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Remarks on charge quantization of fermions and bosons

C. Q. Geng
TRIUMF, Theory Group, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T2A3

(Received 1 November 1989)

We reexamine charge quantization in the standard model with and without a right-handed neutri-
no. We remark that, without the right-handed neutrino, only the standard charges are allowed for
Weyl quarks and leptons under the standard group. With it, there are two independent quantized

hypercharge and electric-charge assignments and nonquantized charge assignments would result
from linear combinations of these two. One more condition is sufficient to recover the unique
correct charge quantization.

It has been a long-standing puzzle that the electric
charges of elementary particles of nature are quantized.
In our recent paper, ' we showed that this puzzle can be
understood within the context of the standard model
without going to grand unification. We demonstrated
that, in the absence of a Higgs particle, by insisting on
the cancellation of the mixed gauge-gravitational anoma-
ly in addition to the well-known triangular gauge anoma-
ly to the standard group, the hypercharges of the 15
Weyl fermion members of a single generation without a
right-handed neutrino are uniquely determined as the
standard one despite the existence of a "bizarre" assign-
ment. "' As first indicated by Georgi, the requirement of
nonvanishing Dirac masses for quarks and leptons, which
is achieved by the introduction of a Higgs-doublet boson
to spontaneously break the electroweak gauge group in
the standard model, obviates the need to invoke the
mixed gauge-gravitational anomaly cancellation to fix the
quantized hypercharges of the Weyl fermions for the
standard group. However, if one introduces a right-
handed neutrino into the standard model, the hyper-
charges are no longer determined by the anomaly-free
conditions even if the standard Higgs particle is used. '
In this report, we will first remark that without a right-
handed neutrino, the bizarre hypercharge assignment
arises from the ambiguity of right-handed quark fields in
the anomaly-free conditions and results in a nonchiral fer-
mion and, therefore, for Weyl quarks and leptons, the
standard hypercharges are the unique ones which guaran-
tee the correct electric-charge quantization after the elec-
troweak symmetry breaks down to U(1)EM. We then
show that with the right-handed neutrino, two indepen-
dent quantized hypercharge and electric-charge assign-
ments are allowed by introducing both the anomaly can-
cellations and the Dirac mass terms under the standard
group. Among the two hypercharge assignments, one
can be identified as the standard one in which the right-
handed neutrino carries zero charge and the other one is
B—I.. Any other quantized and nonquantized assign-
ments are formed by linear combinations of these two.
One more extra condition will uniquely pin down the
correct charge quantization.

We begin by considering one generation of quarks and
leptons including a right-handed neutrino with the quan-

turn numbers under the standard group as follows:

SU(3)c X SU(2)L X SU(1)r

3 y3

v~ 1 1 y6

where y, (i =1,2, . . . , 6} are arbitrary. The cancellation
of the triangular anomalies yields the three nontrivial
equations

2yi+y2+y3 =0,
3y &+y4 =0,
6y, +3y2+3y3+2y4+ys+y6 =o ~

(2a)

(2b)

(2c)

Since there are four SU(2)L doublets in (1), the global
Witten SU(2} anomaly is satisfied. The mixed gauge-
gravitational anomaly-free condition leads to

3(2y]+y, +y3)+2y4+y5+y6=0 . (3)

(4b)

(O,y, —y, 0,0), (4c)

Clearly, the conditions in Eqs. (2) and (3) are not
suScient to fix y; since there are six unknown parameters
out of five equations [one overall normalization factor of
U(1)r has been included].

Let us first study the case of the minimal standard
model' (i.e., without the right-handed neutrino vz). In
this case the six unknown parameters reduce to five.
Therefore, one expects that the charges are able to be
fixed. Indeed, there are only three possible solutions for
(y, ,y2, . . . , y5 ) which are given by' '
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where y is a nonzero arbitrary factor and (Sc) is referred
to as a "bizarre" solution. Normalizing the overall factor
to one, i.e., y =1, we have three quantized hypercharge
assignments:

the Higgs mechanism with a Higgs doublet H(1,2, YH) un-

der the standard group and the ferrnion masses are given
through the Yukawa couplings I.z where

(1 4 2 1 2)

(1 2 4 1 2)

(5a}

(5b)

L„=h "QI Hu„+h QI Hdx+h'1~He„+H. c.

This equation requires ' Eq. (10) with g= YH. Equa-
tion (10) can reproduce the mixed gauge-gravitational
constraint in Eq. (3) with

(0, 1, —1,0, 0) . (Sc) y=g= YH . (12)
It is expected that the hypercharges Y, in (5a) and Yb in

(Sb) become equivalent when yz and y~ are interchanged
since, from the anomaly cancellation alone, one could not
distinguish uz and dz quark fields. The ambiguous hy-
percharge assignments for the right-handed quark fields
further cause the "bizzare" solution Y, in (5c) which can
be seen from the relation

Y, = —,'(Yb —Y, ) . (6)

In fact, there is no real ambiguity physically for the
right-handed quark hypercharges. Indeed, if quarks and
leptons are considered to be chiral fermions, i.e., no mass
terms can be generated without breaking the standard
SU(3)c X SU(2)L XU(l) r symmetry, only the standard hy-

percharge assignment in (Sa) or (5b) is allowed. Thus the
hypercharge assignment in (5c} should not exist. It
should be noted that one cannot build models which have
more than one U(1) symmetry based on the three hyper-
charge assignments in (5) or any nontrivial linear com-
binations among them in addition to SU(3)c XSU(2)L
with the 15 standard Weyl states of fermions because
Tr Y, Y (i,j =a, b, e; i' ) arising from the triangular
anomalies on [U(1)r ] U(1)r are not equal to zero.

J
Therefore, prior to spontaneous symmetry breaking in
the standard model, the "anomalies" approach explains
the hypercharge quantization.

To study the electric charges of fermions and bosons
we assume that the electric charge operator Q of U(1)EM
is given by

C'Q =g'I3L +g' Y, (7)

where C is treated as the overall normalization factor for
U(1}EM which shall be determined by the definition of the
electron charge. Since quarks and electrons are Dirac
fermions which are left-right symmetric under
SU(3)c X U(1}EM, we have

Q(uL ) =Q(uii ), Q(dr. ) =Q(dz ), Q(ei )=Q(ez ), (9)

which implies that

yi+y3 = —(yi+y»=y4+y5 =0 . (10)

In the standard model, the electro weak symmetry
SU(2)L XU(1)r spontaneously breaks down to U(1}EM by

where C', g', and g' are free parameters. If the electron
charge is defined to be nonzero, g must be nonzero too.
Thus we can rewrite Eq. (7) as

CQ =(I31 +—,7

From Eq. (8), we see that the electric charges for photon,
the standard Higgs (H ) and the standard gauge bosons
(Z and W —

) (Ref. 9) are

Q(}')=Q(H ) = Q(Z ):—0 Q( W —
) =+e . (14)

The electric charges in (13) and (14) are precisely the
standard one. Therefore, in the context of the standard
model, the charge quantization for both fermions and bo-
sons can be understood without going to grand
unification theories (GUT's).

We now study the case with the right-handed neutrino.
We shall solve Eqs. (2) and (3) in terms of y, and y6. For
y, %0, we first set that y, =a and y6 =3aP where a and P
are arbitrary parameters. We find that there are only two
solutions for (y„yi, . . . ,y6):

( —' —4+P —' —P —1,2 —P,P)3a, (15a)

( —' —' —P ——'+P, —1,2 —P, P)3a . (15b}

Like the case without v„, the values in (15a) and (15b) be-
come equivalent when y2 and y3 are interchanged. It is
straightforward to show that the solutions that arise from
interchanging the hypercharges y5 and y6 of the right-
handed leptonic fields in (15) are also allowed. This gives
two more solutions:

Thus, without using the mixed gauge-gravitational con-
straint in Eq. (3), Eq. (9) or (ll) with the triangular
anomaly-free conditions in Eq. (2) also yields a unique
solution given by (4a).

One notes that the solutions in (4b) and (4c) do not
satisfy the condition in (10). This is not surprising be-

cause the definition of the Yukawa couplings in (11) has
eliminated the ambiguity of the hypercharges between uz
and d„and, furthermore, Eq. (11}along with Eq. (2) also

implies having only chiral fermions under the standard

group. Hence both Yb in (Sb) and Y, in (5c) are not al-

lowed. From Eq. (12) we see that fixing the overall factor

y is equivalent to fixing the Higgs hypercharge YH.

We now leave YH to be arbitrary and study the electric
charges for quarks and leptons after the electroweak sym-
metry SU(2)1 X U(1)r spontaneously breaks down to
U(1)EM by the Higgs mechanism. With the definition of
Q(e)= —e, we find that C '=eYH=e(=ey or C '=e
for choosing YH=(=y= 1. Thus the fermion electric
charges are given by

Q(u) =
—,'e, Q(d) = —

—,'e, Q(e) = —e, Q(vr ) =0 .

(13)
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( —,', —4+P, —,
' —P, —1,P, 2 —P)3a,

( —' —' —p ——', +p, —1,16{,2—p)3a .

(16a)

(16b)

:—3a Y~ (17)

in which there is no ambiguity of the hypercharge assign-
ments for the right-handed fields. For y, =0, we get

Actually, (16a) and (16b) can be derived by substituting
2—P for P in (15b) and (15a), respectively. It is interest-
ing to note that there is only one solution for P= 1 case,
i.e.,

Y15, = Y15b Y16a = Y16b =3a( —,', —
—,', —

—,', —1, 1, 1)

Yb = —
YR =(0, 1, —1,0, —1, 1 ), (24b)

respectively. We remark that, in fact, it is sufficient to
derive (24) by the triangular anomaly-free conditions in
(2) and the conditions in (10) given by the Dirac mass
terms or the Yukawa couplings while the mixed gauge-
gravitational anomaly-free condition in (3) is automatical-
ly satisfied once (10) is introduced.

The charges Y, in (24a) contain a free parameter YH
for the right-handed fermion fields but the hypercharges
for the left-handed fermions are quantized just like the
case without v„ in (Sa) whereas Yb is quantized. Actual-
ly, we can write (24a) and (24b} as

Y, = YsD+ YH YR =(1+YH)YsD YH YR L, , (25a)
(O, y, —y, O, —5,5), (18)

Yb = —Y~ ——Yso+ Y (25b)
where y and 5 are arbitrary. Again, as the case without
vR in (5c), the solution in (18}may be viewed as a result
of the ambiguities of the hypercharge definitions between
the right-handed quark and lepton fields in (15) and (16)
when P%1. To see this, we write

1

6a(1 —P)
1

( 1 p) 16a 16b

where YsD =( —,', —
~4, —,', —1,2,0) are the charges in (24a) by

taking YH =0 which are the standard ones given in (Sa)
plus zero hypercharge for right-handed neutrino. This
indicated that all the hypercharge assignments are com-
posed of YsD and Yz L. Therefore, there are only two
possible independent quantized hypercharge assignments.
Clearly, any linear combination of these two quantized
hypercharge assignments is also a possible one: for in-
stance,

=(0, —1, 1,0,0,0), (19a) Y =xYsD+y Y~ (26)

Yl
R 6 (1 p) 15a 16a )

1

( 1 P) 15b 16b

=(0,0,0,0, 1, —1)

and thus we have

Y1s= —(y Yg+5YR) .

Especially, for y =5= 1, we have

Y16 = —( Yg + YR ) = —(0, —1, 1,0, 1, —1)

:——
Y& .

(19b)

(20)

(21)

(1—P)3a= Y~=—(1—YH)3a (22)

We now use the Yukawa couplings in (11) to see
whether we can fix the free parameters in (15) or (16) and
(18). Clearly, only one of the four solutions, for example,
(15a), in (15) and (16) is allowed by (11). From Eqs. (10)
and (12), one finds —Y'

HQ(e)= —e, Q{v)= e,
2 —Y~

(27a)

where x and y are arbitrary parameters. Hence, Y„may
not be quantized.

It is interesting to note that the introduction of the
right-handed neutrino allows one to have multi-U(1) sym-
metries in addition to SU(3)c and SU(2)L. This is possi-
ble because the anomalies related to Tr Y,. Y are zero
where Y; J are arbitrary linear combinations of YsD and
Yz L. Moreover, for independent charge assignments, it
is straightforward to show from Eqs. (15)—(18) that the
number of multi-U(1) symmetries cannot exceed two.

We now check the electric charges without fixing a
and YH. Using Eqs. (8) and (12), the electric charges of
the fermions and gauge bosons by the definition of elec-
tric charge of electron, i.e., Q(e) = —e, are as follows: for
the hypercharge assigntnents in (15a),

4/3 —
YH —2/3+ YH

Q(u )=, e, Q(d)=, e,
2 —Y~ 2 —YH

for (15a) and

(23)

2 —2YH
Q(y)=—Q(H )=—Q(Z )=0, Q(W+—)=+ e

2 —Y~

Y, =(—,', —
—,+ YH, —,

' —YH, —1,2 —YH, YH), (24a)

for (18), respectively. Thus, the free parameters in (15a)
and (18) are related to the definitions of the normalization
of U(1)r and the hypercharge YH of the Higgs doublet.
If we choose the overall normalization factor a= —,

' so
that 1 —P= YH =—1 —YH in (15a) and YH = —1 in (16), we
get

(27b)

with

1 2e

3a(2 —
YH )

(28)

where we have excluded the case with YH=2 since it
gives zero charge for the electron and, for the case in (16),



41 REMARKS ON CHARGE QUANTIZATION OF FERMIONS AND BOSONS 1295

Q(u )= —Q(d)= —Q(e)=Q(v)=e,

Q(y)=Q(H ):—Q(Z ):—0, Q(W*)=+2e

with

C
—1 2e

YH

(29a)

(29b)

(30)

Q(p =uud ) =e = —Q(e),

whereas for the neutron one has

Q(n =udd ) = —Q(v) .

For the pions, one finds that

(31)

(32)

The normalization factor C ' in Eqs. (28) and (30) justify
the free choices for the parameters a in (22) and YH in
(23). The electric charges in (29) are quantized but ruled
out by experiments while those in (27) are not fixed if YH
is arbitrary. From (27), it is interesting to see that the
electric charge of the proton is quantized and indepen-
dent of the choice of the parameter YH, which is equal to
e, i.e.,

Q(y)—=Q(H )=Q(Z )—=0, Q(W +—)=0 (35)

only the neutrino as a Majorana particle, regardless of
the model once there are 16 states of fermions, will lead
to the correct charge quantization. This justifies the
speculation by Babu and Mahopatra based on a class of
models. ' However, it should be clear that it is only a
suScient condition to have the correct charge quantiza-
tion. Nature may not allow such a Majorana mass term
since it has not been seen yet. Moreover, imposing a Ma-
jorana mass term for v& is as good as assuming zero elec-
tric charge for vz since there is no reason why the other
color-weak singlet ez could not have such a Majorana
mass term.

From (27) and (31) we see that if we know one of the
charged boson (spin 0 or 1) charges, all the other charges
will also be fixed. For example, if Q( W +—

) =+e, one finds

the correct charge quantization for all the fermions. We
note that for Yii L which corresponds to YH =1 in (24a),
to satisfy Eq. (9) or (10), (=0 in Eq. (9) is needed, i.e.,
Q-(8 L). T—hus, all the physical bosons have zero
electric charges, i.e.,

Q(n )=0, Q(n )=Q(W +—
) . (33) but no neutral fermions, i.e.,

So no neutral spin- —,
' baryons and leptons are allowed un-

less YH =0 even for three families of quarks and leptons.
Thus, the existence of a neutral spin- —,

' baryon or lepton
will recover charge quantization. In fact, this is a neces-
sary and suScient condition to have the correct charge
quantization.

Since the charges in (27) involve only one free parame-
ters, any extra condition will Sx all the charges. For in-
stance, if

Q(v)=0, (34)

which could be derived from having a Majorana mass
term for neutrino, ' one fixes YH =0 and therefore (24a)
and (27) become the standard hypercharges in (5a) with
Y(vx)=0 and electric charges in (13) and (14), respec-
tively. The zero electric charge for the neutrino in (34}
also excludes the possibility of the charges in (24b) and
(29) and 8 Lcharges in (—17). Thus, the requirement of
(34) uniquely determines the electric charges and so the
hypercharges as the standard ones. This is possible be-
cause the standard fermions (no vz }, which are Weyl fer-
mions under the standard group, possess a unique set of
hypercharges and electric charges. Therefore, imposing

Q(u ) =Q(d)= —,'e, Q(e) =Q(v) = —e (36)
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from (27). This may also give us an indication why na-
ture chooses YsD instead of Yz L as hypercharges.

Finally, we remark that both Y, (YH=O) and Yi, hy-
percharge assignments in (24) will result in the existence
of nonchiral fermions which can form mass terms (Dirac
or Majorana) without breaking the standard group sym-
metry. This implies that it is impossible to protect all the
fermions being Weyl states by the standard group. To
have 16 chiral fermion states, one requires Y, with
YHAO, for example, Y, (a= —,', YH=1)= Ya I, which
are ruled out by experiments. The other possibility is to
extend the standard gauge group. Clearly, the minimal
gauge group contains two U(1) symmetries in addition to
SU(3)c and SU(2)r. For example, one can have models
with SU(3)CXSU(2)I XU(1}r XU(1)r gauge group

where Y, 2 are some linear combinations of YsD and
Yg L ~
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