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By extending the Born-Oppenheimer approximation improved by Wilczek et al. to deal with sep-
aration of the spin and space coordinates of a particle in an external field, we generally discuss the
direct effects of an induced gauge field and the higher-order corrections to the problem. It is shown
that Bitter and Dubbers's experiment about Berry's phase is directly explained as an effect of the in-

duced gauge potential in terms of the first-order approximation in this paper. The higher-order
effects appearing in this experiment are also pointed out when the adiabatic conditions are broken.

The discovery of Berry's phase is not only a break-
through in the older theory of quantum adiabatic approx-
imations, ' but also provides us with new insights in many
physical phenomena, as, for instance, the chiral anomaly
and quantum Hall effect (for reviews see Ref. 2). The ex-
istence of Berry's phase has been verified in certain exper-
iments. A typical one was more recently seen in Ref. 3.
At present, the concept of Berry's phase has developed in
some different directions; an important one is the intro-
duction of the induced gauge field by Wilczek et al.

It is found that for a quantum (molecular) system with
two sets of variables, a fast (electric) one and a slow (nu-
clear) one, after resolving the dynamics of fast variables
to the first-order approximation, Born-Oppenheimer (BO)
approximation, the left effective Hamiltonian governing
the slow variables involves an external vector potential
A„ induced by the fast variables. This magneticlike po-
tential A„ is called the induced gauge potential or
Berry's connection. Here, we naturally ask whether there
is an experiment testing the direct physical effects of the
induced gauge field. This question is answered under a
general condition in this paper.

We first generalize the improved BO approximation
with nonzero A„ to deal with separation of the spin part
and the space part of a neutral particle in an inhomo-
geneous external field and obtain the higher-order correc-
tions to the problem when the adiabatic conditions are
broken. The presented method is parallel to the high-
order adiabatic approximation method (HOAAM) pro-
posed by one of the authors (C.P.S.), in which the slow
variables, as parameters, are under experimental control.
Then, we show that the results of an experiment carried
out by Bitter and Dubbers (BD experiment) are just the
direct manifestations of the Aharonov-Bohrn phase of the
induced gauge potential in the laboratory frame of refer-

ence, which were previously understood as the effects of
Berry's phase in a moving frame of reference (in an inho-
mogeneous magnetic field, the neutrons on their Aight see
a varying magnetic field and then have a time-dependent
adiabatic Hamiltonian). The nonadiabatic effects in this
experiment are also pointed out and a quantitative pre-
diction is given when the adiabatic conditions are violat-
ed.

1S

I. GENERALIZED BO APPROXIMATION

The full Hamiltonian of a neutral particle with spin S

+ V(x)+8, [B;(x),X],

where the spin part and the space part interact with each
other through an inhomogeneous external field B,(x)
(i=1,2, . . . , k). Let 8, =8,[B,(x),S] have nondegen-
erate eigenfunctions g„=—g„(x,S) (n = 1,2, . . . , N) and
corresponding eigenvalues e„:—e„(x) for fixed but arbi-
trary x. The full wave function @of 8 is expanded as

4= g 4(x, n}y„(x,S) .
n=1

(2)

Substituting (2) into the Schrodinger equation A'4=E4,
we obtain effective equations about the space components
4( )n= 4( n, x):—

8(n)4(n)+F(n)4(n)+ g O(n, m)4(m)=E4(n},
mWn
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where are given by

H(n)= — [V —i A(n)] + V(x)+E„(x),
2M

F(n)=—

O(n, m)=—

A(n)=i &X„~VX„&,

$2

2~ g &x.~vx. &&x. lvx. &,
mWn

f2
2M(2&x„lvx &v+&x„lv'Ix &) .

(4a)

(4b)

(4c)

(4d)

H(n)4 (n)=E( (n)4 (n)
k k k

$2
[V—i A(n)] + V(x)+E„(x) @P)(n)

=E( J(n)4( l(n) (9)

$(i)
P(2)

P(n)

0

8(1) 0

B(2)

0 0 8(N)

It can be seen from (4) that when the external field 8, is
completely homogeneous, both terms of F(n) and
O(m, n) vanish, and the spin and space components com-
pletely separate from each other. Therefore, from the
point of view of physics, when the external field slightly
depends on x, the terms of F(n) and O(m, n) in (3) are
very small and can be regarded as a perturbation. In or-
der to use the standard perturbation theory to solve (3)
with a more homogeneous external field, we rewrite (3) in
matrix-value form as

(Vfo+ e%')4 =E4,
where e is a perturbation parameter induced for calcula-
tion and is finally taken to be 1; 4, %o, and 'N are, re-
spectively, defined as

E(')(n) =F(n),

e(')(n)
k', n'Wk, n

(10)
& 4P(n') ~O(n', n) ~4I, )(n) &

E„, (n') —E/ l(n)
C(„o)(n ) .

It can be seen from (10) that the second-order corrections
can be neglected and we can take the BO approximate
solutions (7) accordingly when the BO (or adiabatic) con-
ditions

&PI (n')~O. (n', n)~C'I. (n)& (( I, k', n'Wk, n
E o)(n') —E 'l(n)

which can be checked to satisfy &o@~& l(n)
=EJ, )(n)4i, (n); from these first-order approximate
solutions 4%, )(n)'s the second-order corrections are ob-
tained as

F(1)
O(2, 1)

'N= O(3, 1)

O(N, 1)

O(1,2) O(1,3)
F(2) O(2, 3)

O(3,2) F(3)

O(N, 2) O(N, 3)

O(1,N)

O(2, N)

O(3,N)

F(N)

are satisfied. The higher-order approximate solutions are
also obtained by perturbation theory.

II. BD EXPERIMENT AND OBSERVABLE EFFECTS
OF INDUCED GAUGE FIELD

By making use of time-independent perturbation theory,
we successively obtain each order approximate solutions
of (3) or (5): the first-order approximation solutions

In the BD experiment, the Hamiltonian of a neutron in
a static helical magnetic field

@(ol(1)—

4( l(N)=
k

0
@(„)(2)

, 4»„o)(2)=

0

2mz . 2mzB=B(z)=8 sin8 cos e„+ sin e + cos8e,

1S

A. 2

8(z) = +gS B—(z)—: +H,
2M 2M

(12)

(13)

and for given z its interacting Hamiltonian 8, has nonde-
generate eigenfunctions
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0 2~zi
cos—exp

2 L

where the induced gauge potentials are explicitly written
as

X, —:X,[B(z)]= 0sin—
2

0 2mzi
sin —exp

2 L

(14)

2m 20cos —e, for n =1,
L 2

A(n)=i(y„IVy„) = '

2
sin —e, for n =2 .

L 2

(17)

Xz =Xz[B(z)]—=
0

cos
2

[V—i A(n)] 4P(n)+( —I)"+'ficoo4(i, )(n)

=EJ ()n }4j (n), n =1,2 (15)

and corresponding eigenvalues c. ,
=Scop = —,'gB A and

E,2
—

'SCOP.

According to the above general discussion, we obtain
the solutions of the BO approximate equations

When a neutron reaches z =L after time T, the interact-
ing Hamiltonian H, (B(z)) is subjected to a cycle evolu-
tion in a loop C:[B(z)I B( 0) = B(L)) in parameter space
V:[B]. The Aharonov-Bohm phases of the induced
gauge potentials A(1) and A(2) can be regarded as loop
phases in V, i.e.,

J A„'"'dx"= f A, (n)dz

as =V„(c},n =1,2 . (18)

4(0}(n)=(2m. )
i exp i J A„(n)dx" exp(i k x),

J

E ( ) = ' ' +( —I )"+'15
(16) Because these phases are independent of the parametriza-

tion way of the loop C, they are pure geometrical. In the
meanwhile, the wave function of the neutron is

%(t,L)= cos—exp[iE j ) (I)T/R) exp[i V, (c )]Iy|[B(L)] )
8

+ sin —exp[iEP(2)T/fi]exp[iVz(c)]Iyz[B(L)]) (2m. )
i exp(ik x) (19)

—:a(T}I+—,
' )+b(T)I —,

' )

for the neutron beam initially in the state I
+ —, ), which gives the polarization of neutron along the z axis:

P, = Ia ( T) I

—
I
b ( T) I

= 1 —2 sin 8 sin [cooT +V&(c)], (20)

where the additional topological phase shift V, (c) is just what was observed in BD experiment. In our opinion, this re-
sult shows the direct observable effect of induced gauge field in the laboratory frame of reference.

III. NONADIABATIC EFFECTS IN THE BD EXPERIMENT

In the following, we will use the general result in Sec. II to discuss the nonadiabatic effects appearing in the BD ex-
periment when the conditions of BO approximation are violated. For the concrete problem in the above section, it is
easy to obtain

2/2
F(1)=F(2)= sin 0,

2ML

a2

O(1,2) =O(2, 1)= sinO iL +rt
ML az

(21)

and the corresponding effective equation

0 F(1) O(1,2) 4(1) 4(1)
Q(2) O(2, 1) F(2) (22)
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The first- and the second-order approximate solutions are, respectively,

+f0)(1)
(y(o)( 1 )—

0 4i(, )(2)= (23)

and

@i,(1)=@i,l(1)+4 [')( I )
—=4P(1)+@+bi, (2)

8+k L—:4g l(1)+
2 q@p(2), k'=k+ A(1)—A(2),

2A (k,L +m cos8)m cos8 2'—ooML

4i (2)=4 I, )(2)+4 [')(2)—=4 P(2)+ e —4 P(1)
m cos8 —k L=@i, (2)+ 4I. ~ (1), k"=k+ A(2) —A(1) .2' (k,L —m cos8)P cos8+2ficooML

(24)

From (24), one observes that when the conditions of the BO approximation

Ak,«1,
ML coo

(25)

are satisfied, i.e., B(z) is homogeneous and strong enough (for large L and coo= —,'g8) respectively) and the velocity of the
neutron along the z axis ( v, =fik, /M) is small enough, the second corrections 4[')(n) can be neglected. In this case, we
only take the BO approximations (23), otherwise the second corrections are taken to give a nonadiabatic effect in the
polarization of a neutron

P,' =P, +4[a cos8cos [cooT+V,(c)]+Psin8sin [cooT+V, (c)]I, (26)

where a= —,
' sin8(e+ —e ) and P=e+cos 8/2+@ sin 8/2 are small. It is expected that the second term of (26)

representing the nonadiabatic effect can be experimentally verified.
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