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By using a computer to solve the ten-dimensional Einstein equations in superstring theories, we

find that the present value for the time variation of Newton's gravitational constant is in the range
of —1X10 "to —6X10 ' yr ' in the case of the flat internal potential, which confirms the previ-
ous perturbative estimate.

In recent years there has been much interest in explor-
ing the time variation of fundamental constants in
Kaluza-Klein theories and ten-dimensional superstring
theories. ' Generally in higher-dimensional theories the
extra spatial dimensions form a very small compact mani-
fold K (10 cm) in order to make these theories realis-
tic. Since the coupling constants in the four-dimensional
world are related to those in higher dimensions by a fac-
tor of the inverse volume of K, a cosmological evolution
of the size of K would be reflected in a time variation of
the coupling constants in four dimensions. Furthermore,
in ten-dimensional superstring theories, the metric and
other bosonic backgrounds in K are constrained by
compactification and particle-phenomenology considera-
tions. Thus the cosmological evolution of the size of K
can be determined dynamically and hence the time varia-
tion of the coupling constants in four dimensions may be
calculable. Generally in a field theory with extra spatial
dimensions, quantum effects in K (Ref. 7) gives rise to an
effective potential which may fix the size of the internal
space R in a vacuum and influence its cosmological evo-
lution. In superstring theories, however, due to the non-
renormalization theorem, ' such a potential for R6 (the
size of the six-dimensional internal space) is flat up to all
orders in o-model perturbation theory. So far, the ex-
ploration of nonperturbative supersymmetry-breaking
effects, ' such as world-sheet instantons, also has failed
to produce a potential with a minimum at finite R6,
whose existence is only expected by conventional wis-
dom. In Ref. 2 it has been shown that the time variation
of coupling constants critically depends on the shape of
this potential. If the potential is flat, the present value

for the time variation of Newton's gravitational constant,
G/G, is calculable, for example, for an open universe (the
Robertson-Walker parameter k = —1):

=(qp —13QpHptp/8)/tp,
6

0

where Ho is the Hubble constant, to the age of the
Universe, qo the deceleration parameter, and
0=—8m60po/3HO. Here po is the density in ordinary
three-space and the subscript 0 denotes the present value
of the quantity. By using the observational values" for

these cosmological parameters, Eq. (1) gives us an esti-
mate for (G/G)p as

= —1X10 "—+'
yr

G o

which overlaps the present observational upper bound'

(2)

~1X10 " yr (3)

However, if the potential really has a minimum at finite
R s ( G /G)p will be suppressed and become unobservably
small. Thus an improvement on the measurements of
G/G will give us important information about the shape
of the potential.

In Ref. 2 the ten-dimensional matrix is assumed to be
of the generalized Robertson-%alker form

R3(t)g; (x)

R 6(t)g „(y)

(4)

where i,j =1,2,3; m, n =4, . . . , 9; and R3(t) and R6(t)
are the scale factors. g,"(x) is assumed to be maxitnally

symmetric in three-space and g „(y) is a Ricci-flat
metric. In Eq. (4) factoring out a time-dependent scale
for the internal space is due to an assumption of the ex-
istence of a "breathing mode" for the internal space.

From the theoretical point of view, in superstring
theories it is possible to choose definitions of the four-
rnetric, g„,p, v=0, 1,2,3, that dÃer by conformal resca1-
ings from each other. This is equivalent to choosing
definitions of the four-dimensional gravitational constant
6 which have different functional dependences on the
fields of the theory. It has been found' that the quantity
GMGUT is invariant under any conforrna1 rescaling of the
metric. Another feature of superstring theories is that
there is a dilaton field P in addition to the size of the
interna1 space, R6, which can be seen as a scalar field in
four dimensions. In Ref. 2 we have used the metric given
by Eq. (4) and assumed P to be constant since all
particle-physics constants in ten dimensions do not vary
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with time. From the ten-dimensional point of view this
seems to be natural. Experimentally what can be derived
from observations should be independent of the choice of
the metric. Since we have argued that the time variation
of the electromagnetic coupling constant a/a is 2 orders
of magnitude lower than G/G, we would like to point out
that the estimate of (G/G)0 given by Eq. (2), in fact, also
gives the relative deviation of the rate of the gravitational
clock from that of the atomic clock, which could be test-
ed directly.

In Ref. 2, Eq. (1) is obtained by solving ten-dimensional
Einstein equations:

(0.05, 100 ktn sec ' Mpc '),
1(1,40 km sec 'Mpc ) .Q, H

(9b)

(9c)

We obtain the corresponding values for p(t0) as follows:

(i) p(t0)=7. 36X10 dyng 'cm (10a)

(jj) p(t0) =1.64X 10 dyn g 'cm (10b)

(iii) p(t0)=5. 24X10 dyng 'cm (10c)

From the numerical-solution point of view, solving Eqs.
(5) or (6) is an initial boundary-value problem of a system
of second-order ordinary differential equations. The ini-
tial boundary conditions are the asymptotic solutions of
R3(t) and R6(t) in the infinitely dilute limit of matter:

R6 R6 R3R6 1 K10p0 R3(t11)+5 +3
R, R, R, , R', R (t)

(5b) p(t)

namely,

:0,

for a matter-dominated universe in the perturbation
theory context; we have shown that for an open universe
(k = —1), in the large-t limit, the asymptotic solutions of
Eqs. (5) are critically stable against time-dependent per-
turbations in R3(t) and R6(t).

Now we are going to find the numerical solutions of
Eqs. (5) in order to further study the stability of the solu-
tions. Equations (5) can be rewritten as

R~ 2 R) R~R6—2 —6 + p(t),— (6a)
Rp R R RpR6 8

and

R, (t)

R3(t)

R6(t)

R6(t)

00

:const,

= const,

:0.

(12a)

(12b)

R6

R6

R6 RgR6= —5
2

—3 + p(t), —
R62 R~R6 8

R) R)R6 R6
p(t)=

2
+3

2
—18 +10

R) R~ R)R6 R6

where

p(t) =
2 3a.10p0 R3(t11)

R6 R3(t)

3
R3(t0)=

SING

(t)po R, (t)

For the present time, i.e., t = t0, Eq. (7) reduces to

(6b)

(6c)

Since in Eqs. (5), and hence in Eqs. (6), only two of
them are independent due to the Bianchi identities, we
need four boundary conditions to determine four integra-
tion constants in R3(t) and R6(5). In what follows, for
the convenience of numerical computation, we choose
R3(t0), R3(t0), R6(t0), and R6(t0) as the four initial
boundary values for Eqs. (6), and seek its solutions which
satisfy the asymptotic conditions (11)and (12).

From dimensional analysis, we can see that each term
on both sides of Eqs. (6) is proportional to 1/t, because t
is the only relevant cosmological time scale. This fact re-
stricts the order of magnitude of the ratio of R6(t0) to
R6(t0) to be

p(to) 8m'Gopo 8 trGoflapc i
R6(to) 1 —18 —1——=1.9g X10 sec
R 6(to) to

(13)

where p, = H320/m8G=0l. 1 X 10 [H0/75 km sec
Mpc ']~g cm 3, being the critical density, and
Go=6.6732X10 dyncm g . We use the most "satis-
factory" set of cosmological parameters:"

(Q0, H0) =(0.05,67 km sec 'Mpc ')

although we do not know the exact value for R6(t0) at
present. Similarly, the possible initial values for R3(t0)
and R3(t0) can be chosen as

and the extreme sets" R z(to) -acto, R z(to }-ac, (14)
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FIG. 1. The scale factor of the ordinary three-space R3(t); 1

light year =9.4605X10"cm.

where the coeScient a is the order of unity and
c =2.9979X10' cmsec ', being the speed of light. %e
use the LsoDA (Ref. 14) subroutine to solve Eqs. (6). The
possible initial values for R3(t), R3(t), R&(t), and R&(t)
at t —1X 10' yr are input by using the trial-and-error
method. Corresponding to the satisfactory and the ex-
treme values for p(to), i.e., Eqs. (10a)—(10c), the numeri-
cal solutions of Eqs. (6), which satisfy the asymptotic

FIG. 3. The ten-dimensional density, p{t) = (Klqpp/

R 6 ( t ) )(R & ( t0 ) /R 3 ( t ) ) ', where K I 0 is the ten-dimensional gravita-
tional constant, p&, the present value of the density in ordinary
three-space, t0 the age of the Universe, and R3(t) and R6(t) the
scale factor of the ordinary three-space and the internal six-

space, respectively.

conditions (11) and (12), and of G/G are given in Figs.
1 —4. In these figures, the solid lines, the one-point-
dashed lines, and the triplet-points-dashed lines corre-
spond to cases (i) —(iii) above, respectively.

The present values for (6/G)o and p(to ), which are ob-
tained from these numerical solutions, are listed as
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FICi. 2. The scale factor of the internal six-dimensional space
R6(t), assuming its present value to be taken as R~(t0)-10
cm.

FIG. 4. The time variation of Newton's gravitational con-
stant in superstring theories ~G/G~ means the absolute values of
6 /G.
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(i) to=1.6X10' yr: (G/G)o= —6.47X10 ' yr

p(to) =7.36X 10 dyn g
' cm

(ii) to=1.6X10' yr: (G/G)o= —1.47X10 yr

p(to)=1. 65X10 dyng ' cm

(iii) to=1.6X10' yr: (G/G)o= —4.33X10 " yr

p(to ) =5.25 X 10 dyn g
' cm

(15a)

(15b)

(15c)

= —1X10 " yr ' to —6X10 ' yr6 o

(16)

which confirms the perturbative estimate Eq. (2).
Some remarks about the numerical solutions of Eqs. (6)

are in order. These solutions, within the accuracy of the

Thus, from the numerical solutions, the range of
(G/G)o can be expressed as

computer, only depend on the ratio of R6(tp) to Rs(tp),
because R6(t) only appears in combination with R6(t)
and R6(t) in Eqs. (6). In order to obtain a smooth behav-
ior of R3(t), the coefficient a in R3(t) has to be in the
range 0.8 & a (1. Within this range we have not seen any
rapid instability' of solutions arise.
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