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The classical SU(2) Yang-Mills equation is solved numerically in 2+ 1 dimensions with a static
central point source. We study the static potentials whose rotational symmetry in two-space is man-
ifest, i.e., does not require a gauge transformation for its realization. In the radial gauge, such a po-
tential typically consists of two functions of the radial coordinate: a highly oscillatory tangential
component A4, and a timelike component A4, which is essentially monotonic. These two com-
ponents point in two perpendicular SU(2) directions. The interest of these solutions lies in the fol-
lowing features. First, the asymptotic behavior of A, at large distances is linear and hence more
confining than the logarithmic, Coulomb-type behavior resulting from A4,=0. Second, in a suitably
defined strong-coupling limit, the vorticity oscillates so tightly as to disappear, while 4, remains
linear instead of approaching the Coulomb form. Therefore the strong-coupling behavior could be
relevant to 3+ 1 dimensions with spherical symmetry. A third feature is that, in the strong-coupling
limit, the source becomes renormalized to an infinitesimal bare charge.

I. INTRODUCTION

The purpose of this paper is to call attention to the re-
sults of a straightforward exercise in solving the Yang-
Mills equation. The interest in these solutions arises
from their somewhat unexpected features, which to this
author’s knowledge have not been brought to light be-
fore, and which conceivably might be a classical
reflection of a confinementlike mechanism.

One reason for studying the classical solutions of the
Yang-Mills equation with a static central source has been
the hope that its large-distance behavior would offer a
clue to the confinement mechanism of QCD. One might
have expected that the flux-tube mechanism of Kogut
and Susskind' and the lattice analysis of Wilson? would
find their confirmation in a linearly rising quark-
antiquark potential, as would be displayed on the most
elementary level by the potential of a single central
source. However, several studies’ ™7 of the static central-
ly symmetric classical Yang-Mills solutions with a central
source have consistently shown that, outside the source
volume, the solutions are of the Coulomb form ¥ ~r "'in
three space dimensions; for a sufficiently small value of
the coupling constant, that form is stable under small
perturbations, while for larger values no stable, static,
spherically symmetric solution exists. Some static, spher-
ically nonsymmetric solutions® with a central source have
also been found, but their message, if any, concerning the
qq system is not clear.

More recently, an alternative approach to confinement
has postulated random fields in the Yang-Mills vacuum.’
Specifically, a result of Olesen!® states that the hy-
pothesized existence of random SU(n) fluxes in the Yang-
Mills vacuum is equivalent to that of the confinement
property. The confining effect of the random flux has
been described by that author and others as a “‘dimen-
sional reduction.” (The earliest discovery of this effect
occurred in solid-state theory; see Ref. 10 for additional

41

literature.)

In the fully quantized theory, the randomness would
have to be temporal as well as spatial. It is therefore of
considerable interest that in a classical context Matinyan,
Savvidi, and Ter-Arutyunyan-Savvidi have discovered
that the Yang-Mills equation (without external source)
can have solutions with a stochastic time depen-
dence.!'!'” '3 In these references, the potentials are chosen
to have a simple spatial behavior, such as constancy or
spherical symmetry.

The present paper examines numerically the static clas-
sical SU(2) Yang-Mills solutions in 2+ 1 dimensions, with
a central point source. We specialize to those solutions
which exhibit rotational symmetry in space without the
need for a gauge transformation to accompany each rota-
tion (“manifest rotational symmetry”). The (2+1)-
dimensional case has the unique feature that the rotation-
al symmetry allows a vortex solution, i.e., a potential
with a nonzero tangential component. Thus, on the one
hand, novel features such as a non-Coulomb behavior are
observed; but, on the other hand, these features might
seem irrelevant to the (3+ 1)-dimensional world. There
exists a strong-coupling limit, however, which restores a
possible relevance to 3+ 1 dimensions due to an effective
disappearance of the vorticity, while the non-Coulomb
features are retained.

In view of the stochastic behavior in time discussed in
Refs. 11-15, it is natural to examine the static model for
any indications of spatial chaos. No such chaos is visible
here. However, the “next best” phenomenon does occur:
while, in the radial gauge, the time component 4, of the
potential appears to be smooth and, beyond a certain
value of r, monotonic and even linear, the tangential
component A4, exhibits rapid oscillations whose wave-
length and amplitude both tend to zero at large r. In the
appropriate strong-coupling limit the vorticity oscillates
so tightly as a function of r as to become invisible on a
finite scale; A4, remains smooth and linear. (The simul-
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taneous nonzero value of 4, and 4, in the radial gauge
may be referred to as “partial velocity.”)

We note that the lack of spatial chaos in the present
calculations does not preclude its existence in less sym-
metric situations.

II. SU(2) YANG-MILLS EQUATIONS
IN 2+1 DIMENSIONS
Let A* be the matrix representation
AM(x)=30, 4 (x) (u=0,1,2;a =1,2,3), (2.1)

where the A} are real functions and the o, are the Pauli
matrices. We consider the Yang-Mills equation with a
static external point source:

D#F‘”= —(Zwe’)(%az,)go"a(r) s (2.2)
where

Fr=0tAV—03"AF—ie[ A*,A"], (2.3)

D#=aﬂ—ie[Ap, 1; (2.4)

e and e’ are adjustable constants; the external source is
oriented without loss of generality in the third SU(2)
direction; the factor —27 is for later convenience.

In polar coordinates

x'=r cosd, x2=r sing , (2.5)
without time dependence, and with

F’=-B,

Fol= —E,cos¢+E,sing , (2.6)

F°2=—E,sin¢-E¢ cos¢ ,
and similarly for 4', 42, Eq. (2.2) reads
1 1
9,E,+—E,+— +i +i
r™r ror ra¢E¢ le[ArrEr] le[A¢,E¢]

=—(2me’)($03)8(r) ,

(2.7a)
1 . .
7a¢B +ie[Ay,E, ]+ie[ A4,B]=0, (2.7b)
o,B—ie[Ay,Ey]t+ie[A4,,B]=0, (2.7¢)
where, from (2.3),
E,=—3,A,+ie[ Ay A,],
1 .
E¢:_76¢A0+16[A0,A¢] y (2.8)
1 1 ,
B=——0,4,+3, A, +— A, +ie[4,,4,].
Going over to the radial gauge
A,=0 (2.9)

and, assuming manifest rotational symmetry,

3yA0=08,4,=0, 3,E,=3,E,=3,B=0,  (2.10)

the above simplifies to
a,E,+lE,+ie[A¢,E¢]= —(2me’')($03)8(1) ,
r

[AO’Er]+[A¢nB]=0’ (2.11)

a,B _ie[Ao,E¢]=O >
where
E’.:‘-—aer, E¢:le[A0,A¢], B=a,A¢+%A¢.

(2.12)

If we renounce vorticity, 4,=0, the solution reduces to
the Coulomb form B=E,=0, E,<r~'. Instead, the
present paper focuses on that particular class of solutions
with 4,70 whose SU(2) form is
Ag=103a0(r), Ayz=30,a,(r) (2.13)

for some real functions ag,a o Denoting the radial
derivative by 3, =9, we find, from (2.12),

Er= _%03800 N
E,=—teo,azay , (2.14)
B=1lo, aad,-i-iad, ,
r
while (2.11) reduces to
82a0+%aao—ezaoai=2ﬂe’6(r) ,
) 1 (2.15)
aza¢+7aa¢—-7a¢+e2aéa¢=0 .
III. SOLVING FOR THE POTENTIALS
Let
ag(r)=e'u(r), az(r=ev(r), (e'e)=a. (3.1
Then Egs. (2.15) read
82u+%au—avlu=2'rr8(r), (3.2)
2 o 1 1 2
av-l--—av——;v +au‘v=0. (3.3)
r r

Although with v0 these equations could not be solved
in closed form, some features of the solution for r —0 and
r— oo can be stated analytically.

Equations (3.2) and (3.3) involve a!/?r rather than «
and r separately, and thus can be standardized, e.g., to
a—1, by a scale transformation. Later on in this paper,
however, we perform a scaling transformation that we
shall prefer to view as a strong-coupling limit, in order to
facilitate comparison with other models. Therefore we
choose to keep an adjustable a. We also note that the in-
dividual solutions of (3.2) and (3.3) do, of course, in gen-
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eral depend on a and r separately; the scaling symmetry
only implies an invariance group acting on the space of
solutions.

A. Small-distance behavior

Let us further restrict the solutions by assuming that
when r becomes sufficiently small, and for any given value
of a, the functions u,v approach some multiple of the
a=0 solutions. (In a classical model, this is as close as
we can come to the asymptotic freedom of quantum
chromodynamics.)

We introduce an iteration solution near » =0,

u= 3y u,, v= Y v,, (3.4
n=0 n=0

where v is assumed nonsingular at » =0. The zeroth-
order term is
r r
u =1n——, Vo — — (35)
0 a ° b
for some constants a,b; we take u, and v, as defining the
r—0 behavior of the solution; in this way, the higher
iterations include no arbitrary multiples of u, and v,. By
reinserting u,,v, into the interaction term we obtain the
next order:

4
uy=—— 2ln=—1],
32b a
s (3.6)
ar r r
=——|—8|ln— | +12In——7| .
T 81na 12na 7

For r small enough and any given a, this is an arbi-
trarily small relative correction to (3.5). (As is to be ex-
pected, we formally obtain a perturbation series in a.)

B. Large-distance behavior

The numerical illustrations shown further on indicate
that, for a,a,b in certain ranges, and as r — o, the func-
tion v has ever-tightening oscillations, and u has a leading
term linear in r. In the following, we show that this in-
formation is consistent with Egs. (3.2) and (3.3); we also
derive some exact statements on the r — o behavior of
this class of solutions; the approach is patterned after the
WKB method.

Let

v=w(r)sin (3.7

f’k(r)dr] R

where we assume k >0 and w nonoscillatory. Equation
(3.3) now reads

82w+%aw—%w+(au2—k2)w
r

sin [ f’k dr

+ - arkw?eos [ [Tkdr|=0.  (8)
rw

Requiring the cosine term to vanish identically, we have
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k=—>, (3.9)
rw
where ¢ > 0 is a constant; the sine term then gives
2 4 1 2 ¢’ 1 _
o‘w+—0dw+ |au— T 5 |[w=0. (3.10)
r rfw*

In (3.2) we make use of the tight asymptotic oscilla-
tions of v by using its local root mean square; according
to (3.7) we should set v>— Lw?2. Equation (3.2) now reads

82u+l8u—g~w2u =0. (3.11)
r 2

We can find an exact solution to the coupled equations

(3.10) and (3.11). Trying a linear form

u=pur (3.12)

for some constant u70, we have, from (3.11),
172
w=|2| 1. (3.13)
a r
Insertion in (3.10) gives
= 2lpl 3.14

c —‘u—‘/a ; (3.14)
from (3.9),

k:“TC’zv/?z]mr. (3.15)

In conclusion, we find a class of asymptotic behaviors
of the form

u=pur, (3.16)

12,
— sin(4Vaur?+3) .
;

V=

(3.17)

2
a

(Since the constant phase term & is unknown, there is no
loss of generality in the replacement |u|—p.) We note
that (3.12) is only a leading-term estimate, and that there-
fore 6 in (3.17) may be found to vary slowly with r in an
improved approximation. Such refinements will not
affect the strong-coupling considerations discussed fur-
ther on.

The numerical results do indeed yield solutions which
behave nearly as predicted by (3.16) and (3.17).

IV. SOME NUMERICAL EXAMPLES

The solutions are determined by the parameters a,b in
(3.5) and by a. Actually, we need to consider only two
parameters k, A, defined by the scaling transformation (in
terms of a new coordinate s)

r=bs, a=A/b% a=kb . 4.1)
Equations (3.2) and (3.3) now read
LI O I
352 + <3 ¥ Avu =276(s) , 4.2)
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1
a2 75 35 s 4.3)

v+Autv=0,

unchanged except for notation. However, the »r —0 con-
ditions are now

u=1ni Vg=s
0 PRI

(4.4)

instead of (3.5).

In Figs. 1-3, the functions u and v are plotted for three
illustrative sets of values of k and A. For reference, the
short-range potential u < 4° will be called “attractive,”
because we take it as the result of a perturbative quark-
antiquark interaction in an attractive state. By compar-
ison, we see that the (nonperturbative) long-range poten-
tial can be linearly attractive (Figs. 1 and 2) or linearly
repulsive (Fig. 3). There are also special loci in the kA
plane where the intermediate feature—a potential
damped to zero— prevails; this case is not studied here.

V. A STRONG-COUPLING LIMIT

The limiting case a— o is not necessarily unique.
Indeed, it is up to us to specify the behavior of a (a) and
b(a) during the limiting process.

45.0
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20.0
15.0
10.0

5.0

0.0

1.80 | b
1.60 | 1
1.40 | 1
1.20} .
1.00 } .
0.80 F 1
0.60 F 1
0.40 + b
0.20F
0.00 F
—o0.20}
—0.40} :
-0.60} .
—o0.80} CEE

i 1 I L L L L 1 L 1 i 1 L 1 1 1 I n I
0.00 1.00 2.00 3.00 4.00 500 600 7.00 8.00 9.00

FIG. 1. Computer plot of u and v vs s for k=A=1.
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One case is of special interest because of its simplicity
and because it may bear on the extension of the model to
three space dimensions: the limit a— « can be made
into a scaling process, as follows.

First we need a “‘physical” normalization criterion; for
that purpose we take the potential a,=e'u, see Eq. (3.1),
at some fixed distance » from the source. Thus we have

(5.1
(5.2)

e'u =fixed ,

r =fixed .

Next, noting that a and b have dimensions of length
while a has dimensions of (length) ~2, we choose the scal-
ing behavior
— 5 L=

a Ve b =

Ve (5.3)

(§,m fixed as a— ). Since the complete solution u,v is
entirely determined by (3.5) and by «, the result of a—
is to compress the horizontal scale of u and v when plot-
ted as functions of r. Hence the asymptotic behavior
(3.16) and (3.17) becomes the exact behavior everywhere
except in an ever-shrinking region around the source.
We see that

p=Vat (5.4)
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FIG. 2. uand v vs s for k=0.5, A=16.
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FIG. 3. uand v vs s for k=A=2.

(& fixed as @a— ). From (3.16) and (3.17) we find (every-
where except near the origin)

u=Vatr, (5.5)
1/2
_ ‘z
— 2
a

1 sin(tagr?+8) ; (5.6)
the a!/?r dependence of § is negligible compared to that
of the preceding term.

Now, according to (5.1) and (5.2), we have

e'Va=fixed (5.7)

as a— oo, or
e’=€a_1/2 (5.8)

(e fixed). Thus, the external source is “renormalized” to
an infinitesimal value; in the limit, it is completely “an-

tishielded” by the Yang-Mills field.
Turning to the tangential component v, Eq. (5.6), we

see that its amplitude approaches zero like a™'/%
perhaps more physically, we have
e'v~al. (5.9)

In addition, the wavelength of v approaches zero like a ™!

as well. We reach a paradoxical situation where only u
survives (as a linearly rising potential) and v disappears,
whereas we recall that the conventional calculation with
v =0 yields a Coulomb-type (logarithmic) result for u.

Finally, we examine the fields. In the a— « limit we
have, from Egs. (2.14),

Er=_%6§03 5

E,=— T/%egazsin(%aé‘rzwLS) , (5.10)

1
B= Viega,cos( lagri+8) .

Thus, E, is finite and constant. On the other hand, E P
and B oscillate everywhere with infinitesimal wavelength
and have a finite constant amplitude. The force exerted
by E; and B on a test quark of fixed charge vanishes for
a— o if that quark is of nonzero size, no matter how
small. Their force on a point quark is “bumpy,” but, at
least in classical mechanics, it becomes unobservable as
a— .

VI. CONCLUSION

The (2+1)-dimensional static Yang-Mills equation
with partial vorticity offers some nontrivial nonlinear
mathematics whose possible relevance to the (3+1)-
dimensional case arises from a strong-coupling limit. In
that limit, the tangential features disappear, but leave a
permanent dimensional-reduction effect on the radial
features. The potential rises or falls linearly instead of
logarithmically. Thus, in the rising case, we are led to ex-
pect a good (rather than marginal) quark-antiquark
confinement mechanism. The disappearance of tangen-
tial features is essential if a manifestly spherically sym-
metric confining classical gluon field is ever to be contem-
plated in three space dimensions, since only radial vectors
would be allowed.

An additional characteristic of the present study is the
renormalization of the source to an infinitesimal value in
the strong-coupling limit.
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