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Gauge transformations for dynamical systems with first- and second-class constraints
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Gauge theories with second-class constraints are investigated. The relation between primary
first-class constraints and gauge degrees of freedom is shown. Next, a method to obtain the genera-
tor of the gauge transformation is presented. The generator is expressed in terms of a linear com-
bination of constraints. In the expression, all constraints are employed without distinguishing the
first- from the second-class ones. The generator consists of the generator of the pure gauge transfor-
mation and that of global symmetry transformations with constant parameters. The method to con-
struct the generator can be applied to a system having only second-class constraints, and extended
Noether currents (generators) with constant parameters are obtained. If the first-class constraints
and the Hamiltonian are in involution, the generator of pure gauge transformations can be obtained
using only the first-class constraints.

I. INTRODUCTION

Recently gauge theories containing second-class con-
straints have been acquiring importance. In the investi-
gation of such theories, the main problems would be (i) to
establish a method of a covariant separation of first-class
constraints (FCC's) from second-class constraints (SCC's)
in order to perform covariant quantization' and (ii) to
make clear the relation between the FCC's and gauge de-
grees of freedom, and to give a procedure to obtain the
generator of the gauge transformation.

In this paper, the second problem will be considered as
an extension of our previous works. ' In Sec. II we will
split up constraints into FCC's and SCC's, and obtain a
total Hamiltonian, using the stationarity condition of the
SCC.

In Sec. III we will present a method to construct the
generator of the infinitesimal gauge transformation which
makes an action quasi-invariant. In the construction, all
constraints are employed without distinguishing the
FCC's from SCC's. The generator consists of the genera-
tor of the pure gauge transformation and that of the
transformation with constant parameters corresponding
to global symmetries. This method can be applied to a
system with SCC s alone, if it has a nontrivial solution.
The generator is an extended Noether charge (or current)
with constant parameters. In Sec. IV a few typical exam-
ples will be given for illustration. Section V will be devot-
ed to remarks.

is assumed to be of rank X—A. Then there exist A pri-
mary constraints,

P,(q,p, t)=0 (a= 1, . . . , 2 ), (2.2)

with p, =t3L/t)q', where the symbol = means a weak
equality. The total Hamiltonian is given by

Hr=Ho(q, p, t)+v P (2.3)

where U is a multiplier and Ho is a canonical Hamiltoni-
an. ' The summation convention is used for dummy in-
dices. The stationarity conditions of P,

+ I ttt, Hr ) =0, (2.4)

constraints

FCC: tP, (a =1, . . . , A },
SCC: e, (s=l, . . . , S)

with A +5= A+M. Here all 4, and 6, are assumed to
be independent. By definition we have

yield successively secondary gp
(}M

= 1, . . . , M).
Let us first observe the relation between the number of

FCC's and gauge degrees of freedom. To do this, we
rearrange all the constraints (P,y„) by making linear
combinations of them, so as to make the number of
FCC's maximal. Let us denote the redefined constraints
by

II. SEPARATION OF FIRST-CLASS CONSTRAINTS
t 4„4b I =0, I trt„eb I =0 . (2.5)

In order to avoid redundant complexity, we consider
the point mechanics described by a Lagrangian L (q, q, t )

with N variables q' (i =1, . . . , N). The Hessian matrix

(2.1)

The number S is given by the rank of the
( A +M }X ( A +Af) matrix

Itt. NpI Ik. X, I

Ix„bpI Ix„x.I
on the constraint surface P =y„=0.
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Now, in the following consideration, it is convenient to
distinguish independent FCC's and SCC's containing the
primary constraints P from others among (4„8,); cor-
responding to P, we express them as [cf. example (i) in

Sec. IV]

Fcc: 4, ,4b, scc: 8,

Thus from (2.7), (2.11), and (2.14), we obtain

H~=H*+v '4,

with

a*=a,+e'„(c"'8,—c" x."4, ) .
I

(2.15)

(2.16)

(a)=1, . . . , A), 6]lyly ~ ~ sB]

st=1, . . . , Si, Hi+8, +S,=A),

H* is a definite function of q and p.
From the definition of H*, (2.9), and (2.12), it follows

that

where

0) Q)kit

ae,je„a'j+ ' =O (s =I, . . . , S) .

(2.6a)
The stationarity condition of 4, using Hz leads to

(2. 17)

4, =K; y.+v„e, , (2.6b)

(2.6c)

ac,
f@,,H'j+ =0 (a =1, . . . , A) . (2.18)

(without loss of generality we can choose K,
' =5; ). In

(2.6), 4, is a linear combination of P alone, while 4& a
l 1

linear combination of primary SCC's P and secondary
SCC's 8, . Hz of (2.3) can be rewritten as

b) S)The coemcients v
' and v

' of e, are determined by the
stationarity conditions of 8, . We notice that in (2.7) only

Ho and P are involved in substance.
Using (2.7), we obtain the stationarity condition for 8, :

' + je„a,j+(u"s," —u" x", )[e„e„j=o .

(2.8)

j@„arj = [4„H"j, je„ar j = [8„H'j, (2.19)

the constraint set defined by using H* is equivalent to the
one defined by using Hz of (2.15).

III. GENERATOR OF GAUGE TRANSFORMATION

In this section, we propose a method to construct the
generator G of the infinitesimal gauge transformation
leaving the action

5= dt L q, q, t (3.1)

Then v
' remains to be arbitrary and is associated with a

gauge degree of freedom. The similar analysis was made
by Mukunda.

Since

Since a11 8, are independent, the matrix

c„,—= je„,e, j
= —c,„

is regular and hence its inverse exists:

Cst gt
PS I'

Multiplying (2.8) by C", we obtain

C"'8'+u '5" —u 'A. " =0S b

S s) b)

where

ae,e,'—= '+[8„a,j .

Equation (2.11) turns out to be, for res„
C"8' =v 'k"b

s bl

(2.9)

(2.10)

(2.1 1)

(2.12)

(2.13)

quasi-invariant. G for special Lagrangians was first ob-
tained by Anderson and Bergmann. For the dynamical
system having FCC's alone, 6 can be given by a linear
combination of the FCC's (Refs. 3, 4, 8, and 9). For the
system containing FCC's and SCC's, we can also analo-
gously construct G, though the method is rather compli-
cated. In such a case, G turns out in general to be a
linear combination of the FCC's and SCC's.

As seen from the derivation of (2.15) and (2.16), we can
accomplish the algorithm of the stationarity conditions of

and y„using Hr of (2.3), without distinguishing FCC
from SCC, and can decide v corresponding to v ' and

v '. Consequently we will find the function associated
with arbitrary v' to be the FCC.

Now, for systematic considerations in the following, it
is convenient to redefine the constraints recurrently,
starting from the primary constraint P =—P' as

bl
then v

' is determined to be a definite function of q and p.
The number of r (Ws, ) can be larger than 8, , so that it
happens that (2.13}gives overdeterminant conditions for

bl
v . In such a case, there is no consistent solution to the
dynamical system. We consider here the case where

(2.13) has a solution for u . Hence we can put
bl

bl bl
u '=k 'C '8,' (crAs, ) . (2.14)

jK ~ + jyK Hej CP yk
ay.

(3.3)

where P" (k ~2) are secondary constraints y„. (In gen-

k+i + jP",a~
j (a=i, . . . , A, k =I, . . . , K —1)

t

(3.2}

and
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eral, E depends on a, but we omit it for the sake of sim-

plicity. The generalization to an a-dependent case is
easy. }

The definition (3.2) of the constraint series gives rise to
no problem, provided that all P" are functionally in-

dependent, since the constraints are arbitrary within their
linear combinations. In the particular case, however, for
example,

j r —1 yr (qr)2

we should notice. In such a case, we usually put P", =0.
It is sufficient with the constraint set
[QI, . . . , p", ', 1(",, p", +'=gt, . . . j to determine the con-
strained phase space. But we require here (lt", ) =0 as the
constraint by (3.2). Then there appear dependent con-
straints. In fact, the matrix

0

0
1+1 r

r r+1

vanishes on the surface constrained by 1(",=0. This
means that the constraint set [ Pf j contains functionally
dependent constraints on the basis of the set

[PI, . . . , g", , g", +', . . . j. Nevertheless, we define the con-
straint series by (3.2), since the set [P j is necessary to
construct the generator for the full transformation relat-
ed to the constraints that makes the action (3.1) quasi-
invariant. In other words, the generator producing the
full transformation is not expressed in terms of a linear
combination of only the constraints [p', . . . , l(", . . . j
[see example (iii) in Sec. IVj. The consideration in Ref. 4
suggests that the generator of the infinitesimal gauge
transformation also can be expressed in terms of all con-
straints P". Then we put

The proof of (3.6) is as follows. By using the
infinitesimal transformation

5q'= [q', G j, 5q '= —[q', G j, (3.7)

we obtain

'6L = . 5q'+p;5q 'dL

Bq

In order to evaluate the right-hand side (RHS) of 5L,
we introduce the Hamiltonian

G=gkp" (a=i, . . . , A, k=1, . . . , K), (3.4) H=piq (3.8)

where gk is an undetermined multiplier. 6 must satisfy
the stationarity condition

In the Dirac formalism, all p; are regarded as indepen-
dent variables, before taking the Poisson brackets. Then
it holds that

G= +[6,Hz. j
—=0 mod(P') . (3.5) BH BL BHq'=

~p, Bq' Bq'
(3.9)

This condition splits into the following ones:

aG +[G,H*j—:0 mod(P ),

[G,g, j—:0 mod(P ) (a=1, . . . , A&),

u', [G,g, j—:0 mod(P ) (s=1, . . . , 8, +S, ),
and

(3.6a)

(3.6b)

(3.6c) 5L =—(p;5q' G)+ + [G,H j
d; — BG
dt

(3.10)

Here it should be noticed that (3.9) does not hold for
Hr=H' +uP„bec uase v', has been fixed to a definite
function adjusting to the stationarity condition of the
constraint. Owing to (3.9},5L turns out to be

q'[G, P, j
—= mod(P ),=d

di
(3.6d)

H of (3.8) is rewritten as'

H=H +qoP (a=1, . . . , A ) (3.11)

where P, and P, are the primary FCC and SCC, respec-
tively, and P denote all primary constraints. v', is the
multiplier fixed by the stationarity condition of the con-
straint; that is,

H*=HO+v', P, .

with the form

where p, (r = 1, . . . , N —A ) denotes independent
momentum.
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On the other hand, we have

HT =Ho+ v P =H*+u'P, .

Then (3.11) becomes

H=H'+(q ' —u'„)P, +v'P, .

(3.12)

(3.13)

In (3.13) q
' has been absorbed into u', as v' associated

with the FCC P, is arbitrary. Using (3.13), we obtain

tion leaving the action (3.1) quasi-invariant, it is essential
that all primary constraints P identically vanishes in ve-
locity phase space (q, q ), and q has an additive ambiguity
u Bp /Bp; (u being arbitrary) in phase space, 4 s so that
H' reproduces the Lagrangian L same with the one for
HT. It should be noticed that if the last term U 'A,

& e, in
I

(2.7) is omitted, HT is not equivalent to the original L,
since the secondary constraints are added to Ho through

+jG,Hj= + fG,H'j+('' —u', )[G,p, j

+u'jG, P, j mod(P ) . (3.14)

If (3.14) reduces to a form dfldt under mod(P ), Eq.
(3.10) turns out to be in velocity phase space (where

—:0)

IV. SIMPLE EXAMPLES

L =q 'q' —
q 'q ' —(q' —q')q' . (4. 1)

For the illustration of our formulation, we present
three typical examples.

(i) Let us take the Lagrangian

'6L =—
p,

—G+fd BG
dt '

Bp,
(3.15) The primary constraints are

In (3.14), as all constraints satisfy the stationarity con-
ditions (2.17) and (2.18); hence there exists a solution of G
to (3.6a). Since u' is arbitrary, (3.6b) should hold. No q'
appears in P„u'„, and G, then (3.6c) and (3.6d) are re-
quired. We note that (3.6b) and (3.6c) are necessary con-
ditions for the Hamilton vector field for 6 to be
transformed into velocity phase space. Q.E.D.

Equations (3.6a) —(3.6d) decide gk, except for arbitrary
gauge functions. From (3.2) —(3.4) and (3.6a), it follows
that

A=&»+q'

and the total Hamiltonian is given by

HT=(q' —
q )q'+u P

The stationarity conditions of constraints yield

P, = —
q

—2u =0, P~=q +2u'=0,

03= —q'+q'=—Xi

and

(4.2)

(4.3)

'gk )+ 9 k+ qKcpk 0 (k =2, . . . , E)

where

a

ik= ~, +[4 H*j .

(3.16)

(3.17)

U +U =0.1 2

Hence

3
2 9'

(4.4)

The solution G to (3.6) has A
&

arbitrary gauge func-
tions associated with the gauge degrees of freedom and
8, +S, (= A —A, ) constant parameters (see examples in
Sec. IV).

Even for a system containing no FCC, but only SCC's
if (3.6) has a nontrivial solution (GWO), G gives a genera-
tor with constant parameters, corresponding to global
symmetries.

Hence, in general we have

From (4.3) and (4.4), we obtain

with
3

(~ i+u~ q'+q')—
2

and the rearranged constraint set

(4.5)

(4.6)

where N is the extended Noether charge (the generator)
with constant parameters.

If H* and the FCC's 4, defined in Sec. II are in invo-
lution, that is,

@ =0 +0 +2I =pi+pe q +q

e, =y, =p, —q',
ez=X]= 0 +9'

These constraints (4.7) satisfy

(4.7)

ae.
j 4„4g j

=C,'q 4„j4„H' j + =a.,4~,at
(3.18)

the generator 6 of the pure gauge transformation can be
expressed in terms of only 4, (Refs. 4 and 9). [The Pois-
son brackets among FCC's are also FC, but there is the
possibility of the appearance of quadratic or higher-order
product terms of SCC's in the RHS of (3.18).]

In the proof that G is the generator of the transforma-

j@,, H* j
=

—,'4, , j4, ,H" j =0,
[e„H*j=0, je„H*j=0, (4.8)

G =e'4)+ —'e 4] .
2

(4.9)

where H*= —
q 4, /2.

4&, 4&, and H* are in involution; hence the generator
of the pure gauge transformation is put as
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The substitutions of (4.9) into (3.6a) and (3.6b) lead to

~l ~2

and by putting e(t)=e, which is an arbitrary
infinitesimal function of t,

sociated with the two primary SCC's.
- G generates the transformation

E6q'=5q = —+c, , 6q = —i
2

and produces

(4.18)

G = —a+I+ —41 2 1

The gauge transformation is given by

(4.10}
5L =—=d

dt
dF

2
—+c, (q —

q )
dt

(4.19)

5q= —, 5q= —, 5q= e, — On the other hand, (3.15) gives

by which we obtain Pi
G —G+f=F . (4.20)

5L =——(q' —
q )

dt 2
(4.11)

Another method to take into account all constraints
P =P' and y] =]I]3 is as follows. Here we obtain

H=p, q
' L=(q—' —q )q +q

Since the term c2y, has no role, we may put c2 =0. Note
that without the f term in (4.20), Eq. (4.19) is not con-
sistent with (4.20).

As seen from (4. 10), the system has one gauge degree of
freedom associated with 4] (but not with 4]).

(ii) An example of a system containing SCC's alone is
given by

=H'+u ])I&3+(q
' —v', )P, (s =1,2} L =(q '+q ')q'+-,'(q ')' —

—,'(q')' . (4.21)

and following (3.4) put

(4.12)
From this L, it follows that

G =7)I(p] —
q )+r),(p&+q')+ri]p3+riz( —q'+q ) . Hr= —,'(p3) + ,'(q ) +—v'(p]—q )+v (pq

—
q ) (4.22)

From (3.6a), (4.12), and (4.13), it follows that

(4.13) and SCC's are

(4.23)
92 91 (4.14a) ]))]—:X]= p3 42 —=Xz= p3

and, from (3.6c), H' turns out to be (v,' =u, =0)

H'= —'(p ) + —,'(q )

Putting

G =rikp" (a, k =1,2),
we obtain, from (3.6a),

+i2=0, g', +g', =0,

(4.14b)I2=e(t) .

Equation (3.6b) is automatically satisfied. With the help
of (3.14b), (3.6d) gives

(q
' —

q ')(2r)I —rt2]) = (4.14c)

Equation (4.14c) has two solutions;

(a) 2riI =riz= arbitrary function,

(b) ri] and r)z. constant parameters,

(4.15a)

with

f=(2nI —n2)(q' —q'} .

(4.15b)
where r) z

=
I rb,H'I +Bri2/Bt and, from (3.6d},

( I 92&4']II] 92+ I 92&01)42 l2)

(4.24)

(4.25)

(4.26)

Combining (4.14a) and (4.14b) and (4.15a) and (4.15b) we
find

+q'(In2 42)41 92+ j l2 42I02 292)

G=G+X,
where G is given by (4.10) with

(4.16)

A solution to (4.26) and (4.27) is

mod(P' ) . (4.27)
d
dt

and

rII=r), =
—,]g2= —,]e(t), g, = e(t}—

N—:c](y]+$2) +c2y] (4.17)

v/2=a PI+6 Pz+c (a=1,2),
a — ay2 b ay2

f= —(c'+c )q' —(c'+2c )q

(4.28)

(4.29)

where cl =pl =pl and c2 =gz are constant parameters as- with constants a, b, and c .
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Thus we 6nd

G = 7)( p',—p, +p2p, }+c 'p, +c p2

=n((p p—}p»+(p q—'}q''t cp— c—'q'

Putting

G =2), {(1'+2)'1tt
(4.30)

we obtain, from (3.6a),

5q'=rt(p3+q )=2)(q +q ),
5q'= —W2= —W

'

5q =2)(p, —p2) —c= —c,

(4.31)

due to p, —
p2 =

QI
—

pz =—0 in velocity phase space, and

5L =—[riq q' —c(q'+q')],—d
dt

and f= —c(q'+q )
—c'q, where g=b' —a, c =c'

+c, and c =c'. The transformation generated by 6 is

q&q +2g&q ' —g 2=0,
from (3.6b), ( 2)z,p, I

=0, hence,

an' =
Bq

and, from (3.6d),

q', q'+" = -'.
aq

hence

(4.42a)

(4.42b)

L =a q
—q'(q )

with a (a = 1,2) being constant. Then we have

{().'=p. —a.

(4.33)

(4.34)

which is confirmed by (3.15). In the above, the c' term
has no role in velocity phase space, then it may be omit-
ted.

Here we notice that the a and b terms in gI, are
linear in the constraints; in other words, the correspond-
ing terms are the quadratic form of the constraints in G.
Taking into account higher products of the constraints,
we can obtain wider transformations. Since such higher-
order products strongly vanish on the constraint surface,
the essential part of G is c P, where c is associated with
the primary SCC 1' . The 2) term in (4.30) is an apparent
one.

(iii) An example containing a quadratic form of SCC:

n2=g(q'» f=q'g(q'» (4.42c)

where g is an arbitrary function of q . Then, in (4.42a),

q,'= Iq,', H'] =0.
The solution to (4.42a) is

rt', =e(t)q', 2), = ,'E(t)q——
where e(t) being arbitrary. Thus G is given by

G = eq '(p, —a, )
—

—,'eq (p2 —a2 )+q g(q )

and

(4.43)

(4.44)

f=q g(q ) .

As pointed out in example (ii), though it does not yield
substantial change, if we allow a solution of g& compris-
ing the constraint P, Eqs. (4.43) and (4.44) turn out to be

and

HT=q'(q ) +v P' . (4.35)

rt,'=e'(t)q '+e (t)q

e'(t) 2 e (t) (q ) (4.45)

The stationarity condition yields

1 — (q2)2 P 1: 2q 1q2 (4.36}

In the ordinary method, the secondary constraint is put
as

( 2)2
G =(e'q'+6 q )1))I

——E'q +E
1 f2+q g(q )

ql

case(1) P=q (4.37) (4.46}

whereas in our method using (3.2), the secondary ones are with

case(2) $1=—(q ), Pz= —2q'q (4.38) f =q'g(q'»

P' =p —a (a=1,2), g=q

where pz and l( are SC and pI is FC. H' is given by

H'=q'(q )

(4.39)

(4.40)

A'e will show case (2) to be favorable in construction of
G.

In case (1), the constraint set is

where e'(t) and e (t) are arbitrary.
In case (1), G of (4.44) is regarded as a reasonable solu-

tion, since the FCC is only 1I)1 which gives a gauge degree
of freedom. Furthermore, it should be noticed that in
both expressions of G (4.44) and (4.46), there is no X term
with constant parameter associated with the SCC's 1I)z

and P.
On the other hand, in case (2), the constraints are

and

v'=v(t), v„=0 . (4.41)

P' =p —a (a=1,2),
2(q2)2 $22q 1q2

(4.47)
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The stationarity condition yields

P, = —2U q2=0, Pz= —2(U'q +U q')=0,
from which we obtain

u =u (t)q (not suinmed),

where u (t) is arbitrary, and then

j 2 —2g 2/2 j 2 —
( g 1+g 2)y2

(4.48)

(4.49)

(4.50)

, an', an' .2n2+ q +2 q qqaq' aq'

an2—
q 2n2+ q q

aq

2
an22

2 1 2= d.f+2 i)z+ q q' q = " . (4.58)
aq

[The simplest choice is U =0 in (4.48). For this case, we
also arrive at the same G, as seen below. ]

For the choice (4.49), we have

HT=q'(q ) +u q (p —a )

with H*=q'(q ) . Hence by putting

4~=q P' (not summed)

(4.51)

(4.52)

all constraints 4' and P (a=1,2) turn out to be FCC's,
and we have two gauge degrees of freedom.

Here put

G —~ay)1 +~ay2 (4.53)

(or G=rikg"). From (3.6), (4.51), and (4.53), it follows
that

q, q +rI z
=0 (not summed), (4.54a)

2 5» z2n2+
&

q +
aq'

1
an2 22n2+ q
aq

~'9z

,
q'=0, (4.54b)

aq'

an'
q +2 i)z+ q q'=0 . (4 54c)

aq

Equations (4.54) have the solution

rzi=e'(t)q'+e (t)q

e'(t) 2 e'(t) (q')'
1

(4.55)

which leads to

1 62
riIq'= e'q' —e=q', —rlfq''= q'+ (q')' . (4.56}

Finally we obtain G of (4.46},but with g =f =0, which is
irrelevant to the transformation (though being relevant to
giving 5p; and to the transformation leaving the Hamil-
ton equations of motion invariant). We notice that the
constraint is not q, but q 'q and (q ) in case (2), in con-
trast with case (1). Under the gauge transformation pro-
duced by 6, we find

The solution to (4.58) is

ri,'=e'(t}q'+e (t), +( ')' ( )

q' q'
e'(&) 2 e'(&) (q')'

q

(4.59)

which gives (4.46).
In case (2), there are the two series of FCC's 4' and P

(a=1,2), but no SCC. Since G of (4.46) (comprising no
N} gives two gauge transformations, case (2) for the
choice of the constraints is logically more reasonable
than case (1). Thus the definition (3.2) for the constraint
series would be preferable

V. REMARKS AND COMMENTS

leaves its action invariant, so the inverse theorem is true.
For a regular Lagrangian system (with no constraint),
any constant of motion N trivially satisfies the condition
(3.6), so that the inverse of the Noether theorem holds.
For a singular Lagrangian system, however, a constant of
motion does not satisfy (3.6), if it is conserved under
secondary constraints.

In this paper, we have assumed all 4, and e, to be in-
dependent except for the special case such as example
(iii). If this is not the case, our formulation should be
modified according to the method of Dresse et al.

Now suppose all FCC's 4, and H* are in involution
(3.18). Then as proposed by Fradkin and Vilkovisky, "
the action

S=J dt(p, q' H* —
A, '4. , ) (a—=1, . . . , A), (5.1}

where the summation of 4, runs over all FCC's, is
quasi-invariant under the extended gauge transformation

Owing to the consequence of Sec. III, the inverse of the
Noether theorem can be formulated as follows. If the
conserved quantity N(q, p, t) satisfies (3.5) or (3.6) in place
of 6, the transformation generated by N,

5q'= I q', N I, 5q '= —5q',~ =d

d d BG5L=—(a 5q )=—p —G
dt dt ap

{4.57) 5q'=P(t)Iq', N, j, 5p;=r'(t)Ip;, +, I

with the change of A,
' by

(5.2)

Now choosing the simplest solution U, =0 in place of
(4.49), we have

a ~a Ca gbSd+K 7b
bd b (5.3)

H, =H*,
and instead of (4.54b) and (4.54c},due to (3.6d),

(r' being an independent arbitrary function). Canonical
equations also are invariant for this extended transforma-
tion.
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