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We consider a three-dimensional model of two-component spinors with a quadrilinear self-
interaction. In the 1/N expansion the model turns out to be renormalizab)e and a mass term is
generated, violating parity. This allows for the generation of a Chem-Simons term if the spinor is
coupled to an external gauge 6eld. Parity violation and the associated induction of the topological
term cease at a computable critical temperature.
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Quantum field theory in three space-time dimensions
has recently attracted considerable interest, particularly
due to its possible relevance to the quantized Hall effect'
and high-T, superconductivity. Indeed, there is a class of
three-dimensional theories exhibiting interesting and im-
pressive features such as exotic statistics, fractional
spin, 34 and massive gauge fields. 56 It has been po inted
out that these peculiarities are of a topological nature and
they can be produced via the addition of a Chem-Simons
term to the Lagrangian describing the system under con-
sideration. ' It is therefore important to understand the
mechanism by which a topological term of the Chern-
Simons type can be generated. Being a pseudoscalar den-
sity this term is odd under parity. Parity violation is a
prerequisite to generate the Chem-Simons term. This
breakdown of parity can be accomplished by coupling the
gauge field to massive, two-component spinors. In fact, it
is well known that a fermionic mass term is odd under
parity. Here we would like to indicate another route to
parity violation, namely, the parity symmetry breakdown
through radiative corrections. This dynamical violation of
parity will be explicitly verified in the context of a model
with a four-fermion interaction. Although perturbatively
nonrenormalizable the model has a well-defined 1/N ex-
pansion. Formally, it is described by the Lagrangian den-
sity

X -iyrky — g (itrigr)'.
2N

The dimension of y is one so that the quadrilinear term
has dimension four, signaling a (perturbatively) nonrenor-
malizable theory.

There are two inequivalent two-dimensional representa-
tions of the Dirac algebra. One of these has

as a typical explicit realization; the other inequivalent rep-
resentation has a typical representative which differs from
the above just by the sign of one of the y matrices. For
definiteness, we use representation (2) whenever con-
venient.

The parity transformation, corresponding to the inver-
sion of one of the axes z i, let us say, leaves the action cor-
responding to (1) invariant if

ii (z',z',z')- y'ilr(z', —x',z') .

Note, however, that a mass term ilrigr would change sign
under such transformation.

The most efficient way to derive the 1/N expansion for
this model is to use the equivalent Lagrangian

X-iVrkiir a(Vriir-)+ a',N
(4)

2g
where cr plays the role of an auxiliar field [classically,
cr (g/N) tirgir]. As in two dimensions, there is the possi-
bility for a to acquire a nonzero vacuum expectation
value, (0)cr(0) an, at the quantum level. Making the
replacement o a' a+ere the Lagrangian density in
Eq. (4) becomes

iVrgVr crp(yrilr) —a(Vrtir)+ —crj+ cr +—crna.
N N
2g 2g

(5)

The requirement that the shifted field a now has a zero
vacuum expectation value implies that

~ d'k—cd~ 3
Tr

g ' (2gt)' 4 —an

d k 1—2ioo ~

(2tr)' k' a$—
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where in the (logarithmically divergent) integral an ap-
propriate ultraviolet cutoff is understood. This relation
fixes g as a function of the generated mass. In particular,
if a Pauli-Villars regulator is employed, we get

1 1+ (A —l~ol)-o,
g(A) 2rr

(7)

so that, introducing a renormalized coupling constant gR
through

1 1 1+ (A —p)
gR g(A) 2ir

we obtain

I ~01 -s
gR 21t

(s)

(9)

r.-i N+NT
g " (2X) P —

crQ (g+p') crQ—

where the massive parameter p plays the role of the renor-
malization spot. Different renormalization prescriptions
will introduce the mass parameter in different ways, but
they can be related through a renormalization-group
transformation. '

Let us look now to the propagator for the o field. In the
dominant order of the 1/N expansion it is given by the in-

verse of

now be systematically constructed. They must use a

fermion propagator i/(p' —cro),

a sigma propagator h, given above,

and a trilinear vertex

associated to the term —cr(yy) .

Graphs containing as subgraphs either the one-loop
contribution to the cr propagator or the one-loop contribu-
tion to the tadpole should be omitted since they have been
explicitly taken into consideration. Similarly to the four-
component spinor case, " with these rules we obtain that
the degree of superficial divergence associated to a proper
graph y is given by

d(y) 3 —NF —No, (i4)

where NF and N are the number of external fermion and

sigma lines, respectively. From this we see that the 1/N
expansion defines a renormalizable theory. Graphs having
N 2 and NF 0 are linearly divergent but, due to
Lorentz covariance, only a counterterm proportional to o
is actually needed to absorb this divergence; the counter-
term corresponds to coupling-constant renormalization.
Differently, in four dimensions the same type of diagram
is quadratically divergent and needs a counterterm of the

type (8„cr) making the 1/N expansion unrenormalizable.

A Chem-Simons term can be generated by coupling a
gauge field A„ to y through the interaction

k (k+p)+cd
iN —+2i

g " (2ir)3 (k' —cd)[(k+p)' —cr02]
mini gyp Y~

N
(is)

(io)

Now, if one replaces (6) in the above equation, we get a
finite result

2 d k 1r.-N(p' —4~0)
(2rr)' (k' —cr')[(k+p)' —cr']

'

which exhibits a bound-state pole for the propagator
(I" ) 'atp ~4cro.

In conclusion, in the large-N limit there is a broken par-
ity symmetry phase in which the y field becomes massive.
Moreover, the absence of tachyonic excitations [see (11)]
tell us that this phase is stable. To this same result one
would arrive by an analysis of the effective potential. The
calculation is straightforward and shows that the broken
phase is actually energetically preferred.

For large p, the sigma's propagator behaves like

A (p)— 1 (i2)
p~ oo

P
This expression illustrates the fact that, by summing an
infinite chain of one-loop diagrams as the I/N expansion
does, one may improve the ultraviolet behavior of field
theories. Here each fermionic loop at high momenta has
gained additional decaying factors corresponding to the
sigma lines in it.

Higher-order contributions to the 1/N expansion can

Taking into account that Tr(y"y"y ) —2ie"", we ob-
tain

rr""(p) 2ie croe"~"pg (p )+other terms, (17)

where F(p ) is the same integral found in the calculation
of the sigma propagator, i.e.,

ls 3

F(p')- (is)
(2K) (k —0$)[(k+p) —cr 1

For very low momenta this expression reduces itself to
(e /4rr) (sgncro) e"~"p~. It corresponds to an induced
Chem-Simons term

2

(sgnoo) e"~"A„8~„ (19)

in the effective Lagrangian density. We arrive thus to the
conclusion that the Chem-Simons term can be generated
via a dynamical violation of the parity symmetry.

As we have just seen, the induced Chem-Simons term is
ultraviolet finite, the divergent part of rr„„being on what
we have called "other terms" in (17). The imposition of
transversality of the remaining piece suffices to make it

so that, in the dominant order of 1/N, the polarization
tensor rr„„is given by

dik i „ iir""(p) -e'~
3

Tr y" y"
(2z) ' t —oo p'+4 —cro
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(21)

T"" —(i7jy"D "ijr+ ijry
"D"ijr—D "i7iy" iir —D" iiry "iver)

4

finite. Therefore any regularization scheme preserving
transversality is physically acceptable and we are free to
employ our preferred one (Pauli-Villars, dimensional,
etc.) "

The Chem-Simons term produces a rotational anomaly
as follows. First, notice that the equation of motion for
the A0 component of the gauge field is

2

Py iver+ (sgncrp) e;j8;Aj 0 (20)

implying that the "magnetic" field e;j8'Aj creates a
charge. In Dirac's Hamiltonian formalism for con-
strained systems this is a secondary constraint induced by
the primary constraint xp 0 (rrp is the canonical momen-
tum conjugate to Ap). Choosing the gauge V A 0,
Ap 0 permits one to integrate Eq. (20) to

2(sgncrp) 2 xj yjAcx 2 e;, dy, (2jpy

where jp (e/JN)ijrypiir is the charge density. Now, the
symmetric gauge-invariant energy-momentum tensor is

given by

2
P k+1

where wz Jk+crr. This equation shows that crr de-
creases monotonically from o0 at T 0 until zero at the
critical temperature T, (1/41n2) crp 0.3607crp. We
should remark that a similar result holds in two dimen-
sions where there is also a critical temperature at the lead-
ing 1/N order, associated to a chiral-symmetry viola-
tion.

At T T, parity ceases to be violated and there is no in-
duced Chem-Simons term. In fact, one rapidly finds that
the finite-temperature analog of the first term in Eq. (17)
contains a factor crz which takes the would-be Chern-
Simons term to zero for all values of p~0. The isolated
singularity at p 0 is integrable so that the Chem-Simons
term really tends to zero in a distributional sense.

We could have considered a more general Lagrangian
with four-fermion interactions. However, because of the
identities

where the sum is over kp equal to odd integer multiples of
rriT; P is the inverse of the temperature. The sum can be
transformed into an integral, giving

k
(27)

g (2rr) ivk

gpv (22)

where D" iir I8" i (e/JN )—A "]ijr is the covariant deriva-
tive. In particular, the component T ' has the form

T"-—'~ 3wy'8'w —8'wy'w —8'(wy'y'y'&)]
4

(2S)

2 2+—(ijry) '+ (iiry"—y) (i7iy„iir) + (y~r'iir) (yW'iir)
1 2 2

+ yy yA' (23)
+ (yy"k'y) (Py„X'inc) -0, (29)

so that the generator of rotations

L d x(xjep Tpc)2

turns out to be equal to
r

0 k iL d xi ej;xjf'yp8;iir — ijcy y" y'iir

(24)

e+ 8p'J'X) I/f y0 lp'Ag (25)

The last term in this expression, which can be rewritten as
((s gnr c)pe/]Q, where Q is the charge operator, is re-
sponsible for the fractional spin.

As we shall see now, these facts are temperature depen-
dent and we shall determine a critical temperature beyond
which no parity violation occurs and, consequently, no
Chem-Simons term is induced.

At finite temperature, Eq. (6) changes to

1 2 d k 1———Z ~0 (26)
g P n

" (2rr)' k' cr'—

where A, ', a 1, . . . , N, indicate the SU(N) generators,
there are only two linearly independent, U(N)-invariant,
quadrilinear interactions. These could be (i7iijc) and
(ijry ijr) (ijry„iir) If we inc. orporate this last interaction the
treatment is very similar to what we have already de-
scribed. In addition to the cr field, one introduces an auxi-
liary vector field W" through the combination NW /g—W"yy„y, where g is another coupling constant, associ-
ated to the new interaction. Because of Try" 0, the tad-
pole equation, Eq. (6), remains the same. The S'" propa-
gator turns out to have a transversal part which decays for

large momentum as I/Jp . The longitudinal piece,
nonetheless, behaves like a constant. This bad behavior
will still be under control if the regularization procedure
keeps the current i7iy" iver conserved.

On the other hand, if the only interaction is

(icy"ijr)(Py„inc), the induced mass will possibly be gen-
erated at higher orders of 1/N. This is presently under in-

vestigation.
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