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We present a model calculation of some effects of virtual qq pairs in mesons. Specifically, using a
model for pair creation that has previously been shown to give a good description of strong meson

decays, we calculate the energy shift of a static quark-antiquark pair due to the presence of virtual
quark-antiquark pairs. The shift is large and approximately proportional to the distance between
the static sources. The linearity of the correction suggests that pair-creation effects can be absorbed
into a renormalization of the mesonic string tension. However, this masking can only be approxi-
mate, as we show by considering the dependence of the energy shift on the spin state of the sources.
We conclude by pointing out the relevance of our results to the "E/p" problem encountered in lat-
tice QCD calculations.

I. INTRODUCTION

Recent advances in computing power and new sophis-
ticated algorithms have made it possible to undertake lat-
tice studies of full ("unquenched") QCD, wherein the
usual approximation of ignoring dynamical quarks is not
made. These calculations indicate' that the dynamical
quarks cause large (negative) shifts both in the quenched
hadron masses and in the quenched interquark potential.
It is often claimed that these large shifts can be absorbed
into a renormalization of the lattice coupling constant.
However, the reliability of these claims is compromised
by the facts that only a few, low-lying hadron masses
have been computed, and that unquenched calculations
can, at present, be performed only on quite small lattices,
with unphysically large quark masses.

Several model calculations of the effects of (virtual)
dynamical quarks in hadrons have also been made.
They generally give results that are qualitatively similar
to the lattice results; i.e., they predict large negative shifts
in the interquark potential and in hadron masses. How-
ever, none of these models is entirely satisfactory: they
all treat the creation of the virtual quark pairs in an ad
hoc or schematic way.

In this paper we present a new model calculation of the
effects of dynamical quarks in mesonic systems. We con-
sider a state consisting of a static QQ pair joined by a
chromoelectric flux tube, and we determine how the ener-

gy of this state changes when it is allowed to mix with

QqqQ states. The operator that produces the mixing is
taken from a recent model of meson decays, so that our
treatment is well grounded phenomenologically. We find
a large shift in the QQ potential. We then go on to calcu-
late, in the same phenomenological picture, the
differential energy shift between a spin-triplet QQ pair
and a spin-singlet QQ pair. This differential shift turns
out to be substantial, indicating that the efFects of dynam-
ical fermions cannot all be absorbed into a change in a
single coupling constant. Finally, we show that, as the
"bare" mass of a particular resonance is varied, the cross-
ing of a decay threshold can cause its mass shift from vir-

tual pair creation to change abruptly. We comment on
the ramifications of this observation for the "Elp" prob-
lem of lattice calculations.

II. A MODEL FOR PAIR CREATION IN MESONS

Our model for describing virtual pair creation in
mesonic systems is essentially the same as the one used in
the flux-tube model to describe meson decays via real
pair creation. We therefore begin with a brief account
of the flux-tube model, with an emphasis on those
features that are particularly relevant to the present cal-
culation.

The flux-tube model is based on the strong-coupling
limit of Hamiltonian lattice QCD (Ref. 5). When QCD is
formulated on a lattice, in the limit where the lattice
spacing a and therefore the coupling constant g approach
infinity, the eigenstates of QCD become quite simple:
they consist of "frozen" configurations of quarks and an-
tiquarks on the lattice sites, joined by flux lines which live
on the links between sites. Some examples of these
strong-coupling eigenstates are shown in Fig. 1.

When the lattice spacing is finite, two new terms ap-
pear in the QCD Hamiltonian, causing these strong-
coupling eigenstates to mix. The first of these terms is

Tr[2 —(U& U, U, U, +H c )],
plaquettes

where UI is an operator that creates a unit of 3-flux on
l

link i. The product of U's is taken around an elementary
square or "plaquette" on the lattice, so this first operator
creates plaquette-sized loops of 3-flux. It is responsible
for flux-tube hopping, flux-tube rearrangement, and other
effects, as illustrated in Fig. 2. The second operator that
becomes important at finite lattice spacings is

qJ Jl Jl Vl
links I,

where q, is the quark field operator at site i, and a, is the
Dirac matrix in the direction of the link I.;. This opera-
tor creates a quark and antiquark at neighboring lattice
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FIG. 1. (a) Some strong-coupling meson states; (b) some

strong-coupling baryon states; (c) some strong-coupling pure
glue states.

FIG. 3. Some effects of q Uaq: {a) quark hopping; {b) flux-

tube breaking/pair creation; (c) qq "seeding. "
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FIG. 2. Some effects of Tr{Ul Uz U3U4+H. c.): {a) flux-tube
hopping; {b) flux-tube rearrangement; {c)"bubble formation. "

sites, connected by a line of 3-flux. It is responsible, as
Fig. 3 indicates, for quark-hopping, flux-tube breaking,
and other effects.

The various actions of these two operators on strong-
coupling eigenstates can be divided into two categories:
those, like flux-tube breaking and flux-tube rearrange-
ment, which change the topology of a state, and those,

like quark and flux-tube hopping, which do not. The
strategy adopted in the flux-tube model is to treat the
latter e6'ects exactly, by organizing the strong-coupling
eigenstates into blocks of fixed topology and diagonaliz-
ing within each block, and then to treat the topological
mixing between blocks perturbatively.

We are particularly interested in how mesons are de-
scribed in the fiux-tube model. Consider fixed Q and Q
sources, separated by a distance r »b '~ (where b is the
QCD string tension: b =0.18 GeV ), and connected by a
line of 3-fiux. The long-distance properties of this QQ
system ought to be well described on a lattice with spac-
ing a-b ' . On such a lattice one is not too far from
the strong-coupling limit, and it seems reasonable to
neglect topological mixing and consider only the flux-
tube hopping effects, which allow the string to "vibrate. "
Thus, in this approximation, the energy levels V"(r) of
the QQ system are simply the energies of a (discrete) vi-
brating quantum string. To recover the usual quark
model for mesons, one identifies these levels as a set of
adiabatic potentials in which the quark and antiquark
move. The lowest-energy surface V (r) corresponds to
ordinary mesons, while the excited surfaces correspond
to vibrational hybrids. In Ref. 4 it was shown that the
ground-state energy of the latticized, vibrating, quantum
string is proportional to the length of the string (in the
limit of a very long string). Once the constant of propor-
tionality is identified as the physica1 string tension b the
adiabatic potential V (r) =br gives, in the context of the
quark potential model, a reasonable account of the gross
level structure of meson spectroscopy.

In this paper we will study the way in which this
lowest-order picture of mesons, which in its neglect of the
effect of dynamical qq pairs corresponds to the quenched
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approximation of Euclidean lattice QCD, changes when
the effects of the pair-creation operator q Uaq are taken
into account. Specifically, in Sec. III we will consider a
system consisting of two fixed Q and Q sources joined by
a string in its vibrational ground state. We will use per-
turbation theory to calculate, as a function of the QQ sep-
aration r, the energy shift bE (r) produced by the interac-
tion responsible for meson decay, in the approximation
that spin-dependent forces between the quarks are negli-
gible. We will see that b,E(r} is approximately linear in
r, so that b,b:(dl—dr)bE(r) can be identified as the
correction to the mesonic string tension. In Sec. IV we
will include spin-dependent forces in our model and find
that the value one obtains for b, b is sensitive to the spin
state of the QQ system, so that a simple renormalization
of b cannot absorb all the effects of the virtual pairs.

III. SPIN-INDEPENDENT CALCULATION
OF THE ENERGY SHIFT

We will calculate hE perturbatively in the strength of
the pair-creation amplitude. [The treatment of pair-
creation effects as weak corresponds both to the usual
narrow-resonance approximation and to the large-N, (N,
is the number of colors) limit. Nevertheless, as we will
see below, this approximation may require further con-
sideration. ] Then b,E can be separated into two parts:
The first part, which we will call EE,b, arises from the
virtual breaking and rehealing of the mesonic string; the
second part hE„„,comes about because the pair-creation
operator modifies not only our mesonic state, but the vac-
uum state as well, and we must subtract off the vacuum
energy from our calculated meson energy.

Let us deal first with AE,b. Our initial, unperturbed
state is completely characterized by the positions of its
fixed Q and Q sources, whose relative coordinate r we can
take to be along the z axis. Recall that we are taking the
string between these sources to be in its ground state.
Also note that the sources are "spectators" throughout
the calculation: their fiavors and (for this first calcula-
tion) spins do not enter into the problem, so we do not
need to specify them. The initial state can thus be denot-
ed simply by ~r).

The operator q~Uaq, when applied to this state, can
break the string into two pieces, creating a quark q on the
end of the Q piece, and an antiquark q on the end of the
other piece. The resulting QqqQ state (see Fig. 4) may be
labeled by the quantum numbers of two virtual mesons.
We will use nonrelativistic wave functions for these

mesons. This choice makes the calculation tractable, and
it finds some justification in recent work on the "relativi-
zation" of the quark model, which indicates that relativ-
istic effects in hadrons can to a large extent be absorbed
into the parameters of the nonrelativistic quark model.
Labeling the virtual mesons by the usual spectroscopic
quantum numbers n, I, m, and s, we can write the inter-
mediate states as ~nb, lb, mb, sb, n„'l„m„s, ); then the en-

ergy shift from string breaking is given by

b, E, b(r)=
nb lb mbsb
n 1 m s

~ (n„l, , m, ,s, ,n„l„m„s,~H„~r & ~

V (r) Eb, —

where H,b is an effective string-breaking-pair-creation
operator, to be constructed from the lattice operator
q Uaq.

Before discussing H,b, we have several comments to
make concerning (I). First, the sum over intermediate
states should properly include not only ordinary meson
states, but hybrid (i.e., excited-string) meson states as
well. However, we will later argue that such states make
a relatively small contribution to EE,b, so we have simply
omitted them. Second, the statement that relativistic
effects in hadrons can be absorbed into the parameters of
the nonrelativistic quark model cannot be expected to
hold for very highly excited hadrons. It is therefore for-
tunate that, for r 2 fm, the major contributions to the
sum (I) come from meson states with small n and l. (Typ-
ically, the terms in the series die off rapidly for n, I 5.)

If the Q and Q were not fixed in position, but rather
were in some wave function %(r}, then the effect of the
pair-creation operator would be to allow this QQ meson
to decay into Qq and qQ. Indeed, the authors of Ref. 3
used exactly this picture to calculate the amplitudes for
the simple strong decay modes of all the low-lying
mesons; that they obtained excellent correspondence with
experiment supports the validity of the model. Let us
therefore summarize their construction of the effective
string-breaking operator H,b, introducing a minor
modification along the way.

To begin, observe that when the mesonic string is bro-
ken on the link between sites n and n+e, the newly
formed quark pair is created with an effective operator

C„,= gq (n)a eq(n+e) .
3y(n)

q

The factor 3y(n) contains the amplitude for the newly
broken string to be found in the wave functions of the
final-state string pieces. Expanding q (n+ e ) =q (n )
+ae Vq(n) gives

C = gq (n)a eq(n)
3y(n)

+3y(n}g q (n)a ee Vq(n) .
q

(3)

FIG. 4. Coordinates for string breaking.

At this point it is argued in Ref. 3 that one should aver-
age over e, since "roughening" at the scale a makes the
piece of string that is cut out at this scale unoriented.
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This gives

C, =y(n) g q (n)a Vq(n) .

C„creates a qq pair in a P0 state at the point n.
We may write the string overlap function y(n) as

y'„, (n) to remind ourselves that it depends on the state of
the original string (string a), and on the states of the bro-
ken string pieces (strings b and c). As discussed in Ref. 3,
all of these functions can be computed analytically in the
limit where the string oscillations are small compared to
the length of the string. Their explicit forms are messy
and not very enlightening. However, the function yoo(n),
which gives the amplitude for a ground-state string to
break into two ground-state string pieces, is well approxi-

~mlnmated by y0e '", where y0 is a constant, and m;„
is the shortest distance from the point n to the line join-
ing Q and Q. The equipotentials of this function are cigar
shaped (see Fig. 5), and string breaking thus occurs inside
a "cigar" of volume V-mr lb. The factor yo may be in-
terpreted as an elementary pair-creation amplitude, and
it can be determined by calculating decay rates in the
string-breaking model and fitting to experiment (see the
Appendix for details of this procedure and for results).

The analytic calculation of yoo(n} shows (again in the
small oscillations limit) that, when a ground-state string
breaks, the probability for the broken pieces to be in their
ground states is close to unity for lattice spacings of the
size we are considering: it varies between approximately
0.8 and 0.9 for a 1-2-fm-long string, with a in the range

FIG. 5. A contour of yoo(r }.

0.1 to 0.2 fm. Thus, there is very little probability for the
string to break into excited string pieces. This is the
main justification for ignoring hybrid mesons in the sum
(1). In addition, hybrid mesons typically have larger
masses than ordinary mesons, so their effect on bE,~ is
further diminished by the energy denominator in (1).

We cannot use (4} as it stands in our calculation of
b E,b, for if we use

H, &
=f d r C, = f d r yoo(r)q (r)a Vq(r) (5)

in (1) we find by explicit calculation that the sum does not
converge. [We have not been able to prove this in gen-
eral, but we can show analytically that when the string
length is zero, and the meson wave functions are taken to
be harmonic-oscillator wave functions, Eq. (1) gives an
infinite result. ] The problem can be traced to the point-
like nature of the effective pair-creation operator C, . Be-
cause the quarks being created are constituent quarks
with some effective size, we should make the replacement

' 3/2
2 2—(3u /8r )

d ue 'y (r)q r+ —a Vq r ——
00C,—+C, = 3

Smrq

where rq is the "radius" of a constituent quark. Of course, this operator still creates a P0 pair, and it reduces to C,
when r goes to zero.

When we reproduce the meson decay calculations of Ref. 3 using C, in place of C„we find that the quark form fac-
tor suppresses those decays in which the final-state mesons have a large relative momentum. Thus, by comparing the
calculated rates for such decays, as a function of r, to the experimental rates, we can set an upper bound on r, and
thereby a lower bound on the magnitude of hE,~. This is done in the Appendix, where we conclude that r is almost
certainly less than 0.3 fm.

With this information we may calculate bE»(r) For each .qq flavor, Eq. (1) can be written in terms of the wave func-
tions of the virtual mesons as

bE,~(r) =2 3

8mr

3

nb lbmb
n l m

f d u d v e ' yoo(v)fi', (v+ ,'u+ ,'rz)(V, ——V&)1(—;(v——,'u —
—,'rz)

V (r) Ei„—
where g& =—1(j„I, and similarly for 1(,. To arrive at this

b b b

expression, we have performed the summations over the
meson spins sb and s, . These sums can be done exactly
since, in this first calculation, we are using a spin-
independent potential model (see below) to obtain the
wave functions g& and f, ; hence, the energy denominator
in (1) is independent of s& and s, .

Computing hE@, is challenging, as the number of
terms in the sum is enormous, and each term is an in-

tegral which must be calculated numerically. In the six-
dimensional integral over u and v, two of the integrations
can be done analytically, thanks to the cylindrical sym-
metry of the problem. When these integrations are per-
formed one finds that m&+ m, is constrained to be 0, + 1,
or —1. The remaining four-dimensional integrals contain
products of spherical harmonics centered at different
points, and they cannot be done analytically. This
presents a problem because, in order to see very good
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TABLE I. AE,b (in GeV) as a function of the QQ separation r, for various values of the quark mass

mq. The bottom row includes the contributions from two flavors of mass 0.33 GeV. The quark radius

rq was taken to be 0.30 frn.

mq (G

0.33
0.55
1.8
5.2

0.0 fm

—0.23
—0.25
—0.16
—0.063

0.2 fm

—0.30
—0.33
—0.21
—0.078

0.6 frn

—0.45
—0.50
—0.30
—0.11

1.0 frn

—0.63
—0.70
—0.39
—0.14

1.4 fm

—0.82
—0.90
—0.49
—0.18

1.9 fm

—1.08
—1.12
—0.62
—0.24

Total —0.92 —1.20 —1.81 —2.48 —3.21 —4.13

convergence of the series in (7), we typically need to sum
up to nb=n, =lb =1,=10 (although, as we have said, the
major contribution to AE,b comes from terms with

ns, n„lb, I, ~ 5), and this entails calculating approximate-
ly 300000 integrals. However, the integrations in (4) are
simple to perform analytically if the wave functions 1th

and 1t, are taken to be harmonic-oscillator wave func-
tions, written in cylindrical coordinates. We therefore
expanded 1(& and 1(, in a basis of such functions, as

IX' I )(X, I IP.I ) (8)
Nn n'

where ~yz„) is a spherical harmonic oscillator (SHO)
Z

eigenfunction with "cylindrical" quantum numbers, and
) is an SHO eigenfunction with "spherical" quan-

tum numbers. The overlaps (g„ I ~1t„& ) may be calcu-
lated by diagonalizing the potential-model Hamiltonian
in the ~g„& ) basis, and the overlaps (gz„~g„ I ) are

easily calculated analytically. We truncate the sum in (8)
at the point where EE,b becomes insensitive to the in-
clusion of higher terms.

Our results for EE,b are shown in Tables I and II.
Table I lists values for r =0.3 fm; these values represent
a lower bound on the magnitude of AE,b (as discussed in
the Appendix). The entries in Table II were calculated
using r =0.25 fm. They represent a more likely lower
bound, and also serve to show how rapidly b,E b in-
creases as the constituent quark size decreases. We have
performed the calculation for u, d, s, c, and b quarks,
with constituent masses of m„=md =0.33 GeU,
m, =0.55 GeV, m, =1.8 GeU, and mb=5. 2 GeV. The
interquark potential was taken to be V(r)=br+c, with
b =0. 18 GeV and c = —0.84 GeV. (Our neglect of the
usual Coulombic term in the potential is an approxima-
tion which is in line with our coarse-grained model of

mesons; the inclusion of such a short-distance effect
would significantly infiuence the energies and wave func-
tions of only the lowest-lying meson states. } Note the
substantial contribution from cc and bb pairs. Note also
that Eq. (7) has a sparse set of poles as a function of r.
These poles correspond to degeneracies between the
unbroken- and broken-string states. They are not a prob-
lem in practice, since they are artifacts of the use of
lowest-order perturbation theory which become, when
treated more exactly, small ( —100 MeV) ripples on the
function b,E(r). The values of r appearing in Tables I
and II are far from these poles, and so a smooth curve
that interpolates between them will correspond to a
definition of the string tension in the presence of dynami-
cal pairs in which these ripples are averaged out.

We now turn to a calculation of hE„„,which is the
shift in the vacuum energy that is brought about by the
creation of virtual qq pairs. (We will see that this calcula-
tion is subject to very large uncertainties; however, since
b,E„„is an essential contributor to b,E, we must at least
attempt an estimate of it for completeness. ) When ap-
plied to the vacuum state, H,b will create a virtual 0++
meson. Since the vacuum energy shift from hybrid
mesons is suppressed relative to that from normal mesons
by the higher masses of the former, we stipulate, in ac-
cord with our previous neglect of hybrids, that H,b
should create only normal 0++ mesons, i.e., Po rnesons.
This leads to the result

n n

where n is the principal quantum number of the Po
meson, and P is its center-of-mass momentum. We take
H,b to be given by (3), with the string overlap factor yon
removed. Then for each quark Aavor we have for the
vacuum energy shift per unit volume

TABLE II. Legend as for Table I, except that f'q 0 25 fm.

0.0 fm 0.2 fm 0.6 1.0 fm 1.4 fm 1.9 fm

0.33
0.55
1.8
5.2

—0.45
—0.56
—0.41
—0.17

—0.60
—0.72
—0.52
—0.21

—0.89
—1.09
—0.76
—0.29

—1.21
—1.47
—1.00
—0.38

—1.56
—1.88
—1.24
—0.47

—2.01
—2.37
—1.55
—0.58

Total —2.65 —3.92 —5.27 —6.71 —8.52
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bC„„=—(yo")
2

322r g-2 3
' Sar

t

f"dr ", e
o Sr

—(3r /Sr )
2

2

Qn 1 r

(10)

with u„ I the usual radial wave function and yo" a con-
stant whose relationship to yo will be discussed below.
Performing the sum in (10}presents no difficulties. We
find b,E„„(yo") (in GeV ) for m~=0. 33 GeV, 0.55
GeV, 1.8 GeV, and 5.2 GeV is —0.0020, —0.0022,
—0.0012, and —0.00044, respectively ( —0.0040,
—0.0048, —0.0032, and —0.0012, respectively), for
r =0.30 fm (0.25 fm). Most of the shift comes from
values of n S4. Now consider the effects of vacuum bub-
bling on our mesonic state. Far from the cigar-shaped re-
gion, the vacuum is unaffected by the presence of the
"meson. " However, near the string, the strong-coupling
limit suggests that pair creation will be suppressed. As a
simple model we take the vacuum bubbling to be exclud-
ed from a volume V=4mb ~ +(nlb)r, the volume of
the cigar-shaped region shown in Fig. 5 corresponding to
the e ' contour. Note that although the coefficient of r
is very uncertain, linearity (up to logarithms) is expected
in the string picture so that the eff'ect of b,E„„is bound
to be absorbable into hb. With these assumptions the ob-
servable shift in the energy of our mesonic system is

bE(r) =bE,b(r) bE„,(r), —

where bE„,(r}=Vb, @„„(r)is the Casimir shift due to
the exclusion of vacuum bubbling.

Since our calculations of AE,b are based upon the phe-
nomenological strength yo of meson decay amplitudes,
they are reliable (within the substantial uncertainties indi-
cated by the difFerences between Tables I and II). How-
ever, we have no such phenomenological constraint on

I b—4
C

I

yo", and as a result, we know of no way of reliably es

timating EE„,. We therefore consider two rather ex-
treme possibilities. In the first case one could take

go =9&0 as it will be in extreme strong coupling. %'e

consider this to be unlikely since, as mentioned earlier,
H,b acts in the transition region between strong and weak

coupling so that not only Fig. 3(b), but also Fig. 3(c) (in
concert with gluonic fluctuations due to
Tr[2 —(U& U& U& Ut +H.c.)]) contribute. In the extreme

1 2 3 4

case of this type, we would have yo"=yo. For a very

rough illustration of the magnitude and characteristics of
b E (r), we adopt the latter relation and graph the results
in Fig. 6. (Note that when, in the next section, we calcu-
late a difference between two energy shifts, hE„, will
cancel out to allow us to draw more definite conclusions. )

Figure 6 shows that bE is a very nearly linear function
of r, especially for r ~0.5 fm. As mentioned above, this
linearity is expected for b,E„„but not obvious for b,E,b.
Although a string model cannot be expected to be accu-
rate for values of r much smaller than this, we note that
the deviations from linearity in Fig. 6 are such as to pro-
duce an additional effective attractive potential at short
distances which might be confused with the perturbative
Coulomb-type potential in phenomenological fits to quar-
konium spectroscopy.

These results nevertheless suggest (independent of the
uncertainties inherent in b,E„,) that the main effect of
virtual pairs might be to merely renormalize the string
tension. However, the magnitude of this renormalization
is very large: b, b is of the same order of magnitude as the
physical string tension. In the next section we wi11

present a calculation which strongly suggests that it is
unlikely that this very large shift can be absorbed as a re-
normalization of b with no state-dependent residual
effects.

-!.0—

-1.5—

-2.5—

-3.0—

-3.5
0 0.5 1.0 1.5 2.0

IV. SPIN-DEPENDENT ENERGY SHIFT

Let us now add spin-dependent forces into our model,
and calculate the differential energy shift between two
different mesonic systems, namely, a static spin-triplet

QQ pair and a static spin-singlet QQ pair. Once again,
our starting point is Eq. (1), but this time we must keep
track of the quark spins. The expression (6) for the
effective pair-creation operator implies that the matrix
element in (1) is

FIG. 6. AE(r} for r~ =0.3 fm and yo"=yo. In addition to
the total shift we show the contributions from each virtual-
quark flavor individually.

2(s, X, oX, ) I,

where the y's are Pauli spinors and
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' 3/2
~3 ~3

—(3u /8rq )
d u d ve ' goo(v}itb(v+ —,'u+ —,'rz)(V, —Vb)f,'(v ——'u ——'rz)

Smr
c b c (12)

(13a)
nb lb mb

n l m

is a spm-independent spatial overlap. If the QQ pair is taken to be in a spin-singlet state, then we find the following ex-
pression for the energy shift from string breaking:

I'+lI I'+2II, I') —,'(lI I'+lI I'+2II I') -'(lI I'+lI I'+2II, I')
sb Vo( ) E io Vo(r) Eol Vo( ) E 11

bc bc

whereas for a spin-triplet QQ pair (with S,=0 for definiteness) we find

—,'(lI+ I'+ lI I') -„'(lI+ I'+ lI I') —,'(l~+ I'+ lI I'+3II, I-')

I m V (r) Ebg V (r) Eb,— V (r) Eb — V (r) E— (13b)

where I+ =I„+iI,and in the energy denominators, Eb,
' ' is an abbreviation for E„'I,„'

&
. (s& and s, now denote the to-

tal spins of the intermediate mesons b and c, respectively. )

Vacuuin corrections are the same for both b,E,b and b,E» ', so by subtracting (13a} from (13b we obtain a in

principle physically measurable diff'erential energy shift which is independent of the poorly known quantity yo", and
which cannot be absorbed into a redefinition of b We fin. d that

EE,b='(r) —hE,q= (r) —=5E(r)= g ,' ll, I—
nb lb mb

n, l, m
C

1

V (r) EI„— + 1

VG(r) E 10 Vo(r) Eol VO(r) Eil (14)

In calculating 5E we obtain the spin splittings from the
usual meson hyperfine Hamiltonian,

32m &sH„„= S, S25 (r),
m)Pl2

taking

1.1 for q =u, d, or s,
4~

0.5 for q =c or b,
which values, in a potential model with V =br
+c —4u, /3r, give reasonable fits to the spin-averaged
meson spectra, and in addition give the correct spin split-
tings in (14).

The spin-dependent potential between two light quarks
can be obtained by performing our calculation for static
quarks of mass 0.33 GeV. This corresponds to the usual
assumption of the nonrelativistic quark model that the

static potential is relevant to spectroscopy. This approxi-
mation could be spoiled by large relativistic corrections,
but as an estimate of the energy shifts to be expected, and
given the successes of the quark model, it is a reasonable
one to make here. In Sec. V we will go beyond the static
approximation to show that the estimates of this section
are indeed qualitatively correct.

The 5E (r) produced by virtual uu, dd, and ss quarks is
graphed in Figs. 7 and 8 for r~=0. 3 fm. (The depen-
dence on rz is weak: 5E changes by less than 20 MeV,
over the whole range of r, when r is decreased from 0.3
to 0.25 fm. ) The eff'ects of the heavy quarks c and b can-
cel alinost entirely in the difFerence (13b) and (13a); their
combined contribution to 5E(r) is less than 1 MeV for all
values of r. At the decay thresholds, the perturbative for-
mula (14) diverges, so we must use degenerate perturba-
tion theory, which, applied at these points, yields the re-
sults shown by X's on the graphs. Of course, it is only

300

200—

100—

0—
—100—

-200—

-300
0 0.5

I'

I

I

I

I

I

I

I

,
I

t

1.0
r (fm)

I

I

I

I

I

X

I

I

I

I

I

l

I

I

I

I

l.

r

I

I

300

200—

100—

0—

-100—

-200—

—300
0

I

I

I

I

I

I

I

I
~ i I

0.5 1.0
r (fm)

I

I

I

X
I

I

I

I

I

I

I

I

1.5 8.0

FIG. 7. 6E(r) from virtual uu and dd pairs, for rq =0.30 fm. FIG. 8. 5E(r) from virtual ss pairs„ for rq =0.30 fm.
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away from these degeneracies that one can identify the
eigenstate of the full Hamiltonian which is dominantly a
perturbed string.

The only conclusion we wish to draw from these results
is that the very large b E (r) of Fig. 6 has potentially large
residual effects even after one redefines b. Figures 7 and 8
show that spin-dependent shifts of the order of 100 MeV
are to be expected. In the next section we will verify this
conclusion by considering the effects of nearby thresholds
on the nucleon and p-meson masses.

V. APPLICATION TO THK N/p PROBLEM

The results of Sec. IV do not necessarily imply that the
neglect of pair creation in ordinary (valence-) quark mod-
els will-lead to substantial discrepancies with experiment:
it is quite possible that pair-creation effects can be hidden
in the handful of nonfundamental parameters that are
characteristic of such models. It may be that only more
fundamental calculations, such as Euclidean lattice QCD
studies, will reveal the need for correctly incorporating
virtual pairs. In fact, these calculations may already ex-
hibit an example of such a need, namely, the so-called
"X/p problem" (the nucleon-to-rho mass ratio comes out
too large). In this section we will see that a plausible ex-
planation for this discrepancy may be found by examin-
ing the mass shifts produced by virtual decays of the p
and N. In the preceding sections we have learned that
the average effect of quark loops is simply to renormalize
the string tension, but (see Figs. 7 and 8) that a state near
a threshold can experience mass shifts which cannot be
taken into account this way. In this section we therefore
consider the effects on m and m& of nearby thresholds.

In current lattice calculations that include virtual
quark loops, ' the masses m of the dynamical quarks are,
out of computational necessity, taken to be rather large.
They are so large, in fact, that the pion mass is greater
than half the rho mass, making the p a stable particle.
The "physical" p mass is obtained in such studies by
smoothly extrapolating to m =0 (where m & —,'m }. We
will argue that such a procedure will lead to an underesti-
mate of m because the shift in m from its virtual de-
cays to em is not a smooth function of m near
m„= —,'m . The shift may be calculated by computing
the p~m~ transition amplitude A in the string-breaking
model [the explicit formula for Ai is obtained by multi-
plying Eq. (Al) of the Appendix by M M, where M, is a
normalization factor for meson i, as described in Ref. 3],
and then using time-ordered perturbation theory (TOPT)
to obtain

(b)

FIG. 9. The two time orderings for the p~~m self-energy

loop.
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creation and/or annihilation of three quark-antiquark
pairs, a process which seems likely to be suppressed rela-
tive to the single pair-creation vertices of Fig. 9(a}. (See
Ref. 9 for a further discussion of this point). Neglecting
the Z graph leads to expression (17).

In Fig. 10 we show b, m
~ „~, as a function of the pion

mass m, with the quark radius rq taken to be 0.25 fm.
(The results vary only by about 20% as r is varied be-
tween 0 and 0.3 fm. ) There is an abrupt change in the
mass shift as the p-decay threshold is crossed. Indeed,
the second derivative of b, m

~ ~
is discontinuous at this

threshold. The dotted line in the figure shows how an ex-
trapolation from large to small m could lead one to un-

derestimate the p mass by approximately 70 MeV. (Un-

(17)

where k is the momentum of one of the intermediate state
pions. Recall that, in TOPT, virtual particles are on their
mass shells, energy is not conserved at vertices, and each
possible time ordering of a particular process is con-
sidered separately. The two time orderings for the
p~mm self-energy loop are shown in Fig. 9. In the
string-breaking model, it is reasonable to neglect the "Z"
graph of Fig. 9(b}, as the vertices there correspond to the

-280 l a

0.4 0.6
m (Gev)

0.8

FIG. 10. The mass shift of the p from its virtUal decays to
The dashed line shows how a smooth extrapolation from

large to small m„could be misleading. The physical pion mass
and the threshold for p decay are indicated at the top of the

graph.
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quenched lattice calculations obtain mnlm =1.6+0.2,
which corresponds to a 180+90-MeV underestimate of
m .)

For comparison, the upper curve in Fig. 11 shows the
results of a similar calculation of Amp( )

the mass shift
that the p experiences from its virtual decays to con. The
curve is smooth, since no thresholds are crossed, indicat-
ing that virtual decays to this and higher-mass states can-
not wash out the jump in Am („].This is of course con-
sistent with our conclusion that the effects of high-mass
states can be absorbed into the string tension. The lower
curve in Fig. 11 shows b,m~~z ~, the mass shift of the nu-

cleon from N~Nn. Sinc. e the string-breaking model has
not been fully studied for baryon decays we calculated

dmin(z„] using the pseudovector coupling

Ny„y5rN dI'm . (18)
2m~

with coupling constant g =13.5, and with a form factor
e " ~ to account for the finite size of the hadrons.
This gives

~mN(Nm)

37Tg dk k4e —k /65

(19)
(2~)' E EN(EN+mN) mN (EN+E

Fits to baryon spectra and baryon decay rates' give 5
=0.3 to 0.4 GeV. The results of Fig. 11 were obtained
with 5=0.3 GeV. Although the magnitude of b, m~~N„~
is naturally quite sensitive to 5, the shape of the curve is
not, and we are mainly interested in showing that, in the
ratio m~/m, the jump in m is not canceled out by a
corresponding jump in m&. %e also checked that the
pseudoscalar coupling X;„,=gNy5r¹tr produces a simi-
larly smooth nucleon mass shift. As with m, it is un-

necessary to consider higher-mass states since their
effects can be subsumed into the string tension b.

These results strongly suggest that the N/p problem is
at least partially a result of the apparently invalid pro-
cedure of smoothly extrapolating mz/m through the
threshold for p decay, and that lattice calculations of
m~/m will become accurate only when they are per-
formed with m near its physical value.

VI. CONCLUSIONS

It seems likely that the model we have presented here
of quark pair creation in mesons is at least qualitatively
correct: in addition to being in accord with strong-
coupling QCD, it has a demonstrated ability to success-
fully describe strong meson decays. The main con-
clusions we have drawn from the model are as follows.

(i) Virtual pair creation in mesonic systems leads to a
very large energy shift. (This is not unexpected, for the
energy shift from each nearby virtual decay mode ought
to be roughly the size of a typical strong decay width, i.e.,

I g(an)

-400—

-800

-1000
0 o.e 0.4 O.6 o.e s.o

m (Gev)

FIG. 11. The p mass shift from p~coa (upper curve), and the
nucleon mass shift from N~Nn. (lower curve).

about 100 MeV. ) For the case of static QQ sources, the
shift is an almost linear function of the distance between
the sources; hence, it mainly serves just to renormalize
the string tension b.

(ii) The virtual pairs will, nevertheless, make their pres-
ence felt in spectroscopy with a strength of the order of
100 MeV, due to spin-dependent and/or nearby-
threshold effects, which are not the same for all mesons
and so cannot be absorbed by a single shift in b

Thus, any fundamental calculation of the hadron spec-
trum which hopes to be accurate to better than about 100
MeV must correctly treat pair-creation effects. We have
indicated how the N/p problem of lattice QCD may be
ascribed to a failure to do so.
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APPENDIX

The numerical values of yo (the string-breaking ampli-
tude) and rq (the constituent quark radius) that we used
in our calculations of AE were obtained by fitting to
meson decay data. Specifically, our fitting procedure was
as follows. We calculated meson decay amplitudes in the
string-breaking model of Ref. 3, replacing their effective
pair-creation operator C„[see Eq. (4)] by the smeared
pair-cration operator C, defined in Eq. (6). The expres-
sion that we thereby obtained for the amplitude for the
decay process A ~BC is

3

8mr

' 3/2

fd rd ud yyoo(r, y)e

X/1*, ( ,'r+ ,'u+y)g—,*( ,'r—+,'u y)a—(iV—&+—i V, +.q)g, (r)e'q ("+"' (A 1)
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TABLE III. The decays used in the goodness-of-fit test. Also shown are two sample sets of calculat-
ed decay amplitudes, for rq =0 and r =0.3 fm, and the experimental amplitudes. [The latter are taken
from the Particle Data Group (Ref. 11).] Note that we have, in all cases, ignored the phases of the am-

plitudes, as they are irrelevant to our fitting procedure.

Decay

D waves
az(1320)~pm'
a2{1320)~qvr
a2(1320)~KK
f2(1270)~qrqr

f2(1270)~KK
f2(1270)~q)q)
f2(1525)~qrqr

K,'(1430) E~
K2 (1430)—+K m

K2 (1430)~pK
K2 (1430) coK

E,*(1430)
E& ( 1280)~K 7r

K((1400)~E*m
b)(1230)~con.

rq =0

6.7
4.9
3.4

11.0
3.1

1.0
0.90
7.8
4. 1

3.3
1.3
0.8
2.7
1.1
2.4

Calculated amplitudes
(v'MeV)

r =0.3 fm

5.7
4.1

2.9
9.1

2.6
0.86
0.72
6.4
3 ' 5

2.8
1.1
0.67
2.3
0.94
2.1

Expersrnental
amplitude
(&MeV)

8.8+0.3
4.0+0. 1

2.3+0.1

12+1
2.3+0.2
1.0+0.2
0.8+0.4
6.7+0.5
5.0+0.5

3.0+0.4
2.0+0.4
2.2+0.7
2.6%0.5
2.6+0.9
3.6+0.5

F waves

p3( 1690)—+ m'm

p3(1690)~sum
p3(1690)~KE
co3(1670)~p~
$3(1850)~KK
$3(1850)~K K
K3 (1780)—+Km

6.4
3.8
3.2
6.2
5.8
3.1

5.7

4.3
2.7
2.2
4.4
4.0
2.2
3.9

6.9+0.6
5.6+1.6
1.7+0.3
8+2
7+2
5+2
4.9+1.0

G waves

f4(2030)~qrqr

fg(2030) ~KK
fq(2030) ~q)q)
K4'(2060) ~K~

5.2
2.3
1.0
3.4

2.9
1.3
0.58
1.9

6+1
1.3+0.4
0.45+0.23
4+1

80—

60-

0 s

0 0.!0 0.80

r, (fm)
0.30 0.40

FIG. 12. Goodness of fit vs rq. The dashed lines show the
90%%uo and 99%%uo levels, which correspond to rq values of 0.25 fm
and 0.30 fm, respectively.

where q is the momentum of 8. This expression reduces,
as it should, to Eq. (6) of Ref. 3 when r ~0. We also
used the same wave functions as in Ref. 3, namely,
harmonic-oscillator wave functions, with oscillator pa-
rameter P=0.4 GeV [P is defined by

p2p2 jZt(t(r)-(polynomial) Xe ~" ~ ], and the same phase-space
factors as well, so that from (Al) we could directly calcu-
late decay amplitudes as functions of r and yo.

For each of a series of values of r, we fitted yo to the
decay p~m~, and then calculated the rates for the de-

cays shown in Table III. We chose to look at decays with
high orbital angular momentum in the final state, as there
is a good deal of data available for them, and they are
quite sensitive to a softening of the pair-creation operator
(i.e., to an increase in r ). The goodness of fit to the 26
decays of Table III is shown, as a function of r, in Fig.
12. We can read oft' that r is less than 0.3 fm at the 99%
confidence level, and less than 0.25 fm at the 90%
confidence level. These are the values we quoted in the
text. The values of yo corresponding to these r 's are
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0.77 and 0.72, respectively.
The goodness-of-6t calculations require, of course, a

value for the theoretical error rr, of our calculated decay
amplitudes. We "measured" o, to be 27%%uo when r =0
(which, as Fig. 12 shows, is the value slightly preferred by

the data), and we used this value for all of our calcula-
tions. We checked, however, that our results are not very
sensitive to changes in 0, . For example, even if o., is al-
lowed to be as large as 40%, one can still conclude that
r (0.3 fm, with a confidence level of 85%%uo.
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