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Nonresonant three-body decays of charmed mesons are first studied in the approach of effective

SU(4) XSU(4) chiral Lagrangians. It is pointed out that the predictions of the branching ratios in

chiral perturbation theory are in general too small when compared with experiment. However, the

experimental results are comprehensible in the general framework of the quark-diagram scheme.

The existence of a sizable 8'-annihilation amplitude, which is evident by the observation of
D,+~(n.+~+m )N„, is the key toward an understanding of the three-body nonresonant decays of
D+ and D,+. The measurement of D ~K K+K and D ~K m+m indicates that color suppres-

sion is not effective in the three-body decay. Based on the quark-diagram analysis, predictions for
some other nonresonant modes are given.

via the soft-pion theorem. Unfortunately, there is no
such analogous low-energy theorem available in the
charm decay; a generalized SU(4) XSU(4) chiral symme-
try does not exist a priori since the charm quark is much
heavier than the light u, d, and s quarks and since the
SU(4) symmetry is not seen in the hadronic spectrum. In
spite of the absence of a justified SU(4) chiral symmetry,
attempts of using the effective SU(4)XSU(4) chiral La-
grangians have been made by several authors to calculate
the nonresonant decays of the chartned meson.

We will show in Sec. II that the theoretical prediction
of the nonresonant decay rate in chiral perturbation
theory is in general too small when compared with the
experiment. The difficulty with the SU(4) chiral Lagrang-
ian is discussed. We then move to the quark-diagram ap-
proach in Sec. III. We point out that though the effective
chiral Lagrangian fails to describe the main bulk of the
nonresonant D~3P data, nevertheless it shows that in
the limit of SU(3) symmetry the nonresonant decay am-
plitudes can be expressed in terms of six distinct quark-
diagram amplitudes, a basic assertion of the quark-
diagram scheme. It becomes clear in this scenario that a
sizable W-annihilation diagram, as evidenced by the ob-
servation of D,+~(m+tr+tr )N„, is the key towards an
understanding of the nonresonant three-body decays of
D+ and D,+. Based on the available data, we can even
make further predictions for other decay modes of
D ~3P. Sec. IV contains the summary and conclusions.

I. INTRODUCTION

K

D

(c)

FIG. 1. The direct transition (a) and pole diagrams (b) and (c)
for D~3P.

The three-body decays of the charmed meson are in
general dominated by vector-meson resonances. For ex-
ample, the recent Mark III data' reveal that the resonant
decay K p+ constitutes about 70% of the D+ ~K on+no

decay rate, while the E p+ decay mode accounts for
80% of the K tr+tro rate Non. resonant contributions
are usually only small fractions of the total D ~3P decay
rate. (A noticeable exception is the D+~K tr+n+.
mode whose nonresonant contribution is 80%.)

Pseudoscalar-pseudoscalar (PP) and pseudoscalar-
vector (PV) two-body decays of the charmed mesons have
been studied in great detail both experimentally and
theoretically. The gross features of D~PP and PV data
are understandable, at least at the qualitative level, within
the framework of the quark-diagram approach and of
the vacuum-insertion approximation supplemented with
the I/N, expansion (N, being the number of colors), '

for example. Now, the question is whether we can de-
scribe the nonresonant three-body decay of the charmed
meson in the same framework. We will demonstrate in
this paper that the qualitative features of the direct
D ~3P data can be well explained by the quark-diagram
approach.

The nonresonant D~3P amplitudes receive two con-
tributions: the direct weak transition and the pole dia-
grams which arise from the combination of a two-point
weak vertex and a four-point strong vertex (see Fig. l).
Therefore, in order to compute the nonresonant decay
rates we need a theory for describing the DP~DP or
PP ~PP strong-interaction scattering at the energies
&s -mD. Recall that in the case of K —+3m decays, the
use of chiral symmetry and PCAC (partial conservation
of axial-vector current) enables us to write down the low-
energy EK, Em., and mm scatterings. Moreover, the
E—+3~ amplitude can be related to the E~2m. transition
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II. CHIRAL PERTURBATION THEORY

Z=c e'"'+c e"4'—cl C2 (2.1)

where the coupling constants c& and c2 can be deter-
mined from the measured D ~Em rates. We remind our-

Since the framework of SU(4) chiral perturbation
theory has been discussed in detail in Ref. 7, we will just
recapitulate the main points here. There are two weak
operators responsible for nonleptonic charmed meson de-
cay: namely, B' ' and 8' ', which transform as 20 and
84 representations, respectively, of SU(4). The effective
Lagrangian thus has the form

q; y„(1 y3)—q, ~ f '(—L„);, ,
2

(2.2)

where L„=(B„U)U is an SU(4) singlet, f is a meson de-

cay constant, U=exp(2iglf ), and P=P'A;/3/2. There-
fore, the lowest-order effective SU(4)XSU(4) chiral I.a-
grangian for hC = 1 transitions reads

selves that the AS = 1 effective weak Lagrangian has only
one unknown coupling constant since it is dominated by
the octet representation of SU(3) owing to the b,I=—,

'

rule. The weak operators B' ' and B' ' are obtained
from the corresponding quark weak currents by making
the replacement

GF
~ [cos 8C[(C1+C2)Lp21L43 (Cl C2)Lp23L41]2&2

+si 8nCcso8&[(c +1C)2L~ 31L43 L~21L42 (C1 C2)L~23L~4, L„22L~41]—

—sin 8C[(c, +C2)L~31L42+(C] C2)L„32L41 ] J . (2.3)

The unknown coupling constants of the 20 and 84 weak operators can be determined from the experimentally ob-
served D ~Err rates. The branching ratios of D ~Err measured by the Mark III Collaboration are given by

B(D ~K n+)=(4.2+0.4+0.4)%%uo, B(D ~K m )=(1 9%0.4+0.2)%. ,

B(D+ +E n+)=—(3. 5+0. 5+0.4)% .

Taking into account final-state interactions, namely, 5,&2
—

53&2 —=(77+11)' (Ref. 1), we obtain

(2.4)

cl =1.67, c, =0.49, (2.5)

where use of the charm lifetimes'

(Dr+)=(10.9+0.39)X 10 ' sec, r(D )=(4.22+0. 13)X10 ' sec,

r(D,+ ) = (4.70+0.45 ) X 10 ' sec
(2.6)

has been made.
Finally, an effective chiral Lagrangian for strong interactions is also needed for computing the three-body decays of

the charmed meson; it is given by

p2 g 2

Tr(B„UB"U )+ Tr(MU+MU ) (2.7)

with M;3 =0 foriAj and

n =M11=M22, E =
—,'(M„+M33), D =

—,'(M, 1+M44), D, =
—,'(M33+M44), (2.8)

where meson masses are denoted by the particle symbols.
Armed with the effective chiral Lagrangians (2.3) and (2.7), it is straightforward (though tedious) to compute the non-

resonant D ~3P decays. Experimentally, only ten such channels have been measured thus far. In the following we give
the theoretical amplitudes for those ten decay modes:

2DA(D+~K n+n+)= —a (c, +c2)(s, —2m ) +(c, —c2)(D, +3m 3s, )—
S

D2 2

A(D ~K rr m )= —a (c +c )(s 2n ) +—(c —c ) —s +s —(s —s )
+ —o + o S D

e2 1 2 1 D2 21 2 —1 3 2 3D2 K2
S

A(D+~nn+n+)=b[2( '+cc.2)(s, —2m. )+(c, c2)(D +3m ——3s, )],

A(D+~n. +K+K )=b (c, +c2) mD+(D +2E . —s3) —K —
2 +(c, c2)(s3 —s2)—
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A(D +—K n+.m )=a (c, +c2)(2m —s, )+
2 2

+(c, —c2) s2 2 2
—s3 2 z

—n.
S

o — + oA(D K—m+n. )= —a (c, +cz)(2m —s&) 2 2 +(c,—c2) s, —sz+(sz —s3)
2 D, —~ D —E

A (Do~K oK+K ) =a [(c,+c, )(s, s,—)+(c, c2—)(si —K')],

(2.9)

A(D ~nn'+'m)= 'b (ci+c2) D +3m 3s—2+ 2 (&i —&3)
2 D

—(c, —c2) n +s, —2si+ i 2 (&i —s3)

A(D,+~K K+n+)=a[(c, +c2)( —s, +K )+(c,—c2)(si —s2)],

A (D,+ —+m m+m+) = —a(c, +cz) 2 z (D, +m s, ), —
S

where a =(G~/2&2)cos 8c, b =(G~/2~2)sin8ccos8c,
s; = (pD

—P; ), and p; is the four-momentum of the ith
meson. The calculation of D+ and D three-body decays
in chiral perturbation theory was already done in Ref. 7.
Nevertheless, these results are included in Eq. (2.9) for
the purpose of completeness and for the later purpose of
drscussson.

After integrating the amplitude squared over all phase
space, we obtain the branching ratios of nonresonant
D ~3I' decays as exhibited in Table I. It is evident that
the chiral-Lagrangian predictions for D+ ~K mo+m ,

o

m+m+n, and D,+~K K+m+ are somewhat surpris-
ingly in agreement with experiment although SU(4) chiral
symmetry is not expected to work well. The predicted
nonresonant rates for other channels are in general too
small by 1 order of magnitude when compared to data.
The channel D,+ +(n+tr+m —)N„ is prohibited since its
amplitude goes as m /mD . We shall see in the next sec-

S

tion that the decay can proceed only via the W-

annihilation mechanism. This means that nonspectator
diagrams (W exchange or W annihilation) are predicted
to be zero in chiral perturbation theory, a result not ob-
served experimentally.

Apart from the above-mentioned problem as we are go-
ing to elaborate on in Sec. III, there exists an intrinsic
difficulty with the use of SU(4) XSU(4) chiral symmetry.
Suppose the chiral-symmetry-breaking scale (which is
also the scale of the higher-order Lagrangian terms) is
given by Ar=2v 2mf (Ref. 13). It is well known that

f=f„and hence A+=1 GeV (f being normalized to
132 MeV} in the chiral-SU(3) case. It is not clear what is
the scale of Az for SU(4) symmetry. If Az is around 1

GeV, then the use of SU(4} chiral perturbation theory
will become meaningless since higher-order terms, which
are of order p /Ar, are larger than the leading ones.
However, if f is of the same order as the decay constant
fD or fD, which is estimated to be in the range of

s

190-200 MeV in recent lattice calculations, ' then
A&= 1.6—1.7 GeV in the SU(4) case. Even so, contribu-
tions to D~(PPP)N„decays from higher-order chiral
Lagrangians are still not substantially suppressed relative
to the leading terms. This indicates that a sensible calcu-
lation of SU(4} chiral perturbation theory should include
higher-order contributions; this explains why the non-
resonant decay rates predicted by the lowest-order chiral
Lagrangian are in general too small.

TABLE I. Quarkdiagram amplitudes and branching ratios for nonresonant D ~3P decays; vd b
= Cd —6b, 8, b

=8, —6&. Be-
cause of the complications, 6nal-state interactions in three-body decay are not taken into account at this stage.

Decay mode

O' K0~+~-

~K m+m0

K K+K
KKK

~K m+g8

Amplitude

v„„v,', (A+X,+C )

)ud cs

v„,v,', (S,+C)
v„„v,', &z(e)

—( —~+ )Qd cs

(B),„p, (Vo)

2.140.3+0.7'

1.2+0.2+0.6'

0 85+0-27+0 19—0.24 —0. 18

(B ),h„„(%)
in chiral perturbation theory

0.13

0.18

0.02
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TABLE I. ( Continued. )

Decay mode Amplitude (&),„p, (%)
(8),h„, (%)

in chiral perturbation theory

V V —(2A+9 +38')ud cs

m+m E
K+E m

~K+K m'

K Km+

gOgO 0

~K+K K

Vud V,', (, —C'+@„„)+Vu, V,', (8, b)&2 &2
Vud V,d($2)

ud cd {+ @d—b )+ Vus Vcs {A++ @s—b )

Vud V,d (2@d b)+ Vus V„(A+gti+8+2@s b)

Vud V,'„(A+8+Id b)+Vu, V,', (8+6, b)

Vud V,d (%)+28)+Vu, V„{S)—8)
&2 ' V2

Vud V,d($~)

0.04

D+ E m+m

E m+n+

g+K'K'

K 'm+g,

~K 'm+q,

~~+7T+1T

~fr ir'7l'+ 0 0

E+K +m

~E'K 0~+

Vud V„—( —A) —g))"v'2

V„„V,', &Z(A+%, )

V„d V,",~2(9~)

V V' ( A 8+ZS)
6

Vu, V,', {2A—ZS, +ZS, )"v'3
Vu, V,', &Z(A+8, +g)+ @„,)+ Vus V,', &Z(@, , )

ud Vcd {A+~1+++@d —b )+ us Vcs {@s—b )' &2 " v'2

Vud cd {+ @d—b )+ Vus Vcs {A++1+@d—b )

)+ V..V

V„d V,'d(A+g, +2)+Cd b)+ Vus V,', (9,+4', b)

1.3+0.7+0.9'

7.2+0.6+1.8'

0.25+0.07%0.02'

0.54+0.2520.09'
0.45+0.07%0.09
0.56+0. 18'

0.76

1.71

0.15

0.02

D,+ K-K+~+

~K+K'~'
E'E'~+

~E K g8

E+K go

+ +

~m 7r'7T'+ 0 0

-g+E+E-
-E+g'g '

K+m+n

E m+m

E+m m.

Vu, V,', (A+9, +S)

V.,V,',
' {-9+~)
2

Vu, V,*,(A+9,+S)
V„dV,,

' (-~,-~, )
6

ud cs

V„g V„~2($)

V.,V,',
' (S)
2

V„„V,g&2(@g g )+ V„,V„~2(A +S(+X)+C, b )

Vud V,*,(S,+6, , )+ Vu, V,', {A+%,+S+@, , )

Vu, V,', (A+%,+0, , )+ V,', (2)+8, , )

1

2

Vud Vcd ~ (1 2+ @d —d )+ Vus Vcs (++@s—b)
1 1

2

0.81+0.25%0.25 '

34+1 1'

1.0+0.3+0.1

0.42

5X10 '

'Mark III Collaboration (Ref. 8).
E691 Collaboration (Ref. 11).

'ACCMOR Collaboration (Ref. 12).
B(D,+ ~Pm. +

) =0.035 has been assumed.
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III. QUARK-DIAGRAM APPROACH

In this section we will apply the quark diagram scheme
to analyze the data in a phenomenological way, and to re-
late the previous chiral perturbation theory in this frame-
work. It has been established that' ' ' all meson nonlep-
tonic weak decays can be expressed in terms of six quark
diagrams: A, the external W-emission diagram; S, the
internal W-emission diagram; C, the W-exchange dia-
gram; 2), the W-annihilation diagram; 6, the horizontal
W-loop diagram; and 9, the vertical W-loop diagram.
These quark diagrams are specific and well-defined physi-
cal quantities. They are classified according to the topol-
ogy of first-order weak interactions, but all QCD strong-
interaction sects are included Su.ch scheme has been ap-
plied to study the two-body charmed-meson decays and
new predictions have even made; it presently offers the
least model-dependent way of analyzing the experimental
results and making predictions.

The quark-diagram amplitudes of some D~(PPP)NR
decay modes are given in Table I. The amplitude 9, is

referred to the internal W-emission diagram in which the
quark-antiquark pair is created on the side of the specta-
tor quark, while 92 denotes the case when qq is created
along the charm-quark line. The use of quark-diagram
scheme for three-body decays of the charmed meson has
two complications which do not exist in the analysis of
exclusive two-body decays. First of all, quark-diagram
amplitudes include not only direct weak transitions but
also the pole diagrams mentioned in the previous section.
Second, the three-body quark-diagram amplitudes are in

general momentum dependent even when all external
particles are on the mass shell. This means that unless its
momentum dependence is known, the quark-diagram am-

plitude of D~(PPP)N„cannot be simply determined
from experiment without making further assumptions.
Moreover, the momentum dependence of each quark-
diagram amplitude may vary from channel to channel.

To ensure that the quark-diagram scheme is applicable
to D ~3P even in the presence of pole contributions, we
have checked that in the SU(3) limit, which is the starting
point of this scenario, all nonresonant amplitudes given
by Eq. (2.9) in chiral perturbation theory can recast in
terms of the quark-diagram amplitudes'

D2
A =(c, +c2)(2n —si), $,=%2=0,

K
JSi =(Ci C2 ) Si+si —2s3+(Sz $3 )

D —K
(3.2)

for D+~K m. +m, whereas

S,=(c, —c2) s, —s2+(s2 —
s& }

K
(3.3)

for D ~K n+n . Obviously, %, in D+~K m. +m has
a momentum dependence different from that in
D ~K m. +m . To simplify the ensuing discussions, we
will nevertheless assume that after the phase-space in-
tegration, each quark-diagram amplitude behaves the
same from channel to channel.

Let us first focus on the decay modes K m+m and
K m+ ~+ of D +. From Table I we expect
4I (D+~K n. +m )=I (D+~K m+n+) from the
quark-diagram scheme. Data are consistent with this re-
sult. Next turn to D+~K K+m. + and m+~+m . Be-
cause the available phase space for the final state
K K+n+ is about three times smaller than that of

+m+ m. , it is naively expected that I'(D +

~K K+n+ ) = —,'I (D+ ~m+m+n). Ind. eed, this is

also the result obtained in chiral perturbation theory (see
Table I). Experimentally, the K K+@+ mode has how-
ever a larger branching ratio than ++~+a. , more pre-
cisely, I (D+~K n+n+)=21"(D+~n+m+m ). From
Table I it is clear that this seemingly surprising experi-
mental result can be explained only if the W-annihilation
diagram is nonvanishing. (The penguin diagram is negli-

gible in the charm decay owing to the good approxima-
tion V» V,', = V„d V;d ). Furthermore, the W-annihilation

diagram must exist in such a way that it contributes con-
structively to D+ ~K K+m+ but destructively to the
++m+~ channel. A nonUanishing 8'-annihilation ampli-
tude 2) is evidenced by the observation of
D,+ ~(m+n+m)NR sinc.e it can only proceed through the

W-annihilation mechanism We will tu. rn to this crucial
point shortly.

The decay rate of D,+~K K+m. + and D ~K m+m.

is also understandable within the framework of the
quark-diagram approach. Since the phase space of
D+ ~m+ m+ m is about two times of the size of
D,+ ~++K+K, it follows that

C =(c,—cz }(s2 n), — (3.1} B(D,+ ~K K w )NR=B(D ~ann)NR. .
inec

m2S=—(c, +cz) (D +m. s, ), — 47 1 1X X —X—
109 2 2

This gives an indication that although the effective chiral
Lagrangian fails to reproduce the main bulk of the exper-
imental results for nonresonant decays, it demonstrates
specifically the validity of the quark-diagram approach.
In the presence of SU(3) breaking, the amplitudes S, and
gz are no longer vanishing. For example, we find from
Eq. (2.9) that

=(0 50+0. 15)%%uo (3.4)

in agreement with the E691 measurement, "
(0.81+0.25+0.25}%. Our prediction (3.4) also indicates
that the branching ratio (3.4+1.1}%%uo measured by the
ACCMOR Collaboration' is probably too large. For the
branching fraction of D ~K m m, it is easily seen that



41 NONRESONANT THREE-BODY DECAYS OF CHARMED MESONS 1515

B(D ~K rr rr )Na=B(D+~K n+.sr+)NaX —,
' X —,

'

= (0.9+0.2)%, (3.5)

which is also consistent with the Mark III result, '

(1.2+0.6)%.
Now we make a more quantitative analysis. Assuming

that the phase space of each channel is dominated by the
momentum-independent terms, we find that the relative
experimental branching ratios of D + ~K

D ~E+~+m, can be satisfactorily explained provided
that'

= —0.38 .+ (3.6)

The existence of a sizable 8'-annihilation contribution is
thus the key towards an understanding of the three-body
nonresonant decay of D+ and D,+. Recall that the non-
spectator diagram (8'exchange or lVannihilation) is usu-
ally argued to be negligible due to helicity suppression.
Evidently, this helicity suppression mechanism must be
vitiated by some nonperturbative effects, presumably the
soft-gluon corrections. ' The quark-diagram analysis of
the exclusive two-body decays of the charmed meson also
reveals the evidence of the nonspectator contribution in
the decay of D ~PP and VP (Ref. 2).

Before proceeding it is worth mentioning that it has
been argued in the past that the W-annihilation diagram
should not play an essential role in D,+ decay due to the
small rate of D,+ —+p m+. (This decay mode can only
proceed through W annihilation. The current upper
bound is B(D,+ ~p n+ ) (0.77% [ARGUS (Ref. 19)] and
&0.28% [E691 (Ref. 11)].) However, there are two W-

annihilation terms which contribute with opposite signs
to D,+ ~p m+ (Ref. 20):

A(D, ~p m+)= —V„V„'d(2)' —2)) .
2

(3.7)

As a consequence, the significant W-annihilation contri-
bution does not conflict with the low rate of D,+~p m. +

due to a possible cancellation between S' and 2).
What can we learn from the decays D ~K m+~ and

E E+E ? From our past experience with D ~Km. , we
know that final-state interactions (FSI's} are important
for D decay (at least for exclusive two-body decays).
Unfortunately, at this stage we cannot make any concrete
estimate of FSI's for D~3P. Nevertheless, it is instruc-
tive to fit the experimentally measured rates of
(K rl'+~ )Na and (K K+K )Na without considering
FSI's. By doing this, we find

X~+C =8,= —0.6A . (3.8}

This implies that the color-mismatched quark diagrams
and C are neither color nor QCD-correction

suppressed, contrary to the naive expectation. This
phenomenon of color nonsuppression for the quark-
diagram amplitudes X and C was also known to two-
body charm decays for a long time. The measurement of
nonresonant decays D ~K K E and D+ ~K E K+

will enable us to determine the quark-diagram amplitudes
C and 92, respectively.

From the quark-diagram expressions we can make the
following predictions (after taking into account the
phase-space integration):

8(D ~K+K K )Na=158(D ~n+m K

=908(D ~K K E )Na,
(3.9)8(D+~n m m ) Na=48(D+~n m m )Na .

With Eqs. (3.6) and (3.7) we can further predict that

8 (D+ ~KOK On+)N„.=38(D+ ~K E m+ )Na,
3.10

B(D,+ +K+K—K )Na=68(D, +~K+K+K )Na .

It is important to measure these nonresonant decays list-
ed above to test the quark-diagram approach.

IV. SUMMARY AND CONCLUSIONS

We have studied in this paper the nonresonant three-
body decays of the charmed meson in two difFerent
frameworks: chiral perturbation theory and the quark-
diagram approach. The basic assertion of the quark-
diagram scheine that in the SU(3) limit all nonresonant
D~3P decays can be written in terms of six distinct
quark-diagram amplitudes to first order in weak interac-
tions and to all orders in strong interactions (e.g. , the
pole diagram) is confirmed by the chiral-Lagrangian cal-
culations.

From the quark-diagram-scheme analysis of the data,
it is clear that there are two crucial ingredients necessary
for an understanding of nonresonant charm decays: a
sizable W-annihilation diagram, as is evident by the ob-
servation of D,+~(m+n+m )Na, and color nonsuppres-
sion for the color-mismatched quark diagrams. The
chiral-Lagrangian approach fails to explain the main bulk
of D ~3P data because it predicts vanishing nonspecta-
tor diagrams (i.e., C and 2) in the notation of the quark-
diagram scheme) and too small spectator amplitudes (i.e.,
quark-diagram amplitudes A and 8). The latter has to
do with the fact that the chiral-symmetry-breaking scale
of the SU(4) XSU(4) effect Lagrangian is about 1.7 GeV
and hence high-order contributions are as important as
the leading terms. Therefore, the lowest-order chiral-
Lagrangian prediction of nonresonant decay rates is in
general too small. We wish to emphasize that if the scale
of the higher-order Lagrangian terms is of order 1 GeV,
then the use of SU(4) chiral Lagrangian will become
meaningless. Even if the SU(4) chiral-symmetry-breaking
scale is of order 1.6 GeV, a sensible chiral-Lagrangian
calculation should include higher-order contributions.
This explains why the prediction of nonresonant decay
rate in lowest-order chiral Lagrangian turns out too
small.
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We have suggested the measurements of some channels
in order to help determining the individual quark-
diagram amplitudes. Moreover, from the presently avail-
able data, we can even make some further predictions on
the branching ratios of several other nonresonant decay
modes. In short, the D~(PPP)N„decays are com-
prehensible in the quark-diagram scheme in which the
nonspectator diagram is sizable and color suppression is
alleviated.
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