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Bifurcation to a chiral-symmetry-breaking state in continuum quantum electrodynamics
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Dyson-Schwinger equations for a fermion propagator in the Landau gauge are studied in the ap-
proximation of a small-momentum-transfer vertex function. There exists a critical value of the cou-

pling constant above which the ordinary solution bifurcates to another, chiral-symmetry-breaking
solution. The new solution does not require either infrared or ultraviolet momentum cutoffs.

Recent results obtained within the framework of lattice
field theory' provide convincing evidence that quantum
electrodynamics may possess a second, chiral-symmetry-
breaking phase. The existence of such a phase would
greatly increase the family of theories that exhibit phys-
ically interesting features such as dynamical-symmetry
breaking, anomalous scaling, etc.

The problem of dynamical chiral-symmetry breaking
was also studied in the past with use of analytical
methods. References 2—8 provide a small (and by no
means exhaustive) sample of various attempts that are
relevant to this contribution.

An interesting approach to the study of the Dyson-
Schwinger (DS) equation for the fermion propagator in
chirally symmetric electrodynamics was lately undertak-
en by Atkinson and Johnson. They used various regu-
larization cutoff procedures, with and without a
momentum-dependent running coupling constant mim-

icking the asymptotic behavior of the vertex function in
quantum chromodynamics. In such an approach, sym-
metry breakdown is indicated by the existence of a posi-
tive critical value of the coupling constant, above which
the trivial, chirally invariant solution bifurcates away to a
nontrivial solution that violates chiral symmetry and
creates a fermion mass. Such critical values were indeed
found; however, in all cases some kind of momentum
cutoff was needed to be introduced in order to prove their
existence. Unfortunately, momentum cutoffs necessarily
bring a mass scale parameter into the theory. This is
conceptually troubling, mainly because one cannot know
whether the fermion mass is an artifact of a hidden
transmutation of the cutoff scale parameter or, indeed, a
product of truly dynamical process of mass generation.

Before we proceed further, let us first briefly analyze
the source of divergences and formal reasons for the in-
troduction of cutoffs in the DS equation.

The equation for the fermion propagator has the form

S '(p) = A (p)gf —8(p)

=gf+ie f dq I „(p,q)S(q)I +""(p—q),

where dq=1 q/(2tr) .
In the above expression, I represents the fundamen-

tal vertex of the theory (as determined by the bare La-
grangian), while I'„(k,q) represents the full, dressed ver-

tex function. Both I „(k,q) and the boson propagator
D""(p —q) are given by their own DS equations. These
equations involve Green's functions of higher order in the
number of external legs, and their presence initiates an
infinite hierarchy of similar equations. For the purpose
of any practical calculations, such hierarchy must be bro-
ken, e.g., by postulating a particular form of certain
Green's functions, or by performing partial summations
over subclasses of Feynman diagrams. In the widely used
truncation procedure of Johnson, Baker, and Willey, one
substitutes the bare values of I „and D"'. This method,
although simple, has serious disadvantages: most not-
ably, it breaks the Ward-Takahashi identity by disregard-
ing an important class of nonplanar Feynman diagrams. '

In addition, what makes it unsuitable for our purpose is
that the use of a constant vertex and a free photon propa-
gator means that standard rules of traditional power
counting are in effect and the approximation produces
ultraviolet- (UV-) divergent integrals. Regularization of
UV divergences introduces an undesirable dimensional
parameter into the theory.

To circumvent this difficulty, we shall leave the gluon
propagator undressed, and for I „(k,q) we shall adopt an
ansatz we used in a similar context in Ref. 8 and postu-
late that the vertex function is dominated by the contri-
bution from the vicinity of the photon pole, i.e., the
zero-momentum-transfer sector:

(2)

The longitudinal part of I "(p,p) is fully determined by
the Ward identity

I "(k,p) = I'"(p,p) = AS '(p)/Bp„.

It is known that, in the Landau gauge and with massive
fermions, the above approximation produces the DS
equations that are free of UV divergences. "

Substituting (3) into (1), rotating to the Euclidean
momentum space and integrating over angles we obtain
the following equations for the functions A (x) and 8 (x):

x A(y)=x +(g/2) f dyy [(G —3)r+2G(]
0

+(g/2)x f dy[(G —3)r+26$], (4)
X

and
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xB(x)= ,'(—3+G)(e/4n) .f dy y(yri+2g)

+(e/4m) x f dy[2Gg+(3+6)g]
X

+ ,' (—3 —3G)x f gdy,
X

where x and y represent Euclidean momenta squared and

~(x)=[x(dA/dx}A+(dB/dx)8]/(xA +8 ),
rt(x) =[(dA /dx )8 —A (dB/dx )]/(xA —82),
g(x ) = AB /(x A 2+8 2), (6c

(6a)

(6b)

g(x)= A /(xA +8 ) . (6d)

The infrared (IR) divergence is inherent in the massless
truncated theory which has the structure of integrands
similar to the ordinary perturbation expansion. In our
approach there is no need to introduce IR cutoffs in (4)
from the very beginning, as a precondition assuring con-
sistency at zero momentum. This is because in the mass-
less (8 —=0) case the equation may still possess a solution
for A (x ) which tends to a finite value at x =0. Then the
numerator in (6a) vanishes at x =0 and the integrand is
regular. %'e shall see that such a solution exists only for
the values of the coupling constant above a critical value.

Below this value, there is only an infrared-divergent solu-
tion which near x =0 behaves as x . The model lacks a
dimensional parameter to scale this divergence and such
a scale must be introduced, by hand, in the form of an IR
cutoff in the integrals in (4}. We shall see that for the
latter solution the boundary conditions for the equivalent
differential equation can be imposed in the vicinity of
zero, but not at x =0.

The disappearing of the UV divergence is caused by
the presence of the derivative of A (x} in the numerator.
The subsequent analysis will show that the solution tends
to a finite limit at infinity. Then dA/dx=0, the in-
tegrand tends to zero at x = ~, and thus the UV diver-
gence is also tamed.

The chiral-invariant (8—=0) solution bifurcates to a
chiral-symmetry-breaking solution at the lowest value of
the coupling constant for which the linearized (in 8) ver-
sion of Eqs. (4) and (5) has a solution. In the Landau
gauge (G =0}the bifurcation equations have the form

A(x)=1 (g—/2x2) f dy(G —3)y (dA/dy}/A(y)
0

—3(g /2) f dy(d A /dy )/A (y),

and

xP(x) =(g/2) f dy [y[(dA /dy )P(y) —A (y)(dP/dy )]/A (y)+2P/A ]0

+gx f dy P/(yA)+(g/2)x f dy[(dA/dy)P —A(dP/dy)]/(yA ),
X X

where and

and

g =3(e/4m )

lim [A ( t) + ,' ( d A /dt ) ]=—1 .

Following the standard procedures for autonomous equa-
tions, let us define

The nonlinear equation (7) for A (x) must be solved first,
and then its solution will be substituted in the kernel of
the integro-differential equation (8) for p(x).

Equation (7) is equivalent to the nonlinear differential
equation

d A(t)/dt +2dA(t)/dt+g(dA/dt)/A(t)=0, (9)

lim e '(d A /dt ) =0
t —+ oo

(10)

where t =ln(x /p).
The only role of the arbitrary dimensional parameter p

introduced above is to convert the differential equation to
an autonomous form. Autonomous equations do not ex-
plicitly involve the independent variable. Techniques for
such equations are readily available, ' and this greatly
simplifies our presentation. Although the dependence of
physical quantities on p may be important from the point
of view of the renormalization-group analysis, the results
presented in this paper are p independent and all steps of
the forthcoming analysis could be repeated with t elirn-
inated in terms of x. Let us arbitrarily substitute p= 1.

The boundary conditions for (9) are

X(t)= A (t), Y(t) =d A /dt .

Then

dY/dt =P(X, Y)= —(2—+g/X) Y,
dX/dt =Q(X, Y)= Y,
d Y(X)/dX =F(X,Y)—

(13)

(14)

There are several distinct branches of this solution. For
the first one, the IR point t = —oo is reached at g= oo

and the UV point t = + oo at g= go.
Near the IR point, this solution behaves asymptotically

as t-ln(A) '~, and A(t)-exp( 2t) increases too fa—st
to satisfy the IR boundary condition without an addition-
al cutoff. Therefore condition (10) must be applied at a
finite point.

=Q(X, Y)/P(X, Y) = —2 —gX —1 . (15}

The last equation is exactly solvable in an implicit
form. The solution is

dg[2(g —( )+gin(fg/g f)]
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The second solution corresponds to another interval of
integration in (16), with the t =+ ~ point at gc and the
t = —~ at a finite point g„such that

2(g, —g())=g ln( —g, /g()) . (17)

If such a point does not exist, the integration extends
to g= —~. Then the asymptotic behavior is again
A(t)-exp( —2t) and the boundary condition cannot be
met without an IR cutoff. If (17) has a solution, condi-
tion (10) is trivially satisfied because the expression in the
square brackets in (16) is nothing else but d A /dt.

It is easy to find that condition (17) is satisfied indepen-
dently of the value of the constant g~, provided

g [ln(g/2)+ 1])2, i.e., for

g &g„;,=7.18 . (18)

The constant gii is equal to the value of A (x) at x = ~
and is determined by condition (11). For g=g~ the
denominator in the integrand in (16) vanishes; hence,
lim, „dA /dt =0 and A ( ~ ) =g~

= 1.
For the values of the coupling constant exceeding the

critical value (18), lies a third solution which corresponds
to the integration interval extending from g, to g= —~.
This solution not only requires an IR cutoff; but also
violates the UV condition. At A=pi, dA/dt=O, but
also A &0, and therefore condition (11) cannot be met
(even with cutoffs).

We can now proceed to the study of the bifurcation
equation for 58 The int. egral equation (8) can be con-
verted to the differential form

d (xP)/dx =gP/(x A )

+g{d[(dP/dx )/A

—(dA/dx)P/A ]/dx { .

The boundary conditions for (19) are

lim(xP) =0,
x~O

lim d(xP)/dx =0,
x —+ 00

lim {[d (xP)/dx ]+g[P/xA+(dA/dx)P/A2
x~00

(19)

(20)

(21)

P1
I 82 1l 3p(x)-cix '+c~x '+c,x ',

where the exponents n, satisfy

n +(g/A~ —1)n —(g/ A)nii—g/A~=0 .

(23)

(24)

At the critical point n, = —0.596, n2=1.69, n3=11.2,
and, as g increases, n2 and n3 remain positive, while the

—(dP/dx )/A ] )
=0 . (22)

As x ~0, d A /dx —+0 and A (x)~ A~ =g„with g, given
by (17). The asymptotic solution of (19) has the form

value of n, does not fall below —1. The IR condition
(20} is therefore satisfied by all three particular solutions.

For large x, the asymptotic equation admits two types
of solutions: one exhibiting ordinary power behavior x"
and another oscillating very rapidly:

P-x {c2sin[coin(x)]+c2cos[coin(x)]) . (25)

The x" solution must be rejected since at the critical
point the exponent n =6.39, and for larger values of g it
even further increases. At the critical point, the ex-
ponent a and the "frequency" co in (25) have the values
0.396 and 0.984, respectively. They change relatively
slowly with the coupling, e.g., for g =10 their respective
values are slightly less than 0.50 and 10.0. Because of
this infinitely quick oscillatory behavior around zero at
infinity, the average values of (21) and (22) (which appear
only in the integrands} are zero, and the boundary condi-
tions are satisfied in a generalized sense. A similar oscil-
latory behavior was found in the solutions for 8 obtained
with use of the constant vertex approximation.

Below the critical value of the coupling constant,
cutoffs must be introduced, and the boundary conditions
(20)—(22) are imposed at finite points. In the UV region
the asymptotic behavior of Eq. (19) has the form of (23)
with n determined by the solutions of

n gn +(g ——3)n+(2 —g)=0 .

In the IR region the solution behaves as

p cix +cpx+c3

(26)

(27)

This work was supported by the Citadel Development
Foundation.

The conditions (21) and (22) fix two out of the three ar-
bitrary constants in the general solution, leaving only an
overall normalization factor. Condition (20) then implies
that p—:0, unless lucky cancellations occur for a few
(cutoff-dependent) values of the coupling constant g. We
are not yet able to rule out a possiblity that, for certain
positions of the cutoff points, such additional critical
points show up below the critical value (8). Even if they
do, the principal conclusion remains unaltered. For
small values of the coupling constant chiral symmetry is
not broken. Because of the inherent infrared divergence,
chiral-symmetric solutions of the Dyson-Schwinger equa-
tion for the propagator require a momentum cutoff.
Above the critical value of the coupling constant,
g„;,=3(e,„;,/4m. ) &7. 18, another solution appears. It
breaks chiral symmetry and introduces the fermion mass
term. Naturally enough, in the latter case the IR cutoff is
no longer needed. The lack of an UV cutoff is due to the
choice of Landau gauge in which the (logarithmic) diver-
gence generating g(x) term is eliminated from the in-
tegral (4).
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