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A simplified model of an eikonal representation for the scattering of high-Z ions is formulated, in-
volving an IR approximation to closed fermion loops which themselves carry full radiative correc-
tions. Signals are found for the possible production of “resonances” from such a loop when the
impact-parameter-dependent electric field between the ions reaches successive thresholds on the or-

der of m?%c3/2h 372

. Qualitative arguments are given leading to narrow widths (~30 keV) and a

prediction of peak energies in reasonable agreement with the data. An explicit enhancement factor,
arising from the computation of low-frequency radiative corrections across the loop in the presence
of a sufficiently strong external field, compensates the smallness of the fine-structure constant.

I. INTRODUCTION

Recent experiments' indicating that e T-e = pairs of
well-defined total energy have been produced in the col-
lisions of energetic heavy ions have lead to theoretical
speculations? concerning the possible existence of a
“strong-coupling” (SC) phase of QED. Prompted by
these suggestions we have applied the continuum, in-
frared (IR) method® previously defined for other, SC
(chiral) problems to the construction of eikonal ampli-
tudes for the scattering and associated production of lep-
ton pairs of a pair of heavy ions. Although the analysis is
too complicated to permit at present a full calculation of
the model’s predictions, certain general features suggest a
form of behavior of both scattering and production am-
plitudes consistent with observed results; and it is these
features of the model, together with suggestions for sub-
sequent experimental measurements, which we would like
to describe here.

If at all relevant to a SC phase of QED, the analysis of
these experiments must involve closed electron loops, and
associated radiative corrections, in an essential manner.
One imagines virtual, vacuum-polarization loops appear-
ing in the presence of ‘“‘external” (essentially electric)
fields E, which are themselves due to the Coulomb
fields of the high-Z ions at small distances; and one asks
if the existence of such loops can contribute significantly
to the production of heavy, virtual objects, constructed
from multiple photons emitted from those loops, which
produce a final e *-e = pair. Each loop is supposed to
have its full complement of radiative corrections, with an
infinite number of virtual photons exchanged across that
loop; each loop is joined to the scattering ions by an
infinite number of virtual photons which comprise and
define E®*'. From the loop one imagines a number of
photons emitted, with a possible “‘resonance” defined as a
sum over all numbers of such photons; in photon
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language, appropriate to the situation when the ions have
separated and their electric field in the vicinity of the
loop is decreased below an appropriate threshold, such a
“resonance”” would have a projection onto any number of
photons. Those photons can be either virtual (Fig. 1) or
real (Fig. 2), and, if virtual, as discussed here, can form a
real lepton pair.

Our work was stimulated by the work of Caldi and
Chodos,? even though the immediate objects of concern,
there and here, are somewhat different. They considered
an electron Green’s function G.[ 4] in a constant electric
field, and asked if a particular kind of supersymmetry of
that G, [ A] could be broken in the limit of an intense
field. Their answer was negative; but they commented
that it might be different if other than constant fields
were used; and that there might be an effect of some
relevance if radiative corrections across that G.[ 4] were
included. Our paper is an attempt to include just those
things, but for the log of the fermion determinant, L[ 4],
rather than for G.[ 4], and in the context of eikonal
scattering and production amplitudes.

That part of the eikonal formulation which describes
the exchange of virtual photons between the scattering
ions is well known, and can be found in many places.*
That part of the eikonal formulation dealing with closed
fermion loops can be obtained by applying the “IR ap-
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FIG. 1. Pictorial representation of the scattering of a pair of
heavy ions (Z, ), and the emission from a closed electron loop
of one or more virtual photons which materialize into a lepton
pair.
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FIG. 2. The same as in Fig. 1, except that the photons are
real.

proximation” to QED,, in direct analogy with the tech-
niques used® for the () problem in QED, and QCD,.
(That is, all possible numbers of virtual photons are in-
cluded, with a continuous spectrum of frequencies less
than or on the order of the lepton mass of the loop, lead-
ing to an explicit, finite, gauge-invariant result.) Upon
combining these two aspects of the eikonal formulation,
one here meets an awkward and practical difficulty: it
does not seem possible to perform the necessary integra-
tion over the loop coordinate x as long as one retains all
powers of E*'. In order to proceed in a nonperturbative
way, we have adopted an averaging procedure which—
although it precludes the possibility of direct kinematical
statements—still contains enough structure to permit
reasonable inferences to be drawn concerning the proper-
ties of this eikonal system.

The averaging procedure replaces the initial eikonal
forms whose “‘external” fields acting on the loop contain
dependence on the ion coordinates x,,x, as well as on
the loop coordinate x, with a factorized model in which
the “external” field acting on the loop is taken, realisti-
cally, as the classical, impact-parameter-dependent,
transverse electric field existing between the two ions:
E™=E(b) ~b % with b=x,—x, denoting the trans-
verse, interion separation. We consider a closed-electron

J

loop defined in this background field, including all soft
radiative corrections across the loop and an arbitrary
number of virtual photons emitted from the loop, and
take this as one part of a factorized model of production,
assuming that it will eventually be justified by a better
calculation.

II. CALCULATIONS

Applying the IR method (fully documented in Ref. 3)
to this closed loop of QED,, one obtains a representation
for L[ A] which resembles Schwinger’s solution® for (that
most IR of all fields) a constant F,,, except that in this
case the F,, which appear in the integrand of his proper
time (7) representation can themselves be dependent on
7, as well as on the loop coordinate x, according to the re-
placement (for each u,v component)

F—Fy(x)= [d% f(x—p)F(y),

with (in Euclidean space) f(z)=(u2/4m)%exp[—(zu./
2)%]. One has the option of choosing p. as proportional
to 1/7,u.=c /V'T, or more simply as a constant on the
order of the mass of the fermion loop, which specifies®
the upper limit of the soft momentum region: u.=cm
where ¢ ~1. Just as for a constant of integration, or a
subtraction constant in a dispersion relation, ¢ must be
specified by some method external to this estimation; in
(QED),, for example, equating the result of the IR
method (using p. =cm) for the quenched, chiral limit of
(¢) to the known, exact result’ yields
¢ =(2m)"2exp(H ), where H is Euler’s constant. For sim-
plicity and convenience we set here ¢ =(87)!/2.

The result of this IR method is to provide the explicit,
if approximate, representation:

L{A)=(i/87%) [d* [drr exp(—tm ) F (F1g)*/4,F\g *Fig /4) (1)

with ¥, given by Schwinger’s renormalized expression

F{a,B)=(eT)*Bcoth(erX,)cotlerX;)—1—21(eT)’a ,

where

(2)

X, =(1/V2)[(a+iB)"*+(a—iP)'?), X,=(—i/V2)[(a+iB)"*—(a—iB)"?],

and #,(0,0)=0. Here, F?/4 and F*F /4 are the two invariant quantities (B2—E?2)/2 and B-E, respectively, with
*F,,,=(i/2)€,,,3F ;. For our calculation, F—(F + F®‘)j, with the quantum fluctuations of the loop expressed in

terms of F.

One must calculate those fluctuations in Euclidean space, by continuing E (in the relativistic notation of Ref. 5) to
imaginary values; or, effectively, by removing the factor of (i) in the definition of *F of (2). Then, the F, of (1) may be

rewritten as

[da [dBF(a,ip) [do [de2m) %exp] —ilaw+BE) explio(Fig +F§§ /4 +iE(Fig + )" (Fir +F5) /41, Q)

where all four integrals from from — o to + «. One then performs the Gaussian functional integration (corresponding
to photon fluctuations across the loop) over this Fz and *F;z dependence, using

((F2/4+EF*F/4)=(i/2) [ [ A,()K ., (u,0) 4, ()

and the definition

K, (u,0)=0[8,,0,f(u—x)0,f(v —x)—8,f(u —x)3,f (v =x)]—E£€,,,10,f (u —x ) f(v—x) .



There results

Wesp |(1/2) [ 4= A=, (@)

with
W=(1—iAw,/2)"(1-A0_/2)"%",
M, (u,0)=HK,, —H, 1—iAo_/2)""
+ 3Kt H, ) (1—iAo, /2)7",

and where 0, =0+§ o_=w—E& A=(ul/87)=m",
and H,,, is the same as K, with o and § interchanged.
Note that (4) is, at it must be, a gauge-invariant expres-
sion, since d;M, (u,v)=0d} M, (u,v)=0. One may also
note that in the limit when all radiative corrections
across the loop are discarded, A =0, (4) and (3) reproduce
the ¥, of (1).

Although the integrations f do, f dw_ are not
difficult to perform, as given below, and those over a,f8
are nicely convergent, integration over the loop coordi-
nate x is awkward if all powers of 4°* are retained, as
appropriate for a SC calculation, for that x dependence
appears in every JM,,, of (5). [For any such finite-order
A calculation, it is easy to see that the range of the a,8
variables is limited by 0<a < «, —a <= +a, restric-
tions which correspond to the Euclidean conditions
(B+E)*>0,B*+E?*>0; and we shall adopt these limits
below.]

If we replace the 4°* by potentials corresponding to a
constant F v the situation is somewhat simplified, be-
cause the x dependence disappears from all parts of the
integrand. Physically, the field existing between the in-
coming ions is essentially electric, as least for moderate
v/c values. Its value is certainly b dependent, and we
shall call it E(b). It would then not be physically absurd
to use A5 (z)=—1z,F), where only the electric field
E, of F9, is nonzero, and where E§=~E>(b); in that case,
(4) contributes to the w integrals the amount

Wexp[ —i(E3/4)Q], (6)

with Q=[0, (1—iAw, /2) '"to_(1—iAw_/2)"1].

In the computation of the w integrals it is impor-
tant to remember to return to Minkowski space,
F}— —2[E(b)]* (otherwise the new, a- and B-dependent
oscillations found below will be replaced by nonoscillato-
ry integrands). A change of variables, w; ,=w} , —2i /A,
and a straightforward integration permits (27) 2 times
the fda)+ Jdw_ of (6) to be given by

(A /mp)sin[(A , p)!?1sin[(A _p)'/?]
Xexpl(p/2)—2a/N)],

where A, =a,/A,a,=a*p, and p=8[E(b)]*/A. Fi-
nally, (7) is to be multiplied by F.(«a,iB) and inserted un-
der the integrals [da [ dpB, with the range of the a,f in-
tegrations as described after Eq. (5).

If one virtual photon is emitted from the loop one finds
the possibility of a sine and a cosine term, as well as a
product of sine terms in the expression corresponding to
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(7). If two photons are emitted from the loop—and this
might seem to be the more intuitively appealing case, for
ease of balancing back-to-back momenta in a better
calculation—one finds in addition the third possibility of
a product of cosine factors in the equation corresponding
to (7). Larger numbers of emitted photons produce com-
binations of these possibilities. The appearance of the
lepton pair is the last step in the inelastic process, with all
of these photons converting into the pair.

III. MASSES AND WIDTHS

We have now performed all computations necessary
for the extraction of those qualitative properties con-
tained within the model. We first comment that contri-
butions to the integrals fdade of (7), multiplied by
the smoothly varying F.(a,if), really occur only for
those “points of enhancement” in the integrand when the
oscillating functions of (7) are in phase. The main contri-
butions to the a,f integrals will come when the argu-
ments of the sine functions differ by 7 times an integer n,
and when those arguments are themselves given by
(N+1)m, where N is a different integer. When this
occurs, the values of a and 8 will be given by

a=m A/p(N+n+172+(N+1)7], (8)
B=mHA/p)(N+n+L)Y2—(N+1)]. 9)

Because of the built-in exponential cutoff, exp(—2a/A)
of (7), only values of a < A/2 are going to contribute ap-
preciably to the integrals; and from (8), this means that
p=2m*[(N+n+1)+(N+1)?]. There is therefore a
minimum value of p, or E(b), which must be reached be-
fore (8) can be satisfied, p,;, =7 or E(b);,,=mm?2/V'8.
As E(b) becomes larger, more and more values of N and
n become visible, there are more sin’(y )-type peaks in the
integrand as one sweeps through contributing a,f values,
with the values of ¥, evaluated at those a,f3 acting as the
coefficients of expansion in this form of approximation to
the integrals.

To see this in a clear way, suppose one were to discard
all contributions except those which occur when the os-
cillatory factors are in resonance; then, one could speak
of a sequence of “peak contributions” to the value of the
integral. More realistically, one has a smooth back-
ground on which peaks of the integrand are superim-
posed, corresponding to a series of thresholds for the
values of the integrals, changes which appear abruptly as
E(b) is changed. Because the model masks the detailed
kinematics, we do not know with precision how these
thresholds are converted into peaks of the production
amplitude, although the general method of converting
thresholds in a b distribution into peaks of a p, distribu-
tion is clear: One may always expect peaks when oscillat-
ing functions are folded into thresholds. The difficulty
here is that the widths of the outpeak peaks can be much
larger than the experimental widths one is trying to
reproduce, and one must be careful to isolate different
effects even though a detailed specification of what is to
be calculated is missing.

For example, that part of the ions’ scattering ampli-
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tude dependent on such loop thresholds H(b) would re-
quire the evaluation of f d*b expligh)H(b), where g
denotes an ion’s momentum transfer, and all other fac-
tors are suppressed. If H(b) is represented by
>,.C,0(b,—b), which neglects the width (of the deriva-
tive) of the threshold distribution, then this integral is
given by 273, C,b,J,(gb,)/q, which displays “‘peaks” of
the Bessel function, but with widths far too large to be
relevant here. However, consider this on a finer scale, in-
cluding the widths of the threshold distributions; if one
calculates an amplitude associated with lepton emission
involving, e.g., the p, taken away by the positron, then
one will need to consider something of the qualitative
form [ d?b explip,b)dH /db, which will be sensitive to
the widths that define the threshold distribution, as well
as to the separation of the threshold peaks. Until one can
handle the detailed kinematics in a better fashion than
permitted by the model approximations, one can only
make such vague arguments; but the association of p,
peaks with the threshold b dependence, itself correlated
with the integers n and N, can still be true. It is adopted
here as an assumption of this kinematically incomplete
model.

It is most attractive that these peaks become visible
only when E(b) is sufficiently large; and that any pertur-
bative development in powers of E(b) would ruin the
effect completely. The physical origin of the peaks is a
delicate interplay, or interference, between the intense
background field and the low-frequency radiative correc-
tions across the loop; each of these contributing factors
requires a summation over an infinite number of virtual
photons, and is therefore nonperturbative in character.
A semiclassical picture of just what happens when a
closed loop appears in the neighborhood of the scattering
ions, and why the radiative corrections across the loop
are so important, has been given elsewhere.®

In the case of (7), one expects that significant contribu-
tions to the a,f3 integrals will appear whenever E(b)/m?
reaches a “threshold” given by (7/2)[(n+1)+(
+1)2]'/2 where I and n are integers. If one photon is em-
itted from the loop there will be significant contributions
as above and also when E(b)/m? reaches
(m/2)[(n+1)*+12]'"% when two or more photons are
emitted, one expects significant contributions at the
above values and also when E(b)/m? reaches
(w/2)(n2+1%)!2, where both integers cannot be zero
simultaneously. This latter situation will be used to illus-
trate the arguments which follow.

Intuitively, because longitudinal electric fields average
to zero, one expects significant dependence on transverse
coordinates only, on the impact parameter b, and on the
transverse momenta p, of each of the final leptons. By
considering only transverse momenta in what follows we
do mean to imply that longitudinal momenta cannot
enter; rather, we are going to adopt an indirect method of
estimating those enhancements to the continuous lepton
distributions—their peak energies and widths—which
are reasonable when longitudinal momenta are much less
than transverse, and we rather expect this to be the
predominant case. Since E(b)=b %, one expects
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enhancements to occur whenever mb decreases to values
~(n?+1%)"1/% and because the p should be correlated
with b, at those enhancements one might expect for each
lepton, in the c.m., a value of p /m =(I?+n?)!/%. In the
final c.m. (decay of the supposed resonance of mass M,
or, preferably, the immediate) formation of the lepton
pair of invariant mass M, one has M2=46*=4(m2+p?),
where &(p) denotes the energy of each lepton. We may
therefore expect an enhancement of the production am-
plitude when

M =M%(n,)=02m)>2+E£ ,(n2+1%)12 | (10)

where £, is a constant on the order of m? which would
appear automatically in a better calculation. Two other
(heavier) families [Myz(n,!) and M(n,l) with different
values of £] are also possible, corresponding to the use of
[(n+124+121"2 or [(n +1)24+ (I +1)21"? in (10).

Let us compare the output of (10) with the coincidence
experiments, which find three, narrow, c.m. e te” peaks
at 1.64, 1.76, and 1.84 MeV. If the constant £, is fixed
by identifying M ,(1,0) with 1.64, then the next highest
state is M ,(1,1)=1.84, in perfect agreement with the
third peak. Presumably, the 1.76 corresponds to the
lowest member of one of the other families (most prob-
ably B). In fact, the most recent GSI experiments report-
ed at Moriond suggest® that of the three measured states,
the highest- and the lowest-energy peaks correspond to
lepton pairs emitted at 180° (that is, back-to-back in the
ions’ c.m.); and that the intermediate-energy pair is emit-
ted preferentially forward, at about 90°. These experi-
mental results fit very nicely with the multifamily aspect
of this model, suggesting that the ‘“‘quantum numbers” n
and N may have a significance deeper than that of their
appearance in these crude, model kinematics. Our pre-
diction for the mass value of the next higher-mass lepton
pair to be emitted at 180° is then just the next member of
the A family, M ,(0,2)=2.08 MeV.

It should be noted that (10) represents a ‘“‘boson-type”
formula, for M? rather than for M. For large values of
the integers / or n, it has the familiar form of a Chew-
Frautschi plot, of a linearly rising M 2 curve.

A qualitative idea of the widths generated by such in-
tegrand enhancements can also follow from this analysis.
From (7) it is easy to ask for those variations of E, and
hence of b, within the oscillating factors which are
equivalent to variations of a. A peak of a will occur
when, say, a=mXn%+1?%). Holding / constant, the next
peak will occur at a=m*[(n+1)2+1?%], and the distance
between successive peaks is given by Aa=m*2n+1).
The distance between the peak and the next zero, howev-
er, is given by a(n +1,1)—a(n,l)=8a=m*(n+1).

The variations of E, or of b, equivalent to these varia-
tions of a, can be inferred by requiring that the appropri-
ate variations of [@E2(b)] vanish. If 8b is that change of
b corresponding to 8a, then one has 8a/6b=4a/b.
Similarly, if Ab is that distance corresponding to Aq,
then Aa/Ab=4a/b. Comparing these, it is apparent
that 8a/Aa=©6b/Ab. If we now switch to transverse
momentum p, where one expects 8b /Ab=056p /Ap, one
can (finally) write 6p =Ap(6a/Aa), where Ap denotes the
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difference in p values of two neighboring peaks and 8p is
a measure of the half-width of one of those peaks.

As calculated above, the estimate Sa/Aa is purely
geometrical, 8a/Aa=1(n+1})/(n+1)<4, while a typi-
cal, experimental Ap is on the order of one-tenth of an
MeV. To be specific we use the e *-e ~ data, where the
separation of Ap of the first two states (corresponding to
I=1, n=0and I=1, n=1) is 0.124 MeV/c. For n=0,
which should correspond to the first state, one then has
6p=0.031 MeV/c. The half-width of the kinetic-energy
peak is given by 8&6={p/[m+ &E(p)]}&p, which works
out to be about 24 keV. The same calculation done for
the noncoincidence e * data gives a rough estimate of 31
keV for the width of the first state. These are, of course,
only crude estimates; but they do seem to be of the same
order of magnitude as the narrow widths seen experimen-
tally.

It will be noted that we have tried to avoid the use of
the word ‘“resonance,” with its connotation of a small
width and long lifetime. If the natural time scale of the
virtual resonance is (at least) on the order of the inverse
of its mass, then it is easy to show that this object can last
long enough for the transverse E(b) field to fall to a very
small fraction of its closest-impact value. But, then, the
decay of such a resonance should not be correlated with
b, and the lepton momentum correlations leading to
sharp values of the total energy of the system would not
be operative. The sharp peaks could result from those
situations in which a resonance decays rapidly enough so
that the resulting lepton production is sensitive to the b
dependence of the scattering ions; and in this case, there
is probably not too much significance to the idea of a
‘“resonance.”

IV. MAGNITUDES

One must face the criticism leveled at any QED
closed-loop models used to explain the sharp e "e ™ pro-
duction, which has recently been given by Peccia, Sola,
and Wetterich!® (PSW). They noted that in calculating
the effect of a loop in external fields, however strong,
there is always a multiplicative factor of the fine-
structure constant (FSC), which will reduce to experi-
mental insignificance the size of any term so calculated.
One must therefore ask if this difficulty is present here —
even after radiative corrections across the loop are taken
into account—or if there is some other mechanism which
comes into play.

To be sure, the radiative corrections included here lead
to a form different from that found in the usual
Schwinger loop in an external field only, in the sense that
integrations over the a=F2/4 and B=F*F /4 variables
are now required. One can trace the e’ dependence in
these formulas and come to the conclusion that—in spite
of the difficulty of performing a legitimate expansion in
powers of e2—it is still true that the multiplicative PSW
FSC is going to be present.

However, there is an additional multiplicative factor, a
“special enhancement,” which appears when low-
frequency quantum fluctuations across the loop are calcu-
lated in the presence of a strong external field. In the

present case, this enhancement is given by the factor
exp(p/2) of (7), which multiplies integrals of order unity,
along with the PSW FSC. In the overlap region of in-
terest here, this term takes on its smallest value when
E(b)y,=mm?/V'8, thereby contributing the amount
exp(p/2)—exp(m?/2)=139, nicely compensating the
PSW FSC. Higher n,! overlaps contribute larger
amounts, which serve to remove the additional FSC fac-
tors associated with multiple-photon production and sub-
sequent conversion to a lepton pair.

This very pleasant feature removes the overt PSW ob-
jection to this model, so that LB is not automatically
ruled out as a possible mechanism for lepton production.
In more general terms, this type of effect can be of con-
siderable importance in future studies: Radiative correc-
tions performed in the presence of intense fields need not
be small. (Since this is basically a low-frequency, or IR
effect, lattice calculations which search for similar quan-
tities should be very careful to estimate or eliminate
finite-size effects.) Also, if the effect of a single such loop
turns out to be significant, then it could be important to
estimate the nonlinear effects of many loops.

V. SUMMARY AND CRITIQUE

In this paper we have tried to suggest the possible im-
portance of LB as a mechanism for the sharp lepton
peaks seen in the GSI experiments; and we have done this
while tied to the crude kinematics forced upon us by our
inability to perform one final loop integration in a suit-
ably nonperturbative manner. Summing over infinite
numbers of a continuous spectrum of low-frequency pho-
tons is not exactly a trivial matter, but this nonperturba-
tive computation can be carried through almost com-
pletely because of techniques developed in previous
chiral-symmetry-breaking studies.® The predictions that
have been extracted from the present analysis seem to
agree with the experiments whenever comparisons can be
made, in the matter of masses, families, and widths.
Perhaps the most extraordinary part of the computations
are the magnitudes found; and if no errors have been
made, if the results are really true, this calculation should
have an importance beyond that of the present physical
problem.

But that is not all. The most recent experiments re-
ported at Moriond® contain two other bits of relevant in-
formation, which have a bearing on this model, as well as
on other attempts to explain the GSI peaks. These
findings are as follows.

(i) The peaks are dependent on incident beam energy.
With a slight change on the order of 0.1 MeV/nucleon of
the incident ion, either the highest- or the lowest-energy
peak may be made to disappear.

(ii) The peaks show a definite dependence on the
momentum transfer of the scattered ion.

These two items suggest that theoretical models of a
“new neutral particle,” or of “excitations of a new phase
of QED” are now tenable only with extreme prejudice;
but they leave open the possibility that an appropriate
generalization of a “resonance production” model,'! or of
the present LB model may turn out to be correct. The
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formulation of the latter is still sufficiently crude to mask
the kinematical details necessary for an explanation of (i),
although such dependence can easily be there in princi-
ple. But, as for any bremsstrahlung model, the essence of
LB is its dependence upon the scattering ions’ impact pa-
rameter, or momentum transfer. It is very satisfying that
this experimental effect has now been seen; and it is
hoped that more detailed correlations of peaks with ion
momentum transfer will be measured in the future.

On the other side of the ledger, there are two criticisms
which have been raised, and which are not simple to
answer. These are the following.

(iii) If LB is to be taken seriously, and lepton produc-
tion is to be correlated with details of the ions’ scattering,
how can the peaks remain sharp? If the lepton pair is
produced in the vicinity of the ions, should not the strong
ionic fields distort the leptons’ motion and broaden their
peak distributions?

(iv) Consider only the scattering process in which the
loop appears, without the emission of virtual photons
which convert to the lepton pair. If the magnitude of
that loop is large, then one might expect the magnitude
of the absorptive part of the loop (describing the produc-
tion of a lepton pair in the nonresonant, or background
situation) to be large also. But potential theory estimates
of the background agree almost perfectly with what is
measured; and if so, how can the loop magnitude be as
large as claimed?

These are questions that must be faced, even though
they cannot yet be answered by detailed kinematical ar-
guments. For (iii), the best that one can now do is to real-
ize that those pairs which are emitted with zero (or very
small) total momentum may be produced at respectable
distances—that is, atomic distances— from the scatter-
ing center; and in such cases the peak distortion would be
on the order of or less than the widths. [In contrast, a
pair having a total energy =~3m should materialize in a
time on the order of (3m)~'. For example, one would
expect the two-photon virtual state of Fig. 1 to last for a
time on the order of m ~!.] Pairs which are produced at
closer distances can blend into the background; but those
that materialize far away should not be affected. Without
explicit calculation this argument is no more than a pos-
sibility; but it is that.

Question (iv) can be “answered” by realizing that the
absorptive part of the loop of Fig. 1, with its two leptons
on their mass shell, contains IR divergences, which must
be removed in the standard, Bloch-Nordsieck manner.
(There are no IR divergences in the closed loop.) That
absorptive part of the loop corresponding to the
potential-theory estimate, in which a lepton pair with no
real photons is emitted, is strictly zero because of the IR-
divergent damping of virtual photons, and hence makes
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no contribution to the cross section. But this question
raises another, and deeper, question of principle.

In QED, unitarity requires a specification of the
minimum energy resolution of photon detectors, etc.,
quantities which do not appear in the potential-theory
background estimates. What is the form that QED uni-
tarity takes in the presence of intense external fields, and
just how are the IR divergences removed when such fields
are present? Such a question must first be posed, and
answered, if one is going to use unitarity to guess the size
of production amplitudes. If it is true that the form of
the ordinary result of unitarity is preserved for the
“states” corresponding to the interference peaks in in-
tense fields—that is, where sums over all real and virtual
photons conspire to remove the IR divergences, leaving a
finite factor of maximum magnitude ~20% which multi-
plies the potential theory estimate—then our computa-
tion is either wrong or incomplete. But, at present, one
has simply no idea of the details and the results following
the removal of IR divergences in the presence of intense
fields, treated nonperturbatively. If the existence of such
electric fields can produce new states, then the expression
of unitarity may need to include sums over such states.
As suggested by the magnitudes obtained here, by a com-
parison with experimental data, and by the intuitive ex-
pectation that the probability for lepton pair production
in large electric fields can be large, conventional unitarity
prescriptions may be valid for the nonresonant back-
ground, while special enhancements can appear for the
interference peaks which are themselves due to the pres-
ence of the strong fields. Again, a detailed answer waits
upon better calculation.

In summary, the present, crude calculations of LB
seem to be in accord with experiment in those cases
where it is possible to make a comparison, agreements
which suggest the possibility that this LB mechanism
may be physically relevant. The large magnitudes found
in these estimates of the interference terms are spectacu-
lar, and perhaps ‘“too good to be true;” but, it should be
realized, the nonperturbative world of intense fields may
have a logic all its own.
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