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A high-order adiabatic-approximation method is proposed to study the time evolution of degen-
erate quantum-mechanical systems with slowly changing Hamiltonians. We not only discuss the
quantum adiabatic theorem, induced gauge structure, and non-Abelian Berry's phase factors in the
first-order approximation, but we also give nonadiabatic corrections for problems in the second-
order approximation. With the nuclear quadrupole resonance as an explicit example, we analyze
the above-mentioned questions in detail and point out the observable effects of non-Abelian Berry's
phase factors for nonadiabatic transitions between two instantaneous states in an improvement of
Tycko's experiment.

I. INTRODUCTION

As a new concept in quantum physics, the Abelian
Berry's phase factor (ABPF) has been found in many
areas of physics' and verified by some experiments. '

With respect to it, a few methods used to study nonadia-
batic effects in the time evolution of quantum-mechanical
systems with slowly changing parameters were proposed
by different authors. ' One of these methods is the
high-order adiabatic approximation (HOAA) presented
by the author for both the nondegenerate and degenerate
cases with an invariant single symmetry. This method
has been applied to other problems of time evolu-
tion. "

In fact, the degenerate case with varying symmetry
(e.g. , the symmetry is a rotation around an axis whose
direction is varying) is more usual. It is necessary to gen-
erate the original HOAA method to this case. Under the
adiabatic limit, Wilczek and Zee have studied the evolu-
tion of a degenerate system with a varying symmetry in
first-order approximation. ' The concepts of the induced
gauge structure (IGS) and non-Abelian Berry's phase fac-
tor (NABPF) represented by them have been further
developed by those same authors. ' ' In this paper, we
will pay attention to the nonadiabatic case for the prob-
lem.

This paper is arranged as follows. In Sec. II we formu-
late the HOAA method for the degenerate quantum sys-
tem with varying symmetry. In Sec. III we apply the
first-order approximation to the degenerate quantum adi-
abatic theorem and calculation of NABPF's with nuclear
quadrupole resonance (NQR} as a detailed example. In

l

Sec. IV nonadiabatic transitions from an instantaneous
state to another in NQR are analyzed by making use of
the HOAA method. Finally, the observable effects of the
NABPF are pointed out in Tycko's experiment under
nonadiabatic conditions.

II. HOAA METHOD FOR DEGENERATE CASE

In the simple de enerate case considered in this paper,
the Hamiltonian =B[R]depends on time though the
slowly changing parameters (R, (t),Rz(t), . . . , RN(t))
=R (t) and a set of its instantaneous eigenstates lna[R] )
(a=1,2, . . . , D„) with the eigenvalue E„[R]transforms
as an irreducible representation I'"' under a varying sym-
metry group, which is an isomorphism of a fixed group 6
at any instant. For the accidentally degenerate case that
the eigenstates can equally well transform as a reducible
representation, which frequently occurs in systems of
physical interest, we need further work on the basis of
this paper and now do not consider it.

We define f'=f(~'), f=(did~)f (~), and lna[f])
=(d/dr)l na[f]) for any function f of variable r as fol-
lows. Let

ly(t) ) = g g C„(t)exp . f 'E„[R']dt
'

l «[R] )
n a=1 &0

be a solution of the Schrodinger equation
iiri(BIBt)lp(t)) =8[R]l(b(t)). It is easy to see that C„(t)
satisfies

D„ D„,

C„(t}+g (na[R]lnp[R])C„t3(t)= —g exp —f (E„[R'] E„[R']}dt' g (—na[R]ln'p[R])C„ tt(t) .
P=1 n'Wn 0 P—

1

Because the left-hand side of (2) concerns different states l n p[R] ) (p= 1,2, . . . , D„) for the same eigenvalue E„[R],the
original HOAA method in Refs. 7 and 8 cannot be used to solve (2) directly. However, if H [R (t) ] has a single symme-
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try at any instant and G is the corresponding symmetry group, then lna[R (t)] & and lna[R (t +b,t)] & at different times
t and t +Et are the basis for the same irreducible representation of the same symmetry group. According to the ortho-
gonality theorem of group representations, we have

[R]l P[R] &
= 1 & [R]l

In P[R (t +«)] &
—lnP[R (t)] &

0 At
=5 &(na[R]lna[R]& .

s = t /T, b„~(s)=C„~(sT), Q (s) =R ( Ts)

and D„vectors bn (s) and D„XD„.matrices A(n, n', s):

(4)

Therefore, the left-hand side of (2) can be diagonalized
and the original HOAA method can work in this case.

Now, we return to the case with varying symmetry. In
order to solve (2) order by order, we introduce an adia-
batic perturbing parameter e= 1/T [T is the characteris-
tic time of system, e.g., the period of R (t)] and define

b„(s)+A~„„,~b„(s)

g e +' — exp[iTa„„(s,so)]
k =0 n'Wn

'K

a„„(s,so} ds

A (n, n', s)b„.(s)

i a„„(s, so )

b„(s)=(b„,(s), b„,(s), . . . , b„D (s))

A (n, n', s) &= ( na[Q]ln'P[Q] & .
(5)

When R (t) changes slowly enough, e=1/T is so small
that b„(s) can be expanded into a rapidly converging
power series in e: i.e.,

Then, the integral equation of (2) is written as

b„(s) b„(so )—+ f A (n, n, r)b„(r )dr
Sp

f e "" 'A'
'(n, n', ~)b„.(~)d~,

n'Wn
(6)

where a„„(s,so) =(1/fi) f,' (E„[Q']—E„.[Q'] }ds'.

Using a similar procedure to that in the original
HOAA method, we successively integrate the right-hand
side of (6) by parts and then differentiate both the right-
and left-hand sides of the resulting equation, obtaining

s)= y ett'b(&'}
K'=0

e [b }(s),b( (s), . . . , b( }(s)]
K'=0

Substituting (8) into (7) we obtain an equality between
two power series in e. Because coefFicients of each power
of e must be separately equal, there are approximate
equations

b „ l(s)+ A(n, n, )sb(l(s)=0, (9a)

K —1

b „(s)+A(n, ns)b (x(}s)=-
1=0 n'Wn

A(n, n', s)b(. ' 'l(s)

a„„(s,so) ds ia„„(s,so)

=F[K}( )

Because Eq. (9b) for b( }(s) (n =1,2, . . . ) only include
(s), b„' (s), . . . , b„(s), and b( 'l( )

(n = 1,2, . . . ), we can solve the above Eq. (9b} successive-
ly from the first-order approximation solutions, the solu-
tions of (9a).

III. ADIABATIC APPROXIMATIONS
AND NABPF IN NQR

Under the adiabatic limit T~ ao (e~O), which explic-
itly means that H[R] changes so slowly that the adiabat-
ic conditions

fi(na[R]lmP[R] & Ae(na[Q]lmP[Q] &

F-.[R] FM [R] &.—[Q]—EM [Q]

m An (10)

l%(s) & =exp f E„[Q']1 's
0

D„
X g [K„(s,so)] ~ lna'[Q] & E VI,")~

a'= 1

in eigenspace VI,"~}, [lx &l8[Q(s)]lx &=E„[Q(x)]lx&I

(12)

(9b)
I

are satisfied, it is shown in Eqs. (2) and (9) that we only
need to take solutions of (9a) in path-ordered integral
forms:

b„(s)=K„(s,so)b„(so),

K„(s,so ) =P exp —f A (n, n, s')ds
Sp

Equation (11) results in the quantum adiabatic theorem:
if a system is initially in an eigenstate lna[Q, (so)]& of
8[Q (so)], then it will be evolved into a state
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under the adiabatic conditions (10).
The adiabatic propagator I(.„(s,sp) is called the non-

Abelian Berry's phase factor (NABPF). With respect to
it, a non-Abelian gauge structure is defined as follows.
The gauge potential one-forin A(n, Q) in the parameter
manifold p I Q ] is given by ——p(s)cosa(s)

2
a+( —

—,
'

)

From (17) we compute

2 (M, M, S)=diag[ —iMP(s)cosa(s), iMP(s)cosa(s}]

= —iMP(s)cosa(s)o 3 for MA —,', (18a)

A(n, Q) &=(na[Q]~d~nP[Q]), a,P=1,2, . . . , D„(13)
and the gauge group corresponds to local unitary free-
dom in choosing the basis ~na[Q]). Under unitary
transformation U(Q),

D„

a (-,') —p(s)cosa(s)
2

(18b}

3 (M, M +1,S)=diag[a (M + l),a+( —M —1)], (18c}

A(M, M —1,S)=diag[a+(M —1},a ( —M+1)], (18d)

~na[Q]}—+~na[Q]}'= g U(Q)& ~nP[Q]}, A (M, N, S)=0 (HAM, M+1), (18e)

we have

A(n, Q)~A'(n, Q) = Ut(Q)A(n, Q) U(Q)

+ U (Q}dU(Q),

P(n, Q) =dA(n, Q)+A(nQ) AA(n, Q}~V(n, Q}

A(M, n) = iM—cosa(s)o 3dP, MA —,', (19a)

A ( —,', n ) = ——
[ [cosa(s )o z

—(J +—,
'

)sina(s }o'i ]dP

and thereby obtain the induced gauge potentials defined
by (13),

= U (Q)9'(n, Q)U(Q). +(J +—,
' }o2da I, (19b)

Following the above discussion, we consider the nu-
clear quadrupole resonance (NQR} in concrete terms.
According to Zee, ' the spin quadrupole Hamiltonian
describing Tycko's experiment is

P(s}=8[n]=(op(n J), ()1—= 1,
where n =n(s }=(sina(s)cosP(s), sina(s)sinP(s), cosa(s) )
is the direction of the principal axis for the quadrupole
coupling with a coupling constant coo. By making use of
angular momentum theory, we immediately obtain in-
stantaneous eigenvectors

~ J, +M (s) }=
~
J+M [a(s),P(s) ] )
—iP P(s) —d a(s)~=e ' e

M =J,J—1, . . . , —,
' or 0 (17)

of P[n] with eigenvalues E[n]=p)pM, where ~J, kM)
are the standard angular momentum bases. The instan-
taneous states

~
JM (s) ) and

~ J, —M (s) } form a doubly
degenerate sector.

as the same as that obtained in Ref. 15. Here,

a+(M) = a+(M, S)—:—,
' [iP(s)sina(s) 5 a(s) ]

X [J (J + 1 ) —M (M + 1)]' ~ . (20)

Now, we denote M or —M by M as follows and then
calculate the NABPF's in NQR by solving the adiabatic
approximation equation (9a}. For mA —,', we obtain the
NABPF

ECM(s sp } exp[ /MQ($ sp)(Ti]
(21)

fl(s, sp)= —f cosa(s')P(s')ds' .
$0

For a cycle evolution that n(sp}=n(sp+1), Q(sp+1, sp)
is just the solid angle subtended by a loop
C:I n(s) ~n(sp ) =n(sp+ 1 }) in the parameter manifold
S2:InCR'~~n~=l). For M= —,', it is very difficult to
compute NABPF's in general situations, because they are
path-ordered integrals of noncommutative matrix one-
forms. However, the explicit expression of the NABPF
for a specific case with a =const can be obtained as

g)&2(s, sp}=Pexp —f A '( —,', —,')dS'
SO

A, cosr(s, sp ) i cosa sin—r($ sp )

i (J+—,')sina sinI (s, sp)

i (J + —,
' )sina sinr(s, sp )

X cosr(s, sp)+i cosa sinI (s sp)
(22)

by solving (9a) directly, where

A. =[1+(J+—,')(J —
—,
' )sin a]'

I (s, s() ) =—,'A, [P(s)—P(s() )] .

It is easy to see from the above discussion that the
NABPF E»2(s, sp} as a unitary matrix transforms the

two states
~ J,M(s) }and

~ J, —M(s}) into two linear com-
binations of them separately in an adiabatic evolution.
Because A ( —,', —,

'
) is proportional to a fixed matrix

cosao 3
—(J+ —,

' )sina(T, , the non-Abelian character is lost
for the case with fixed a according to Zee (see Ref. 15).

According to Simon' and Segert, ' the NABPF can be
interpreted as a holonomy group element of the Hilbert
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bundle over the parameter manifold and the Schrodinger
equation uniquely determines the corresponding con-
nection —the induced gauge potential.

In our discussion the two-dimensional eigenspace

VM= [C+ i J, +M(s))+C iJ, —M(s) }iC+ FCI

is a fiber over a point on the parameter manifold S .
With no loss of generality, we can set Esr[n]=0. When
the Hamiltonian P[n] changes along a loop C on the
base space S, the state of the system at s =sp+ 1 is a un-

itary transformation of the initial state by the unitary ma-
trix

u [c]=K~(so+ l, so) =8exp —fCA (M, n)„dn"

For all the loops on S, the corresponding unitary ma-
trices form the holonomy group, which is non-Abelian
for the case that I=

—,
' and a is not fixed. For the case

with MA —,', the holonomy group is an Abelian subgroup

U(1) of U(2):

u (C)=exp iM—o 3It
}cc osa(s)aP( s) C is a loop on S

From the above discussions, we can observe manifesta-
tions of properties of the NABPF in adiabatic transitions;
for MA —,', there only exists the transition from

~
JM(so) )

to ~JM(s)) because of diagonalization of KM(s, so); for
M =

—,', because K, zz(s, so} is nondiagonal, there exists a
transition both from ~JM= —,'(sc) } to ~JM= —,'(s)) and
from ~JM= —,'(so)} to ~JM'= —

—,'(s). Then, we have the
selection rules

~sina(s)P(s)/(cooT)
~

&& 1, (24)

does not hold, we need to consider the lowest-order ap-
proximation leading to nonadiabatic corrections —the
second-order approximation.

In NQR the evolution with an initial state
~J, M(so) }(M~2) only is concerned with the Abelian
holonomy subgroup structure. The initial conditions for
this case are

0 for MA+ —,',
kM M M

0 P 1 f ~ g ] (23)
bg(so)= 0, b( l(so)=0 (n'AM),

b("l(s, )=0 (K &1)
(25)

from
~
JM(so) ) to

~
JM '(s) }.The difference in the selec-

tion rule between the two cases for MA —,
' and M =

—,
'

may
be observed in an experiment.

from which we obtain explicit solutions of the first-order
approximate equations:

bg(s) =Kss (s, so )bg(so )

IV. NONADIABATIC EFFECTS IN NQR

When the principal axis of the quadrupole coupling is
changed so fast that the adiabatic condition in NQR,

1=exp[ —iMQ(s, so)] 0, MA+ —,', +—,',
b( (s) =0, n'AM .

Solving second-order approximate equations

(26)

exp[i (2M + 1)(s so)cooT iM Q—(s,—so) ]
b ')+&(s)+ A(M+1, M+ 1,s)b ')+&(s)=i a+(M)

Gs (2M + 1)coo
(27a)

exp[ i (2M —1)(s——so )cooT iMQ(s, so)]-
b g ((s)+A(M+1,M+1,s)b g )(s)= i- a (M) 0, (27b)

ds (2M —1)coo

from (25) and (26), we have

exp[ +i (2M+1)(s —so )cooT iM Q(s, so )—]
b ' &(s)=+i d~exp[i(M+1)Q(s, r)] ap(M, ~)

Sp d~ (2M +1)coo
(28)

and thereby obtain the probabilities

P(
~ JM(so) & ~ ~

JM+~(s) & }= —
&gal, (s)

1
(29)

from
~ JM(so) }to ~JM+(s) },which can be finally computed for a certain variation of n(s): e.g. ,

P(
~
JM(so) }~ ~

JM+~(s) }}= sin I [cocosa+(M+ ,')coo]T(s —so)I—
(2M+1) COp

(30)
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for the case with P(s) =coT=const and a(s) =const a. Here the terms of (co/coo) have been neglected. Then we have
the selection rules of transition from

~
JM(so ) ) to

~
JM '(s) ):

hM =M ' —M=+1, MA+ —,', MP+ —,
' (31)

under second-order approximations.
Now we consider nonadiabatic effects in NQR concerning the non-Abelian holonomy group structure for the follow-

ing cases.
(i) The second-order approximate equations for evolution with the initial state

~
JM =

—,(so ) ) are

b I)z(s)+ A ( —,', —,', s)bI')z(s) = exp[ —2icuoT(s —so )]a ( —', )
A ( —,', —,', s)b (s)

2Np
(32a)

exp[4i cosT (s —so }]a+( —,
'

)
b g(s)+ A( ,', 5, s)b—g—(s)=i A(25, —,',s)bg(s)

ds 4coo

b (')(s) =0, n A —,', —,',
where the first-order approximate solutions

(32b)

(32c)

bp)z(s)=exp[ i ', Q(s,—so)—] 0, b( }( s)= 0, n'& —,
'

are obtained from the initial conditions

(33)

b))2(so)=, b„ l(so)=0, n'A —,', b„'(so)=0, i 1 . (34)

Equation (32b) is independent of the NABPF and its solutions can be given by (28). Equation (32a) depends on the
NABPF and its solution takes the form

aAO
b+0.

because of a nondiagonal K&&z(s, so). Thus, there exists not only the transition from ~J3(so}) to ~J—,'(s)), but also the
transition from

~
J—,'(so)) to

~ J, —
—,'(s) ). Here we have considered the formal solutions of (9b):

b( l(s)= I K„(s,r}F„(r)dr
$0

(ii) The second-order approximate equations for evolution with the initial state JM =
—,(so) ) are

2coo

exp[2icooT(s —so)]~a ( —,')
b )Q(s)+ A ( —'„—3,s)b g (s)= i— A ( —'„—,'s)bg(s), b ('}(s)=0, n'A —', ,

s

(35)

(36)

where the first-order approximate solutions

be(s) =([K&n(s, so)]&&, [K&&z(s,so)]2, } =K,n(s, ss) 0, b„. (s)=0, n'A —,
'

are obtained from the initial conditions

(37)

bPg(s )=, b(}, , =0, n'A ,' b('}(s —)=0, I +1 .

Because of nondiagonal K, &2(s,so), b p)2(s) takes the form

a&0
b&0

and thereby b )')2(s) given by (36) and (35) takes the form

a'%0
O'%0

i.e., there exist the transitions both from ~J—,'(so)) to ~J—,'(s)) and from ~J—,'(so)) to ~J —T3(so)).
According to the qualitative analyses in (i) and (ii) and other similar discussion, we obtain the selection rules

(38)

+1, +2 for M=+ —,',
5M=M' —M = .

+l, —1, +2 for M=+ —,
' (39)

for transitions from
~
JM(so ) ) to

~
JM (s) ) under the second-order approximation. They manifest the physical effects of
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the NABPF in a nonadiabatic situation and are expected to be observed in Tycko's experiment improved by breaking
the adiabatic conditions.

For concrete situations the above predictions can be quantitatively given, e.g., for the cases with P(s) =constcoT and
a(s) =consta, a solution of (36) is

sina(b+ (s), b (s) )

b+(s)= —[J(J+1)——,')' (cosa+A. ) exp —[(A,—3 cosa)co+4coo]T(s —so) —1

+ (A, —cosa) exp —[(I,+3 cosa)co 4coo]—T(s —so ) —1
l

(40)

b (s)=(J+—,')[J(J+1)+—,
']'~ sina exp —[(A,+3cosa)co+4coo]T(s —so)

—exp [(A, +3 cosa )
—4coo] T (s —

so )

which explicitly gives the probabilities
'2

P(~Jz(so)}~~J—,'(s)}}=—bg+3&z(s) =
z

sin a[J(J+1)——,']
64k'

X((cos a+5K, )+(cos a —
A, )cos[ —,'~T(s —so)]

—2A(cosa+ A, )cos I [—,
' (A, —3 cosa)co coo]T(s ——so) )

+2k(cosa —A)cosI [—,'(A+3 cosa)co —F00]T(s —so)I }, (41a)

'2

16K,' sin a[J(J+1)+—']sin [—'AcoT(s —so)]
1 co

(41b)

of transitions from
~

JM= —,'(so) ) to
~
JM '=+—2(s) ).
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