra nsition is first order, that is t
sate has a discontinu't hinui y at t e critical

e a solute minimum 'um '

minimum outsid th
' 'nim'

e e origin to a minim g
e p ase transition is secon

or occurs in the Gross-Neveu model "

and

j (z)= g
=o n!I ( n+ +v1)

J,, (z) = — j, 4

(A6)

(A7)

VI. CONCLUSIONS
are the usual Bessel functions. A useful inte r

tio fo th def dB 1i e esse1 functions ' is

We have studied the diagram of the chiral h

fi h
mperatures and densit'

N od 1. Th
n as strong similarit to

e existence of metastable
new result, suggested by our anal sanalysis. The kind of phase

ave escribed in the main
h

'
o e variables ~ and ~ p

p g nstant as a function ofo e gauge couplin con
ere ore, although our anal s'

titatively from the a
na ysis depends quan-

coupling constant, we feel that the ua iq

p emented by lattice calculations.
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APPENDIXX A: SPECIAL FUNCTIONS

For the convenience of the reader we brie
properties of special fun

e Gegenbauer
s u

are
g uer po ynomials in f d'our imensions

2 2

C„'(P.Q )= g &„& (p)&„t (Q),
Im

(AS)

(A9)

Useful expansions for sm lla arguments are

Ko(z) = —lnz,
(A 10)

K,(z) = —' I (v}
2 2

(Rev) 0)

while for large arguments
1/2 T

M —
1

e ' g (v, m)(2z)™
m =0

K„(z)=
2z

+O(/zf™},)arg ) & —~

(A11)

where ( v, m ) are the Hankel symbols

2m

(v, m)= 2
t (4v —1)

X (4v —3 ) [4v —(2 —1)2 2 m — ]I .

(A12)

—zcosh( t)cosh( vt)dt ~argz~ (—
2

'

The following relations hold

1 d
[z"K,(z)]=(—}'z" 'K (

Z Z
v v —I Z
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APPENDIX 8: DERIVATION OF EQ. (4.4)

VI„"(y,r, s) = — g (
—)'e" "f dy y ln(y +2y" +y +g )

27T I —
]

0

n/2
oo 2I 2 2I 2

X f dQ g 1 "(n +1) j„+, C„'(cosP)+(1~ —1)
n=0 4r 4r

(where P is the angle between the directions of gl and y"). Performing the angular integration, using (A3) and (A4),
and recombining the sums over positive and negative 1, one obtains

3

V~~„"(y,r, s)= 4r g—g cosh I— f dx x In(x +zk)Ji
k=1 I=1 1 r 0 r

(B2)

From Eqs. (4.2) and (3.9) one finds, neglecting an infinite y-independent constant,
2 oo

Vi„"(g,r,s)=
~

I i„"(g)=— g ( —)'e" "f d y ln(y +2y +y +y )e ' +(l~ —1), (Bl
9p 0 1=1

where the sum has been divided according to positive and negative integers. Introducing the four-vectors P t =(1/r, O)

and using the expansion (A5} one has

=F(zk(y), r, s) .

Performing the derivative of F(z„(y),r, s ) with respect to zk, and the integration over x (Ref. 20), one gets

(83)

21c

3 ao
( )

I= —4r g gzk g cosh(ls/r)K,
k=1 1=1 1

4r —g g cosh(ls/r) f dx J,( —)' x lx

k=] 1=1 0 X +Zk r

l+zk
Iarg+z„~ (—. (B4)

Finally, integration with respect to zk and use of Eq. (A9}, lead to the expression (4.4) (again a y-independent term is
neglected).

APPENDIX C: DERIVATION OF EQ. (5.3)

A possible short way to derive Eq. (5.3) is to start from Eq. (4.4) and to evaluate the derivative of V with respect to g
[with the aid of Eq. (A9)]:

" = —4 y r y z„'~z„zi —Qz„r
(Cl)

Using the representation (AS) and calculating the subsequent derivative gives rise to two terms where there appear ex-
pressions (their high r/+zk expansion has been studied originally in Ref. 2) such as

= —
—,
' 1n

(x +z„/r )' [1+exp(x +z„/r )' ]
' —1/2

vz„
T

&z„&+I—
2

(C2}

QO

0 21+1
Zk1+ (C3)

(y is the Euler's constant) and their integrals with respect to z„. Then, using simple relations among the z„'s and their
derivatives, one obtains

1

ay' 3 „, „=, 2n +1 [1+z„/(2n +1)'~'r']'"
3 Qo

+4 g zk' g (2n +1)m r2[1+zk/(2n+1) m r ]'
n=0

(C4)

Expanding the square roots and using again relations among the derivatives of the zk s, after some algebra, Eq. (5.3) is
recovered.
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