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The dual parton model (DPM) is very successful in describing hadronic multiparticle production.
The version of DPM presented includes both soft and hard mechanisms. The hard component is
described according to the lowest-order perturbative QCD-parton-model cross section. The model
is formulated in the form of a Monte Carlo event generator. Results obtained with this event gen-
erator are compared with data on inclusive reactions in the TeV energy range of the CERN and
Fermilab hadron colliders.

I. INTRODUCTION

Since the beginning of the 1980s several groups have
studied soft hadronic multiparticle production in the
framework of the dual topological unitarization (DTU)
model. This model and in particular the Monte Carlo
formulation of this model in the form of the dual mul-
tichain fragmentation model' provide one of the start-
ing points for the new model described here.

Experimental observations made it clear that at collid-
er energies the soft and hard components of hadronic
multiparticle production are closely related. These obser-
vations are the discovery, at the CERN Super Proton
Synchrotron collider, of correlations between the average
transverse momenta of hadrons produced and the multi-
plicity density in rapidity and the observation of "mini-
jets" in hadronic collisions and changes of the properties
of the underlying soft events in data samples with jets or
minijets.

These properties were understood within the dual mul-
tichain fragmentation model by introducing transverse
momenta (in addition to intrinsic transverse momenta)
with magnitudes, which could only be interpreted as due
to hard constituent scattering for the partons at the ends
of the fragmenting chains.

The perturbative hard constituent scatterings are also
one of the processes responsible for the rise of the ha-
dronic cross sections. This was studied quantitatively by
Capella, Tran Thanh Van, and Kwiecinski and by
Durand and Pi, , where the consequences for the total
and inelastic cross sections of the unitarization of soft-
and hard-scattering cross sections were studied. This
model, as formulated by Capella et a/. , is the second
starting point for the model to be described here.

A first description of the model as well as comparisons
to experimental data and predictions for the energy
&s =40 TeV of the Superconducting Super Collider were
given by Ranft et a/. ' The model is implemented in the
form of the Monte Carlo code DTUJET. ' There are
other Monte Carlo implementations of the dual parton
model (DPM) and related models for hadron-hadron,
hadron-nucleus, and nucleus-nucleus collisions'

which successfully describe many features of the experi-
mental data. DTUJET is the only code implementing the
unitarized hard and soft components according to the
scheme. '

In the present paper we concentrate on the sampling of
hard jets and minijets via a Monte Carlo algorithm and
give for completeness a short description of the unitariza-
tion scheme and of the other parts of the model.

The two-component dual parton model, which includes
soft and hard components, is discussed in Sec. II. In Sec.
III we describe the hard component and the Monte Carlo
algorithm to sample hard-scattering events. Some more
technical things are explained in the Appendix. Section
IV contains the results and the comparison with experi-
mental data.

II. THE TWO-COMPONENT DUAL PARTON MODEL

o, =as (2.1)

with a=37.8 mb and a=1.076. This cross section in-
creases with energy and violates the unitarity bound at
higher energies. The same applies to the pure hard-
scattering cross section crI, . In Fig. 2 we give the total,
inelastic, and hard cross sections as a function of the
center-of-mass energy +s. The hard cross section is cal-
culated with a lower transverse-momentum cut p~;„=2

In this section we will discuss the basic ideas of the
dual parton model and the way in which the hard com-
ponent is included. For a more complete description we
refer to Refs. 8 and 10.

At higher energies the hadron-hadron interaction is
dominated by Pomeron exchange. The Pomeron is cut
into two chains (or strings) and these chains are connect-
ed to the hadron constituents. In the leading order the
proton consists of one valence quark and one valence di-
quark and the interaction between the hadrons results
from the chains which are stretched between these con-
stituents. Figure 1(a) shows the leading diagram (one cut
Pomeron) for a pure soft p-p collision.

The Pomeron exchange corresponds to a pure soft
cross section and can be parametrized as
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and ( n, ) =o, /o, „„,respectively. These multiplicities in-

crease with energy and at higher &s a sizable part of the
events has more than one hard or soft scattering. The
multiplicities are calculated with a unitarization scheme
which is a generalization of the Abramouski-Gribov-
Kancheli (AGK) cutting rules. ' This scheme gives the
weights for events with i soft and j hard scatterings. '

A next-to-leading-order diagram (two cut Pomerons) is
given in Fig. 1(b}. Here the hadron constituents are also
sea quarks and cutting the Pomeron we get chains with
the sea quarks at the ends.

In Fig. 1(c) we give an example how a hard component
is added to the leading pure soft diagram. Here two
gluons undergo a hard 2~2 scattering and the resulting
gluons which have transverse momenta p~ ~p~;„are
split into quark-antiquark pairs. These quarks and anti-
quarks sit at the ends of further chains.

An example for an event with two hard and one soft
scatterings is given in Fig. 1(d}. The hard scatterings are
mostly independent of each other and the only intercon-
nection is the sharing of energy and momentum of the in-
coming hadrons. The number of hard jets and minijets in
an event is two times the number of hard scatterings and
so the average jet multiplicity should increase with ener-

gy due to increasing (n„).

III. THE HARD SCATTERING

FIG. 1. Diagrams for the exchange of soft and hard chains;
(a) one soft cut Pomeron (two soft chains), (b) two soft cut
Pomerons (four chains), (c) one soft and one hard cut Pomeron
(two soft, two hard chains), (d) one soft and two hard cut Pome-
rons.

150—

E 100—

50—

0
10

I

10 10

I

10

1

10' 10

Ms IGeV)

FIG. 2. Total, inelastic, and hard cross sections as functions
of energy &s as obtained from the model.

GeV/c. The hard cross section increases with energy &s
practically as a power of s whereas the total cross section
is proportional to (1ns) so that it exceeds the total cross
section o„, at higher energies. Both the hard cross sec-
tion o.

& and the pure soft cross section cr, are inclusive
cross sections and the average multiplicities of hard and
soft scatterings in an inelastic event are (nh ) =o q/o';„, ~

A. The total hard cross section

The QCD —parton-model formula for hard scattering is

o/, y I y Jdx)dx2dF x}f/(x],g )

i,j ~k, l

2 1 2a(Q)
Xx2f, (x2, Q ) ~M

X)X2 S

(3.1)

where f; (x, 2, Q ) are the parton distributions,
M =M; j k I is the matrix element for the hard parton-
parton scattering, i+j~k+i, a, (g )=4nlboln(g /
A ) is the strong coupling constant, bo = 11 ,

' nf, an—d —nf

is the number of flavors.
The hard-scattering cross section (3.1) depends strong-

ly on the lower transverse-momentum cut pz;„which
has to be introduced to remain in the region where the
perturbation theory is valid. In Fig. 3 we present o & as a
function of p~;„ for v's =200 and 1800 GeV. The value
which we use in our calculations is p~;„=2 GeV/e.
This choice should avoid another problem; the dense
packing of partons. ' At small x the number of partons
grows rapidly and will reach a point where the partons
no longer behave as free particles and recombinations be-
come important, so that the Altarelli-Parisi evolution of
parton distributions becomes invalid. A pz cut of 2
GeV/e should avoid this problem up to the energy
&s =40 TeV of the proposed Superconducting Super
Collider. But even if the Altarelli-Parisi equations are
valid, the parton distributions are not well determined.
These equations need, as input, the parton distributions
at a fixed Qo, and evolve these distributions to higher
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10

The @CD scale parameter A in a, ( Q ) is taken accord-
ing to the used parton distributions. The corresponding
values of A are the following: EHLQ set 1, A=0.2 GeV;
EHLQ set 2, A=0.29 GeV; MRS set 1, A=0. 107 GeV;
MRS set 2, A=0.25 GeV; and MRS set 3, A=0. 178
GeV.

B. Kinematics

10-

10

In this section we give a short collection of kinematical
relations and introduce some new variables.

To write down the matrix elements M we introduce
new variables

p,„(Gev)

FIG. 3. The hard cross section 0.
1, as a function of p~,„ for

&s =200 and 1800 GeV.

tv=
S

Q
Q =

S

(3.2)

values of Q . Because experimental data are not avail-
able for small x at Qo, an extrapolation is needed and
usually a 1/x behavior of the sea quark and gluon distri-
butions is assumed. There are arguments ' that favor a
1/x' behavior with a=1.3-1.5. We have implemented
in our Monte Carlo event generator DTUJET parton distri-
butions which assume a 1/x behavior [Eichten-
Hinchliffe-Lane-Quigg (EHLQ) sets 1 and 2 and
Martin-Roberts-Sterling (MRS) sets 1 and 2] and one
parametrization with a 1/x' behavior (MRS set 3). A
comparison (Fig. 4) of the total hard cross sections oz
calculated with these parametrizations shows no striking
differences, except for MRS set 3, which results in a oi,
exceeding the others by an order of magnitude for higher
energies. We use for all calculations set 1 from Martin
et al.

The choice of the hard scale Q in a, (Q ) and f(x, Q )

is also not well determined and can only be fixed by the
inclusion of higher-order terms, but these are neglected
here. Different alternatives such as Q =s or Q =p~ are
possible and we use Q =pl/4 both for a, (Q ) and

f(x, Q ). Because of the freedom in Q, one can expect
uncertainties in the hard cross section of about 20%.

for the parton-parton scattering instead of the commonly
used Mandelstam variables t and u. The matrix elements
in Table I are given in terms of these new variables. u

and v are not independent but are related by

1+u+v =0 . (3.3)

The variables which are used in the Monte Carlo algo-
rithm are x&, x2, and U =t/s. The quantities transverse
momentum p~ and pseudorapidity gk and qI of the final
partons are related to x &, xz, and v as

2 - tp~ = —t —+1 =ups,
s

gk =
—,'ln

VX 2

(3.4)

g, =-,'ln
VX )

TABLE I. Matrix elements M, symmetry factors S, and
final-state summation factors N for the hard subprocesses.
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FIG. 4. The hard cross section o I, as a function of energy for
different parton distributions (Refs. 22 and 23).
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where u = —(1+v ) = u Is.
Up to now we have not given the integration ranges in

(3.1). These ranges are

a «x1«1,

1
g (x, ,xz, u)= —M 8(x,xz —a),

(x,xz)

(xi,xz, u)=y' 'xifi(xi, g')xzfJ(xz, g')tr,'(g') .

a x2 1,

with

—
—,'(1+ W) ~ u ~ —

—,'(1 —W),

4 2
5 l, mlIl

S X1X2

(3.5)
g is relatively simple, in the sense that it contains no
complicated functions. The singularity structure is clear-

ly visible and sampling of x „x2, and v from the distribu-
tion g (x, , xz, u )dx, dx z du is straightforward. h con-
tains the more complicated functions, but depends only
weakly on x1, x2, and v. h is used as weight to accept
or reject the set x, ,x2, v as chosen from g

Then one can rewrite (3.1) as

&h=/ f f f dx, dxzdv g h

Additionally one has to introduce an extra term
8(x,xz —a ) into the integrand of (3.1).

C. The Monte Carlo algorithm for hard scatterings
where

Xf f f d~id~zd~z~m
m

=A h

(3.7)

o„=+X g' 'f f fdx, dxzdvx, f, (x„g')xz

Xe(x,x, —a), (3.6)

where QI J
' means that i and j are restricted to subpro-

cess m.
A direct sampling of x l, x2, and v from the integrand

of (3.6) would be inefficient due to the strong rise at small
x and at the borders of the v range. To get a more
efficient algorithm we split the integrand into two parts:

The sampling of hard parton-parton scattering is al-
ready implemented in codes such as IsAJET (Ref. 24) and
pYTHIA. We use here a modified algorithm. Formula
(3.1) is used to sample the kinematical variables, subpro-
cess types, and parton types for the hard scattering. To
do this in a numerically efficient way some reorderings
and transformations are necessary.

The sum g; k &
in (3.1) runs over all possible parton

configurations; i.e., the indices i and j run over gluon and
all quark flavors and k and I run over all possible final
configurations for i and j given. For use in our algo-
rithm, we reorder the sum in such a way that first it is
summed over all subprocesses (e.g. , g +g ~g +g,
q+g~q+g, q+q~q+q, etc.) and then it is summed
over the remaining configurations that are possible for
the given subprocess. Because all partons are assumed to
be massless, we can replace the sum over the final states
k, l by a simple factor X denoting the number of final
states for subprocess m and initial partons i,j given.
These factors, the symmetry factors coming from identi-
cal particles in the final state, and the matrix elements
for the eight hard pure hadronic subprocesses are given
in Table I.

Cross section (3.1) with the reordered sum and the new
variables becomes

and
1 1 —0.5(1 —W)= f f f dx dxzdug (x, ,xz u) .

a a —0.5(1+ W)

The new variables g; are related to x „xz, and v,

g~(xi, xz, u)
dg, dgzdgz= dx, dxzdv,

m

which means that x1, x2, and v are sampled from the dis-
tribution function g(x„xz,u). How this is done is ex-
plained in the Appendix.

From (3.7) we can construct the following Monte Carlo
algorthim.

(1) Find the subprocess type from the probabilities

m, max

m, max

(the f,„sh uold be precalculated).
(2) Find the kinematical variables xi, xz, and v from

the weighting distribution g (x „xz,v )dx, dxzdv.
(3) Calculate the weight h (x„xz,u).
(4) Accept or reject events by testing the ratio

R =h lf,„(i.e., if R (g go to step 1). (g is a random
number uniformly distributed in 0.1.)

(5) Find the parton types which are involved in the
hard scattering. For initial partons this is done according
to the relative magnitude of the parton distributions at x
andg .

This algorithm allows the calculation of the single
hard-scattering cross section o.

h Mc as

~h, MC +h, MC &

+h, MC
n=1
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is the cross section for a specified subprocess and X is the
total number of rejected and accepted events for this sub-

process.
The statistical error of the Monte Carlo calculation is

found from

-5]0; I « I
l

I I I I

l
I I I

(a):

n=1

IV. RESULTS

' 2 1/2 m )0
E'

0 a
ID IQ

)0

ET

d~soft sea

=de
2~Pi dPr

0&"—Pt —Pf, cotoa . (4.1)

The parameter 3 is determined from the normalization
of (4.1) to the total number of partons at the soft sea-

In this section we present results obtained from the
Monte Carlo event generator DTUJET-88."' All calcula-
tions use the parton distribution from MRS set 1. The
transverse-momentum cut p~;„was set to 2 GeV/c and
the hard scale was Q p~/4. For the minijets we have
not included initial- and final-state bremsstrahlung efFects
to the hard-scattered partons. This will be done for
events with higher transverse momentum. For the had-
ronization of chains, i.e., the transition of partons to had-
rons, we use the independent fragmentation chain code
BAMJET (Ref. 27) and the decay of resonances is handled
by the code DECAY.

In Fig. 5 the transverse-momentum distribution of
charged particles as obtained by the model is compared
with data obtained by the UA1 Collaboration at the
CERN Super Proton Synchrotron Collider at v s =200
and 900 GeV and by the CDF Collaboration at the Fer-
milab collider at +s =1800 GeV. The curve according
to the model rejects the two-component structure. In
transverse-momentum regions where one component
dominates —the soft component at p~ &1 GeV/c or the
hard component at p~ ) 2 GeV/c —the data are well de-
scribed, whereas in the range of 1-2 GeV/c the experi-
mental data are underestimated. This is due to the fact
that the transverse-momentum distribution of the partons
at the end of the soft and hard chains does not match as
qualitatively shown in Fig. 6. So there are too few par-
tons with transverse momenta just below 2 GeV/c. A
more smooth transition between the soft and hard parton
p~ distributions would result in more soft partons with
higher transverse momentum and thus in more particles
in the range 1 —2 GeV/c. The average transverse-
momentum results as shown in Fig. 7 also reAect this
feature of the model. At higher energies the calculated
average transverse moments are too small compared to
the experimental data. ' This is due to the fact that the
number of soft partons near 2 GeV/c is too small.

This problem can be solved by introducing empirically
a p, distribution for the partons at the ends of the soft sea
chains, which at the cutoff transverse momentum of the
hard chains joins continuously the p, distribution of the
partons at the ends of the hard chains. %e use for the p,
distribution of the sea partons at the ends of the soft
chains the simple parametrization

p. (Gev)
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FIG. 5. Transverse-momentum distribution of charged parti-
cles compared with experimental data at &s =200, 900, and
1800 GeV (Refs. 29 and 30).
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FIG. 6. Transverse-momentum distribution of the partons at
the ends of soft and hard chains (qualitatively).

M
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chain ends. The parameter B is determined from the con-
tinuity requirement

/year
soft ge

(4.2)
27Tp, lp, 2&@,dp,

We use B =1(GeV/c) .
The average transverse momenta obtained from this

scheme are also given in Fig. 7 (crosses); the agreement to
the experimental data is better than for the model with
the discontinuity in the parton transverse-momentum dis-
tribution.

In Fig. 8 the rapidity plateau, i.e., the multiphcity of
charged particles in the central region (dn, „/dg) at
g=0 as a function of energy, is compared with experi-
mental data. This plateau does not depend on the
transverse momentum of the partons and good agreement
is obtained. Because of the logarithmic increase of both
the plateau and the width of the rapidity distribution (see

CDF

SO

I ~ ~ ~ ~ III

1000

Fig. 7 of Ranft et al. ' } the model predicts a rise of the
total multiplicity with energy proportional to ln s.

A rise of the plateau under the jets as determined by a
jet-finding algorithm (the so-called pedestal effect}, was
found by the UAI Collaboration at the CERN proton-
antiproton collider. ' ' Corresponding changes of the
event structure predicted by our model when selecting
subclasses of events with and without minijets were al-

ready presented by Ranft et a/. ' These changes follow
as explained there from the changes in the Pomeron dis-
tributions (Fig. 4 of Ref. 10) between regions with n~ =0
(nz is the number of hard collisions in an event) and re-
gions with nz &0.

We use here a jet-finding algorithm similar to the one
used by the UA1 Collaboration and calculate from the

vs (GeV)

FIG. 8. Rapidity plateau (dn, „/dq) at q=O for charged
particles as a function of energy (Refs. 29 and 30).

CL
'V

035

UA)

~i o

o OTUJET

C

4- -o-
0 0"

"Q~

0.3 I iII1 i I I Iiiiil

100 1000

vs (GeV)

FIG. 7. Average transverse momentum per event over energy
compared with experimental data. The open points give the
DTUJET calculations with a discontinuous parton transverse-
momentum distribution as given in Fig. 6. The crosses give the
DTUJET calculations with a modified transverse-momentum dis-
tribution of the partons at the ends of the soft sea chains ac-
cording to Eqs. (4.1) and {4.2).

i
1 I

10 15

t Jet.

20 25

FIG. 9. Transverse-energy density dEI/dg in hP=m away
from the jet axis (at hq=1. 5) as a function of the jet transverse
energy E, . The open symbols give the UA1 data (Ref. 32). The
solid points give the DTUJET calculations.
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Monte Carlo events of the model the average transverse
energy per pseudorapidity unit in average events and in
the hemisphere opposite to the minijet in events with
"jets" with transverse energies larger than 5, 7, and 9
GeV. In Fig. 9 we compare the rise of the transverse en-
ergy density dE, /dry in ziti= n away from the jet axis at
hq=1.5 with the data of the UA1 Collaboration. A
good agreement is found. Because of the difficulties in
getting in our Monte Carlo calculation as many events as
analyzed by the UA1 Collaboration, we calculate our
dE, /drl for E, ,„larger than the given E, values, while
the experiment gives dE, /dpi for events within narrow
bins around the given E, values. Therefore the dE, /dry
values calculated from the model should be, as found in
Fig. 9, somewhat larger than the experimental values.

(A4)

with lower and upper limits

Tmin
=

Umax

Tm
v min

1
——'(1 —W)2

= —2.
(A5)

r is selected from

v~ —
—,'(1—W). We handle these singularities by intro-

ducing new variables which reAect the singularity struc-
ture.

For the v singularity we use
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APPENDIX

In this Appendix we will describe the sampling of x&,
xz, and v from the weighting distribution

g (xi,x2, v)= — M 8(xix2 —a) .1 2

s (xix2)
(A 1)

The way to do this depends on the subprocess m be-
cause of the different matrix elements M . We give here
only an example for one process; the method for the oth-
er processes is similar and it is straightforward to transfer
the algorithm. We describe the process g+g~g+g
with the matrix element

(q&3 is a uniformly distributed random number in [0,1]).
With r as defined in (A4) we have, for the difFerentials,

dv = —d
2

2$'= —dT= d+3 .
1 —W

(A7)

Using this and

1 —W a 1
1 —W=

1+W x&xz 1+ (A8)

we get, for the weighting distribution,
T

g dx &dxzdv = 3U —uv —u—V 8'(1+ 8')
u

dx dx
1 2XB(x&xz

—a )dy3
X) Xz

(A9)

z;=ln(x;) .

The limits are

(A 10)

The remaining singularities are 1/x, and 1/x2. Again
we introduce a new variable z, (i = 1,2) which is defined as

9 u
M =—3 —uv—

4 v
2

U

u
(A2)

1 u v
g(x „x2,v ) = 2

3 —uv —
z

— 8(x,x2 —a )
(x,x2) U u

where the symmetry factor —,
' is included.

For the purpose of selecting x, , xz, and U we can drop
all constant factors and will do so from here on. Thus
the distribution becomes

z, ;„=ln(x, ;„)=ln(a ),
z, ,„=ln(x; m,„)=ln(1) =0,

and z; is sampled from

Zi imax 0 i , i, max i, min )

=in(a)g, .

(A 1 1)

(A12)

(A3) The 8 function written with the z; becomes

with the allowed variable ranges given in (3.5).
Remembering that u = —(1+v ) one can see that g is

symmetric in v with respect to v= —
—,
' and that it is

sufhcient to take v from the interval vm;„= —
—,
' to vm»

= —
—,'(1 —W). Consequently, one has to exchange v and

u with a probability of —,
' after the selection of v.

Now let us look for the singularity structure of g. The
singularities are 1/x, (i=1,2) at x, ~a and 1/v at

B(x,x2 —a)=8(z, +z2 —ln(a)) .

Putting things together we find

g dx, dx2dv =8(z, +z2 —ln(a)) 3v —uv —u—

X W(1+ 8')dy, dip2dp3 .

(A13)

(A14)
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From this we have the following algorithm.
(1) Find z, & =in(a)p, 2.

(2) If z&+zz &ln(a) go to (1).
(3) Calculate x, & =exp(z& z) and W=(1 —a /x, x2)'
(4) Find v = —0.5/[I+y3W/( I —W')].
(5) Calculate the remaining weight

w = W(1+ W) 3v —uv —u

and reject [go to (1)] if w, „&y4.
(6) If q&5 & —,

' set v = —( 1+v ).

3

'A. Capella, U. Sukhatme, C.-I. Tan, and J. Tran Thanh Van,
Phys. Lett. 81B, 68 (1979);Z. Phys. C 3, 329 (1979);A. Capel-
la and J. Tran Thanh Van, ibid. 10, 249 (1981); Phys. Lett.
114B,450 (1982).

P. Aurenche and F. W. Bopp, Z. Phys. C 13, 205 (1982); Phys.
Lett. 114B,363 (1982).

A. B. Kaidalov, Phys. Lett. 116B,459 (1982); A. B. Kaidalov
and K. A. Ter-Martirosyan, ibid. 1178,247 (1982).

4J. Ranft, P. Aurenche, and F. W. Bopp, Z. Phys. C 26, 279
(1984); P. Aurenche, F. W. Bopp, and J. Ranft, ibid. 23, 67
(1984)~

5P. Aurenche, F. W. Bopp, and J. Ranft, Phys. Rev. D 33, 1867
(1986).

UA1 Collaboration, G. Arnison et al. , Phys. Lett. 118B, 167
(1982).

7UA1 Collaboration, C.-E. Wulz, Report No. CERN-EP/87-84,
1987 (unpublished).

A. Capella, J. Tran Thanh Van, and J. Kwiecinski, Phys. Rev.
Lett. 58, 2015 (1987).

L. Durand and H. Pi, Phys. Rev. Lett. 58, 303 (1987).
' J. Ranft, P. Aurenche, F. Bopp, A. Capella, K. Hahn, J.

Kwiecinski, P. Maire, and J. Tran Thanh Van, Report No.
SSC-149, 1987 (unpublished).
J. Ranft, Report No. SSC-150, 1987 (unpublished).
J. Ranft and K. Hahn, CERN Report No. TIS-RP/218, 1988
(unpublished).
J. Ranft and S. Ritter, Z. Phys. C 20, 347 (1983); 24, 569
(1985).
J. Ranft, Phys. Rev. D 37, 1842 (1988).

' Y. Iga, R. Hamatsu, S. Yamazaki, and H. Sumiyashi, Z. Phys.
C 38, 557 (1988).

'sK. Werner, in Quark Matter, proceedings of Quark Matter
1987: 6th International Conference on Ultrarelativistic
Nucleus-Nucleus Collisions, Schloss Nordkirchen, Germany,
1987, edited by H. Satz, H. J. Specht, and R. Stock (Springer,
Berlin, 1988); K. Werner and M. Kutchera, Phys. Lett. B 183,
385 (1987).

t7J. P. Pansart, in Proceedings of the 5th International Confer
ence on Ultra Relatiuistic Nucleus-Nucleus Collisions, Pacific

Grove, California, 1986, edited by L. S. Schroeder and M.
Gyulassy [Nucl. Phys. A461 (1987)].

'SV. A. Abramovski, V. N. Gribov, and O. V. Kanchelli, Yad.
Phys. 18, 595 (1974) [Sov. J. Nucl. Phys. 18, 308 (1974)].

' L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep. 100,
1 (1983).

zoA. H. Mueller and J.Qiu, Nucl. Phys. B268, 427 (1986).
J. C. Collins, Illinois Tech. Report No. 86-0298, 1986 (unpub-
lished).

zzE. Eichten, I. Hinchliife, K. Lane, and C. Quigg, Rev. Mod.
Phys. 56, 579 (1984); 58, 1065 (1986).
A. D. Martin, R. G. Roberts, and W. J. Stirling, Phys. Rev. D
37, 1161 (1988).

~4F. E. Paige and S. D. Protopopescu, in Physics of the Super-
conducting Super Collider, Snommass, 1986, proceedings of
the Summer Study, Snowmass, Colorado, 1986, edited by R.
Donaldson and J. Marx (Division of Particles and Fields of
the APS, New York, 1987), p. 320.
H. U. Bengtson and T. Sjoestrand, Comput. Phys. Commun.
46, 43 (1987).

26B. L. Combridge, J, Kripfganz, and J. Ranft, Phys. Lett. 708,
234 (1977).
S. Ritter and J. Ranft, Acta Phys. Polonica B 11, 259 (1980);
S. Ritter, Z. Phys. C 6, 27 (1982); Comput. Phys. Commun.
31, 393 (1984).
K. Hanssgen and S. Ritter, Comput. Phys. Commun. 31, 411
(1984).
UA1 Collaboration, S. J. Wimpenny et al. , University of Cali-
fornia Report (Riverside) No. UCR/EXP 88-105, 1988 (un-
published).

CDF Collaboration, F. Abe et al. , Phys. Rev. Lett. 61, 1819
(1988).

3tUA1 Collaboration presented by F. Ceradini, in Proceedings of
the International Europhysics Conference of High Energy
Physics, Bari, Italy, 1985, edited by L. Nitti and G. Preparata
(Laterza, Bari, 1985).
UA1 Collaboration, C. Albajar et al. , Nucl. Phys. B309, 405
(1988).


