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We present a solution to the strong CP problem using softly broken parity invariance in the con-
text of left-right-symmetric gauge models with a "seesaw" mechanism for quark masses. A distin-

guishing feature of the model is that the first nonvanishing contribution to 8 arises only at the two-

loop level, whereas the electric dipole moment of the neutron d„' is generated at the one-loop level

via weak CP violation. For the 8'& mass at the TeV scale, we estimate d„'=10 '-10 ecm and
e& 10-".

I. INTRODUCTION

There are many solutions to the so-called CP problem, '

where in suitable extensions of the standard electroweak
model involving new symmetries, one ensures that the
strong CP parameter 8 is computable and is less than
10 or so. The 8 is defined as

8=8+Arg Det(M„M4 ),
where 8/32m. is the coefficient of the FF term in the
QCD Lagrangian and M„and M4 are the mass matrices
for the charge +—', and —

—,
' quarks, respectively. The

general strategy employed in these models is to use sym-
metries that constrain both the 8 term as well as the
Arg Det (M„M4) term to vanish naturally at the tree lev-

el. Since realistic weak-interaction models require these
symmetries to be broken, Det (M„M4 } will in general ac-
quire a finite and computable phase in the loop approxi-
mation. If this phase is below the experimental upper
limit of 10 or so (arising from the bounds on the elec-
tric dipole moment of the neutron) for a reasonable
choice of the electroweak parameters of the theory, one
has a solution to the strong CP problem.

If the symmetry is a continuous U(1) symmetry as in
the Peccei-Quinn-type solution, one gets a nearly mass-
less pseudoscalar boson, the axion, which has eluded ex-
perimental searches to date. On the other hand, if the
symmetry is a discrete symmetry, one obtains a solution
without an axion. There are a number of such models in
the literature. In a recent paper, it has been argued that
in the class of models discussed in Ref. 3, the electric di-
pole moment of the neutron d„' arises solely from the
strong CP parameter 0. This would mean that d„' is in-

sensitive to the detailed nature of weak interaction, and
cannot therefore be used to discriminate between
different models of CP violation.

In this paper, we study a model where the soft break-
ing of parity symmetry allows a solution to the strong CP
problem. Whi1e this model is similar in spirit to the class
of models discussed in Ref. 3, d„' and the 0 parameter in
this case are independent of each other. In fact, the 0 pa-
rameter arises only at the two-loop level whereas d„' gets
a one-loop contribution from weak CP-violating effects

II. DESCRIPTION OF THE MODEL

The model is based on the gauge group
SU(2)t XSU(2)„XU(1) with quark doublets Q=(u, d }
and lepton doublets 0:—(v, e) assigned in a left-right-
symmetric manner. In addition, the model includes
vector-like isosinglet heavy quarks P and N (with charges
—', and —

—,
' ), and leptons E (charge —1) (one per genera-

tion). The fermionic spectrum thus consists of (suppress-
ing generation indices)

QL (2, 1, 1/3), Q~ (1,2, 1/3),

VL(1, 1,—1},%„(1,2, —1),
PL „(1,1,4/3), (2)

NL „(1,1, —2/3),

EL „(1,1, —2) .

The Higgs sector of the model is extremely simple and

leading to a value of d„' = 10 -10 e cm. This
"decoupling" of 8 and d„' is achieved without any fine-

tuning of parameters or the imposition of new sym-
metries. In this sense, the present model is different from
the models of Ref. 3.

We use the "seesaw" picture for quark masses intro-
duced recently, where one uses a new set of heavy vec-
torlike isosinglet quarks P and N with electric charges 3

and —
—,', respectively, and lepton E with charge —1 in

addition to the usual quarks and leptons. The quark and
charged-lepton mass matrices in this case have the
"seesaw" form leading to small masses for e, u, d, etc.,
without severe fine-tuning of the Yukawa couplings. The
CP-violation phenomenology of this model was discussed
by us in a recent paper, where it was noted that the mod-
el provides a solution to the strong CP problem. In this
paper, we show by explicit computation that at the one-
loop level indeed 8=0 whereas d„'%0. For reasonable
values of the parameters of the model we estimate the
nonzero two-loop contribution to 8 to be at the level of
10 '2. The contribution of 8 to d„' is thus negligible in
relation to the pure weak CP-violating contribution.
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+ ((XLXL )'+(XRXR )'1
2

+~2(XLXL )(XRXR ) (3)

Note that the potential is invariant with respect to par-
ity operation under which yL~yR, except for the scalar
mass terms which break this symmetry softly. The
minimum of the potential corresponds to

(XL ) ='L

where

(4)

2 k9R ~1PL 2 isL A1I R

g2 g2 ' R g2 g2
2 1 2 1

Choosing pR ~ pL, we guarantee UR
~

UL which in turn
implies that the right-handed charged-current effects are
suppressed. It is also worth pointing out here that there
are only two physical Higgs scalars in this model:
oL =3/2 ReXL and OR =3/3 ReX„. These two states
mix at the tree level. The mass matrix is given by

2A, 1UL 2A2VL UR

2A, 2VL UR 2A. 1VR

The crL aR m-ixing angle g is

consists only of a pair of left-right-symmetric doublets
XL(2, 1, 1) and XR(1,2, 1) with the following Higgs poten-
tial:

(I LXLXL +I RXRXR )
2 t 2

M =2A1UR, M =211 1 —
UL «M

1

In the gauge sector, there is no mixing between the
charged gauge bosons 8'L— and 8'R at the tree level.
Their masses are given by guL /3/2 and gu„/3/2, respec-
tively, so that M~ &&M~ . The neutral gauge bosons

L R

8 3L S 3R and 8 mix at the tree level. The mass eigen-
states A, Z1, and Z2 are

A =sin8w( W3L+ W3R )+U cos28wB,

Z1 =coscxZL + sin/xZR

Z2 = —sinaZL+ cosaZR,

with masses

Mq =0, Mz ——M~ /cosO~,

Mz -Mw cosOw/Qcos28w .
2 8

Here ZL and ZR are defined as

ZL =cosOw W3L sinOwtanOw W,„—tanOw+cos28wB,
(11)

ZR =Qcos28wsecOw W3R —tan&wB .

The weak mixing angle 8~ is related to the gauge cou-
plings via

2A, 2UL V

tan2(=

The masses of the physical scalars are

g
cscOw Qsec28w

and the angle a is given by

(12)

2uLsec Ow+sec28w
tan2o. =

2 2 2 2uRcot Owsec28w+uL(tan Owsec28w —csc 8wsec Ow)
(13)

Note that a =(uL /uR ) &&1.
In order to discuss the fermion masses and the question

of CP violation, we now give the most general Yukawa
interaction of the model:

X r=QLh„XLPR+QLhdXLNR+0 Lh, XLER+L~R

+PLMpPR +iVLM~NR +ELM~ER +H. c. (14)

Here M,-, i =P, X,E are chosen to be complex non-
Hermitian matrices whereas h„d, are arbitrary real ma-
trices in generation space. Thus the model has both soft
P and CP violation. We may remark here that even if CP
violation is hard, the model provides a solution to the
strong CP problem. (Parity invariance alone is sufficient
to set 8=0). In order to be more general, we shall keep
the matrices h„d of Eq. (7) to be complex in the subse-
quent sections. Of course, the case of soft CP violation

will be recovered by identifying h with h

The present model is a more economical version of the
model in Ref. 4 since the parity-odd singlet scalar field
has been omitted. This has two interesting implications:
(i) Since parity invariance is now broken softly, rather
than spontaneously, the model is free from cosmological
domain wall problem without recourse to inflation or
grand unification; (ii) a solution to the strong CP problem
can be achieved with a low right-handed scale.

HI. 8 AT TREK LKVKL

We use the fact that parity is only a softly broken sym-
metry in order to set 8=0. The quark mass matrices that
follow from Eq. (7) after spontaneous symmetry breaking
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u

d

~u UL

h„U„Mp
0 AdUL

hd VZ MW

It is clear that Det(M„' ') and Det(Md ') are separately
real and therefore we have L9=0 at the tree level.

There is a similar contribution from the down-quark sec-
tor as well. Note that to one-loop order 5MHH does not
enter into the equation for 0. This means that we need
not compute the diagrams in Fig. 1 for the moment.

Consider the contribution from Fig. 1(a). Since we are
treating the mass as part of the interaction, the cross on
the internal fermion line stands for all possible tree-level
diagrams with an initial I'L and in a11 P& states. Hence

IV. 8 AND d„' AT THE ONE-LOOP LEVEL

In this section, we prove by an explicit computation
that 9=0 in the one-loop approximation. On the other
hand, d„' will be shown to receive nonzero contribution at
this level.

Let us first turn to the computation of 6I. For this pur-
pose, we have to calculate the one-loop radiative correc-
tions to the up- and down-quark mass matrices of Eq.
(15). We find it convenient to work in the weak basis,
rather than the mass eigenbasis. Thus we treat the mass
matrices as part of the interaction Lagrangian. Let the
radiatively corrected up quark mass matrix be

(b)

UR uL

B,

UR UR uL uL

g ~ —%~ 0R i L
/

PR

M„=M„' '(1+C) . (16)

Then using the fact that the determinant of M„' ' is real,
one can express

8=Arg Det(1+ C )

e Tr ln(1+ C)

(c)

Og

/

R L PR

W3L

uL

=Im Trln(1+C) .

Using the loop expansion for C,

C=C +C +

(17}

(18)

R R UL UL

where the subscripts 1,2, . . . denote the number of loops,
we have (e)

H=lm TrC|+Im Tr(C2 —
—,'Cf )+ (19) L R PL UR

u QMu QMu (20}

Similar arguments apply for the down-quark mass matrix
as well. In what follows, we shall show that TrC, is real,
so that 8 vanishes up to the one-loop level.

The one-loop radiative corrections to the up-quark
mass matrix arise through neutral scalar and neutral-
gauge-boson exchange. The relevant diagrams are shown
in Fig. 1. Since the charged gauge bosons 8'L and 8'z
do not mix at the tree level, there is no contribution from
their exchange to one-loop order. Let us denote the one-
loop radiative correction to the mass matrix by

~MLL ~MLH

PL P„

PR UL UR

--)f- 0 R//
/I

3R

PL

Then 8 to this order is given by

O=Im Tr
UI U

5MLr (h„) 'Mph„' (h)
R R PL PL

+ 5MI"H h„'+ 5MHI (h„) (21)
FIG. 1. One-loop radiative corrections to the up-quark mass

matrix. The cross on the internal fermion line stands for all

possible mass insertions.
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our first task is to sum all such tree diagrams at nonzero
external momentum. This can be done in the following
manner .Let Fi =(u, P)L and F„:—(u, P)R. The mass
matrix M„' ' of Eq. (15) corresponds to a term FL M„' 'FR

in the Lagrangian. The full tree-level propagator with all
possible mass insertions is then

F- M(P)t
2

R u 2 (p) (p)g L (22)

The propagators relevant for Fig. 1 can be obtained from
the above by suitable projection operators. For this pur-
pose, let us define

X(k ) Y(k )

Yt(k') Z(k') (23)

ULh huX+huMP Y

Y= vt Hh„M—I,Z,
where

H=(v2$ ht —k~)

VL
(I+k X), (24)

(25)

Here I is an identity matrix in the generation space.
From Eqs. (22) —(24) it follows that the interaction corre-
sponding to the cross on the internal fermion lines of Fig.
1 can be read off from

entree Peff R

4

h„'Y(k ) PI +uq [k h„v„Z(k )]P
UL

k2
+P~ h„'[I+k X(k )] uL

UL

+ua[k h„v„Y (k )]+H.c.

Now we are ready to evaluate. the one-loop radiative
corrections to the mass matrices. Consider the scalar ex-
change of Fig. 1(a). The amplitude is given by

5MLL(Higgs)= I &h„h„d4k 1

(2n ) vL,

k Y(k )h„k2vLv„

[(p —k ) —M ][(p —k ) —M ]

Its contribution to 8 is then [see Eq. (21)]

(27)

k Y(k )Mph„'

[(p —k) —M ][(p—k) —M2 ]

(2&)

with X=X, Z=Z . Then by ordinary matrix inver-
sion, X, Y, Z are determined by

(vghth„+Mph K)Y—= vt Mph—„X,
Fig. 1(c): [I+i X(k )]h„,
Fig. 1(d) [I+i'X(k')](h t)

(30)

After multiplying by h„', the relevant trace for 8 is seen
to involve [from Eq. (21)] I+k X and
(I+k X)(h„h„) ' Both of.these traces are real since X
is a Hermitian matrix.

Finally, the contribution from Fig. 1(e) is proportional
to h„h„Z(k )h„and Fig. 1(Q to Z(k )h„. Again we see
that their contribution to 8 is zero. This completes the
proof that 8=0 to the one-loop order.

Turning now to the neutron electric dipole moment d„',
we see that once an external photon line is attached to
the loop diagram of Fig. 1, they represent a potential con-
tribution to d„, if the (5M„„)„is complex. The matrix
structure of these diagrams is the same as in Eqs.
(27)—(30). It is clear that, for arbitrary complex
Mp ~ ( 5M d )» is indeed complex, thereby leading to a
nonvanishing d„. The crucial difference here is that un-
like in the computation of 8, there is no tracing involved.
The dominant contribution to d„arises from Figs. 1(a)
and 1(b). The contribution from Fig. 1(a) is estimated to
be

h„h~

16m Mp

VI Mz2
ln

2
sin 5

VR

eA, m M2 '2
ql & .

~ 10 25~ 10TeV
2 2

n
2 216' VR M VR

L

ecm .

(31)

Here we assumed that UR =M~ and the CP phase
sin5=1. The contribution from Fig. 1(b) is similar, ex-
cept that A, 2 is replaced by g . We see that d„'=10
—20 e cm. This value is in the accessible range of the
next generation of experiments.

V. TWO-I.OOP CONTRIBUTION TO 8

In this section we turn to the two-loop contribution to
0. Our aim here is not to compute 0 exactly, we shall be

One can evaluate the trace before performing the
momentum integration. Using Eqs. (14) and (25), one has

Tr[Y(k )Mph„']
= —vI Tr[(h„h„vt —k ) 'M~Z(k )M~] . (29)

Since the right-hand side is the product of two Hermitian
matrices, its trace is real. Hence we conclude that the
contribution from Fig. 1(a) to 8 is zero.

Consider next the gauge contribution Fig. 1(b).
Proceeding as before, we extract the matrix structure of
the diagram. This is exactly the same as of Fig. 1 (a),
namely, Y(k )h„. Therefore the contribution to 8 from
Fig. 1(b) is also zero.

Figures 1(c)—1(f) represent correction to the off-

diagonal entries of the up-quark mass matrix. Figures
1(c) and 1(d) have the matrix structure
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content with an order of magnitude estimate. At the
two-loop level, 8 receives two types of contribution as can
be seen from Eq. (19). One type arises from the two-loop

diagrams. A few typical diagrams are shown in Fig. 2.
The other is the square of one-loop contributions. In the
notation of Eq. (20), 82 („ can be written as

p
5M(2)(h t)—

1Mh
—i + 5M(2) h

—( ~ 5M(2) (h t) —1

UL

[5M"'(h ) 'Mh ']
2VL UR

[5M'"(h ) '] — (5MIH'h ') + 5M "h '5MLL'(h ) 'Mh
VR 2VL VLVR

+ 5MLL(h ) '5MH'I'(h ) 'Mh ' — 5ML'I'(h ) '5MHHh
ULUR VL VR

(32)

where the subscripts u, P have been dropped for brevity.
The superscripts (1) and (2) refer to one and two loops,
respectively.

Consider first the diagram Fig. 2(a). Its contribution to
8 can be estimated to be (for maximal CP phase)

8(Fig. 2(a)) =
2

'2 ' '2
X2UL

16ir
(33)

Here we assumed that the dominant contribution comes
from the top-quark exchange. P is a typical mixing pa-
rameter involving the third generation. Its appearance
can be understood as follows: If only the top-quark con-
tribution is retained, the amplitude of Fig. 2(a) relevant
to 0 becomes real. Therefore, either two of the Yukawa
couplings should belong to second generation, or one
should include third generation mixing into the others.
This is parametrized by P. For ( UI /vz ) = 10

/ =10, A,2= 10 ', we estimate this contribution to 8 to

be 10
The contribution from Figs. 2(b) and 2(c) to 8 are coin-

parable to that from Fig. 2(a). This statement warrants
some explanation. Consider Fig. 2(b) first. At first sight
it might appear that there is no (UL /UR ) suppression for
this diagram. However, this conclusion is incorrect. If in
Fig. 2(b) oz is replaced by the longitudinal component
of ZL, the amplitude will be exactly the same, except for
an overall sign difference and the replacement of the
propagator (k —M )

'
by (k —Mz ) '. When the

two are combined, there is a suppression factor M /vs
L

or Mz /U„. This can also be seen (perhaps more vividly)
L

in the 't Hooft —Feynman gauge, where one includes the
contribution from the unphysical neutral scalar bosons as
well.

As for the diagram in Fig. 2(c), a straightforward com-
putation yields a suppression factor (vL /U„) . This can
be seen by rewriting the interaction Eq. (26) to leading or-
der (i.e., neglecting terms of order vJ /Us ):

2 2""=P M. P +u hu I'—h~g —M Mt R
I —htI, —M Mt

u uVR P P Q QVR P P

1
+PR 1+Mp t 2 t Mp (h„UL )UL

k —h„h„VR —MPMP

1
+uR hu 2 t 2 t MPhQULUR uL+0

2
+H c.

k —h„h„VR —MPMP VR
(34)

Using the above approximation, it is not difficult to show
that the products of one-loop terms all have the suppres-

Figure 2(d) is somewhat different from all the diagrams
considered so far in that it brings in parameters of the
down-quark mass matrix into the up sector (and vice ver-
sa). The relevant trace is complex, and we estimate

h,

16m
p2 (35)

Again, we saturated the Yukawa couplings with the
heaviest available quark, namely, the top quark, and al-
lowed for its mixing with the other generations. It is
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clear that this contribution dominates 8. For /=10
Mt=Mal, UL/UR-10 '-, we obtain 8=10-12. Its con-

E

tribution to d„' is clearly smaller than the pure weak CP-
violating contribution by two to three orders of magni-
tude.

The suppression factor vL /vz appearing in 0 is not
hard to understand. In the limit v& ~DO, Mp~~ao
(Uz /Mp z fixed), the model reduces to the standard mod-
el with Kobayashi-Maskawa-type CP violation, where it
is well known that 8 receives no contribution up to two-
loop order. Therefore the two-loop contribution we have
estimated should involve a vl /v„suppression since it
should vanish in the above limit.

VI. CONCLUSIONS (c)

"R

Oy~
/ ~r

PL UR UL PR UL

R L R L R I ~p L
R

QL

t

cr L
l L

a

UR PL UL PR PR UL

We have presented a very simple extension of the stan-
dard model using the left-right-symmetric gauge group
with "seesaw" masses for charged fermions which solves
the strong CP problem. The neutron electric dipole mo-
ment in this model arises dominantly from weak CP-
violating e8'ects at the one-loop level and is in the experi-
mentally interesting range of 10 —10 e cm. 6P on
the other hand, arises only at the two-loop level and is es-
timated to be =10 ' . Other interesting phenomenologi-
cal aspects of the model, such as CP violation, small neu-
trino masses, ' etc. , have been studied elsewhere. It has
been shown in Ref. 5 that the model realistically accounts
for the observed CP violation in the j;-meson system even
in the limit of a decoupled third generation. Neutrinos
are predicted to be Dirac particles with their small mass
arising at the two-loop level' via diagrams analogous to
Fig. 2(d). In contrast with most of the models of Ref. 3,
the present model does not require any special symmetry

UR dR dL

FIG. 2. Typical two-loop diagrams contributing to the up-
quark mass matrix.

(discrete or continuous) or a high-mass scale in order to
solve the strong CP problem.
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