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Zamolodchikov's C function for the multiflavored Schwinger model
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We carry out a path-integral evaluation of the correlation functions of the energy-momentum ten-
sor in the N flavor-ed Schwinger model using point-splitting regularization. The C function is ob-
tained and found to decrease from N to N —1 along a renormalization-group trajectory as expected.

I. INTRODUCTION

Recently, Zamolodchikov devised a C function C(g) of
coupling constants such that the function is monotonical-
ly decreasing along a renormalization-group (RG) trajec-
tory and, at a fixed point, equals the central charge of a
certain conformal field theory. Since the central charge
characterizes a conformal field theory to a certain extent,
the C function becomes a natural tool to study the rela-
tions among different conformal field theories. When two
or more fixed points are close to one another, a reliable
perturbative calculation of the C function can be per-
formed so that useful information can be obtained on the
corresponding theory. Such perturbative approaches
have been discussed by several authors. ' One of the
most interesting recent developments is the finding of
perturbations which leave the system integrable. A non-
conformal integrable field theory can thus be constructed.
In this respect, it is useful to have examples at our hand
in which the evolution of the C function along a RG tra-
jectory can be exactly solved. In this work, we present
the calculation of the C function in the N-flavored
Schwinger model which is perhaps the most widely inves-
tigated integrable system. We choose not to use the
Abelian or non-Abelian bosonization methods because
we would like to see how point-splitting methods work in
calculating correlation functions of the energy-
momentum tensor. As far as we know, this has not been
attempted before. Direct calculation also provides us
with information on how the various fundamental fields
contribute to the correlation functions of the energy-
momentum tensor which may not be easy to disentangle
in the bosonization approach.

The Schwinger model is solvable since the exact fer-
mionic propagator in the external field is known. In Sec.
II we review briefly the path-integral evaluation of corre-
lation functions of gauge-invariant quantities in the
Schwinger model. In Sec. III we apply the result-of Sec.
II to the calculation of two-point functions of the
energy-momentum tensor. The C function is obtained
from this calculation. Extension to the N-flavored case is
quite straightforward in the present approach. %'e
present the results in Sec. IV. In Sec. V we summarize
and discuss our results.

II. PATH-INTEGRAL COMPUTATION
OF THE CORRELATION FUNCTIONS

Z(J, rl, ri)= f [dA][dpi][dp]

X exp
—S + fd x ( A „J4+rig+ tttrl)

where

S= x — i +e + 'F„„FI'"

The exact propagator G (x,y) satisfying

(i8+eA )G(x,y)= —5(x —y)

is given by

G(x,y)=e' &'"' &'~')S(x —y)

where

(3)

(4)

P(x) =e
2

8 A (x), S(x y) =i 8D (x ——y),1

t) D( x)=5( x).

Carrying out the fermionic path integration, we obtain

Z(J, rl, ri)= f [dA]exp(rlGrl ,' A„b, —'e—""A„+J„A"),

where

e2—t) + h(x —y) =6(x —y),

a~a
~ fLV —

g fLV

82

Let us briefly review the method of computing correla-
tion functions of gauge-invariant quantities. We follow
the notation of Ref. 8. The generating functional is
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and all the integral signs are suppressed.
The basic gauge-invariant quantities are the gauge Geld

F„„and the string g(x
&
)I exp( —ie j„'A„dx")g(xz)

where I can be 1, y5, y„, or y„y5. To calculate the
Green's function involving F„,we only have to intro-

I

duce source currents J„ for F„,j.e., replace the source
current J" in Eqs. (1) and (6) by a„(J" —J'") where the

source current J" couples to F„.As to the calculation

of the Green's function involving strings, we illustrate the
method by computing

"2 3'2

IVe (x ~, x lip ~,pe ( = d(x, )yeexp —(e i X edx ddxe (d'(p, )y exp —(e A dxe d(ye ))
l y IJ

Using Eqs. (4)—(7), we get

8'„(x,, xz,y„yz)

=[[trS(xz —x )r ][trS(yz —y )r ]
—[trS (xz —y i )rQ (yz —x

& )r„]) e

where

~(x'( xz yj yz) zJp~e J zJp~J

X2

J (z)= ie —f W (z x)dx "—+ f W„(z —y)dy"
1

and 'T„ is the kernel

a„(a„ia„r5
)—

(z —x)= z x
JMV a2

(9)

(10)

I

similarly for r~5. The dot inside the trace.in Eq. (9) indi-
cates the position where such terms are to be inserted.
For the second term in 8'„where only one trace is in-
volved, the superscripts in y5 can be ignored.

It is easy to see how to generalize Eqs. (9) and (10) to
the case when an arbitrary number of vector or axial-
vector strings are involved. If in addition, there are sca-
lar and pseudoscalar strings in the correlation functions
we want to calculate, then additional terms besides T„„
will appear in j„. Evaluating the exponential factor in

Eq. (9), we obtain

X2 X2
X(x„xz',y»yz) = — f dx'f dx'W„"b(x —x')

I I

f dx'f dy Pgb, (x —y)
1

+(x~y),

a"7„„=0. (12)

The superscript x in r, in Eq. (11) indicates that the r5
is to be inserted in the trace involving S(xz —x&) and

I

where e„„=a„a„/a, a„=e„a . Note that j„ is con-
served. Indeed,

where

(a„—i a„r",)(a„—ia„r, )

Idp az
(14)

As another example, let us compute the Green's function

X 2

~(x&,xz', y~, yz)= g(x, )r„exp ie A dx" p—(xz)F~ (y&)F&(yz)
l

We have

U„,&= —[trS(xz —x, )r„]g „e5J" (y, ) 5J ~(yz) J=O
(16)

where
XgX'=

—,'j„'bj'", j„'(z)= ie f W—(z x)dx +a"(—J,,
—J„).

Xl

Carrying out the functional differentiation in (16), we obtain

(17)

where j„and X(x &,xz ) are the same as given in Eq. (10)
but with all the terms involving y „y2 suppressed.

Now we are ready to compute the two-point function
of the energy-momentum tensor.

III. TWO-POINT FUNCTION
OF THE ENERGY-MOMENTUM TENSOR

The energy-momentum tensor r„ is

U &= —[trS(x, —x, )r ][—a'b(y, —y, )g &+g (j a&h j&a b, )(y, )(—j,a b, —j azb, )(y, )]e (18)

I

where D„=B„—I'.e A„, D„=B„+ieA„.
We regularize T„by point splitting. Hence, to com-

pute the fermionic part of the correlation function, we
have only to differentiate 8'„with respect to x and y
and then take the limit x2~x, ,y2~y, , averaging over
all directions. Explicitly, let

T„=-,'g„vF& F —Fz„F 7'„.= [P~r„D.+ rA—„)4 4(D.r, +D„r—.)4]

+ [4(r„D.+—r P„W 4(D.r„+—D„r.)0]

(19) then we have
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P~Q
+(p~v)+ (a~P)+

where on the right-hand side, we put

(20)

&2 =&&+& y2 =y&+'9

and average e, g over all directions.
Similarly, we have

(21)

& f'„„(x)f' p(y) &
= — (a".' —a"„')(a", —a", )~„. & &„„( )F (y, )F (y, ) &

=—[(&„'—&„')U„+(p )] .

(22}

From this, we can easily obtain & f'„(x)T /t(y) &, where
T p

——g pF~ F —F~Fp
To facilitate the point-splitting procedure, we need to

expand X in powers of C=x2 x& and g=y2 —
y& to

fourth order. Since X is path dependent, we shall choose
the straight paths x =x, +te, y =y, +t'y with
0~ t, t'& 1. Choosing straight paths and averaging over
all directions is the conventional prescription for point
splitting. With this convention, we obtain

X(x, ,x„y„y,)= — f dt f dt'[e's P'~h((t t')e}—+r/'r/ PP~A((t —t')q)]

e —f dt f dt'e'r/ Pgh(x, —
y& +te t'r/)—

so that, to fourth order in e and g,
2

X= [5 E Pgk(0)+YJ r/ Pgk(0)+2E' r/ Pgb, (x, —y, )+s Er/ r) P,"f'h(x, —y, ) e'r/ r/ 8—Pgh(x, —y, )

+ EEET—d„r').P','',"~(0)+ ,', r/"r/ r/—r/'r)„r)PP~(O)

+—,'e"e e'g B„B Pgh(x, —
y~ )+—,'r/"r/ e'r/ B„B P,"fh(x, —y, ) EY/ E '—

g —B„B Pgb, (x, —y&)] .

It is now straightforward to obtain, from Eqs. (9), (18), (20), and (22),

& ~„„(x)~/t(y)&= ,'(D„„D t—t —DD
&

—
D„„//D +—D D +perm)

+ ,'e2[(D D —D„D )(H,
&
—H„/t) (D„—D +D—D )(H &+H &)+perm)

e4

(23)

(24)

(25)

& f'„„(x)F~,F/t(y) &
= — (6 6„—b,„b,„)g p, (26)

where

D„,=a„a~(x —y), D„=e„.a D(x —y),

H„„= " "h(x —y), etc. ,

(27)

and "perm" means JM~v, a~p, and both p~v and a~p.
From (26},we get

(a)

2

& 1'„(x)T /t(y) &
= (b„b,„—b,„b,„)g /t .

We also have

& T~„(x)T /t(y) &
=

—,'(8'4)'g„„g ~ .

(28)

(29)

The three lines in Eq. (25) correspond to the contribu-
tions from Feynman diagrams of the type Figs. 1(a), 1(b),
and 1(c), respectively, while Figs. 2 and 3 represent the
Feynman diagrams that contribute to (28) and (29), re-
spectively.

The correlation function of the energy-momentum ten-
sor & T„„(x}Ttt(y) & is obtained from (25), (28), and (29)
by

FIG. 1. Representative Feynman diagrams contributing to
the correlation function ( }/'„,(x}f' ~(y}}.
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FIG. 2. Representative Feynman diagram contributing to the
correlation function ( f'„„(x}T)&(y }). FIG. 3. Representative Feynman diagram contributing to the

correlation function ( T„„(x)Ts(y) ).

( T (x)T (y) ) = ( f' (x)f' (y) ) + ( p (x)Ts&(y) ) Using this relation, we can choose f4 =0. Energy
momentum conservation requires the following+(

I ~ x)~~p(y))+ ~~ x T~&(y)) ' differential relations to hold:

(30)

5

x (T&„(x)T &(0)) = g f, (e, )„,p,
a=1

(31)

where f„a=1, . . . , 5, are functions of r=lnv (x/R)
and

Using rotational invariance, the two-point function of the
energy-momentum tensor can be written as

f I +f3 =4fi+3f»
fl =4fz —f3

f3+f5 =3(2f3+f5 },

(34)

(35)

(36)

x'(e(x)e(0) ) =4(f, +f,+f, )+f,

where a prime means differentiating with respect to v..
Let e=g„„T"', then we have from Eqs. (31) and

(34)—(36) that

1pvaP pv~a13~ 2pvaP ~pa~vP ~pPva

XaXp X~Xv
31 vaP=NI v 2 +aP

X X
(32)

X Xv P 1
e4»ay=a„a 2 +p«m, e»va&= 4X„XvXaXZ .

X X

(f 1 +f2+ f3+ 'f5 }'

The C function is defined by'

C = —6m (f &
+fz + f3+ f5 )——

(37)

(38)

2e]+e4 =e2+2e3 (33)

In two dimensions, e, 's are not independent. We have
the identity

Rewriting Eqs. (25), (28), and (29) in terms of form fac-
tors, we get

x 4( f'„,(x)f' &(0) ) = (D')i(3e, —e~ 4e3+—Se5 )+D'(H" 2H')(3e
&

—e—i —4e3+ Se& )

(H" ) (
—

—,'e, —+e3 —2e, ) H'(H" H')—(3e, ez ——4e3+ Se,—),
[(f'„„( )T (0))+(T„( )~ (0))]= (b, ') (,— ),

2

x (T „(x)T (0))=—'m x b, e m

(39)

(40)

(41)

We note that

DI 1

277
' H'=D'+b, ', H"=D"+6"=m x b . (42)

Using Eq. (42), we can show that, as expected,
(T~ (x}T&(0}) given by Eqs. (39)—(41) is the same as
that of a free massive scalar field theory with mass m. It
is nevertheless interesting to see how the contributions
from free massless fermions, which is given in the first
line of Eqs. (25) and (39), is canceled at large x while

becoming dominant at small x.
The correlation function of the trace of the energy-

rnomentum tensor is

and the C function defined in (38) is

C =2m. [2(h') +m x (b, ') —2b, 'b, "—(6") ) . (44)

Putting x =R and defining the dimensionless coupling e
b 9, 10

mR =e

the C function becomes a function of e only and is given
by

C(e) = [(2+e )K, (e ) +2eKo(e )K, (e ) eKc(e ) ], —
2

(46)

x (e(x)e(0)) =x (e (x)e (0)) =2m x 6 (43) where Ko, K& are modified Bessel functions. It is
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straightforward to show that'

P(e ) = —6m x (8(x)8(0)) ~„=~= —3e KD,
de

where the p function follows from (45}:

p(e)=e .

The asymptotic expansions of C(e ) are

(47)

(48)

C(e)=1+—,'e +0(e ln e), e~0,
3=—'wee ' 1+ +.

4
e —+ 00 (49)

This is in accordance with our expectation that c=0 at
e = 00 (no massless excitations) and c= 1 at e =0 (free
massless Dirac fermion).

IV. MULTIFLAVORKD CASE

&NmR =e (50)

for the N-flavored case, then the C function is given by
Eq. (46) plus N —1:

—2

C(e ) = [(2+e )K, (e) +2eIC0(e )K, (e )

—e E0(e) ]+N —1 . (51)

Since the N —1 massless free fermions do not contribute
to ( 6(x)6(0)), Eq. (47) remains valid for the
multiflavored case.

The extension of the N-flavored case is almost trivial in
the present case. The fermionic determinant gets a factor
of N so that the mass term in Eq. (7) m =e /m should be
replaced by Nm In W&. Eq. (9), X remains unchanged,
while the contribution to ( f'„„f' &) arising from the first

term of Eq. (9) gets a factor of N due to the two fer-

mionc traces and those arising from the second term of
(9) gets a factor of N due to the single fermionic trace.
Similarly, the contribution to f'„„T & arising from (18)
gets a factor of N. These translate into the following
changes on Eqs. (25), (26), and (39)—(42). We have to
multiply by N for the first and second lines and by N for
the last line on the right-hand side of (25). The right-
hand side of (26} gets a factor of N. In Eqs. (40)—(42}, we

have to replace m by Nm . Finally, the right-hand side
of the first line of Eq. (39) gets a factor of N.

The correlation function of the energy-momentum ten-
sor ( T„,(x )T &(0) ) coincides with that of a free massive

scalar field with mass &N m plus N —1 free mass fer-
mion fields.

It follows from Eqs. (38) and (39) that the contribution
of the N —1 massless fermions to the C function is just
N —1. If we define

V. DISCUSSIONS

Our results indicate that the N-flavored Schwinger
model interpolates between the two conformal field
theories: in the ultraviolet limit, it approaches a theory
of N free massless ferrnions, while in the infrared limit, it
approaches a theory of N —1 free massless fermions.
These two theories possess quite different symmetries. It
would be interesting to see how the primary fields of the
two theories are related by the renormalization-group
flow.

If we apply Abelian bosonization on the N-flavored
Schwinger model, " we would conclude that the theory
contains a massive scalar and N —1 massless scalars.
The direct calculation shows that the two-point correla-
tion functions of the energy-momentum tensor indeed
agrees with those of such a theory.

One may also apply non-Abelian bosonization. ' In
this case, the N-flavored free massless theory is equivalent
to the k= 1 U(N) Wess-Zumino-Witten (WZW) model.
The U(1) and SU(N) part decoupled. When the U(1)
symmetry is gauged, we obtain a free massive scalar with
the decoupled SU(N) WZW model. Our calculation sug-
gests that this last model is equivalent to a theory of free
massless fermions with N —1 flavor. This is known to be
true for the N=2 case. '

Even though one could have expected the final results
from bosonization, it is nice to see how it comes out from
a direct evaluation by path integrals. Moreover, the
mechanism by which the massless fermions disappear
from the physical spectrum is made clear from our direct
computation. From Eq. (6), we see that after the fer-
mionic degrees of freedom are integrated out, the longitu-
dinal part of A„decoupled by the requirement of gauge
invariance. The propagator for the transverse part is
(B„B„/8 )b. We see that the massive propagator is ac-
companied by a massless ghost due to the projection
operator which projects out the transverse degrees of
freedom. This is easy to understand since there are no
transverse degrees of freedom for gauge field in 1+ 1 di-
mension. Were it not for the mass generation due to
charge screening, the ghost would cancel the transverse
part of A„completely. However, because of mass gen-
eration, the cancellation happens only in the ultraviolet
limit and the massless ghost appears in the long-distance
limit, The ghost attaches itself to the massless fermion
and prevents it from being seen in the asymptotic state.
In the correlation function ( 1'„„(x}T&(y) ) given in Eq.
(25), we see that H„„=(B„B,/8 )b, appears and in the
long-distance limit, the ghost part from H„cancels the
free fermion contribution such that only a contact term is
left. Since the ghost is a flavor singlet, it cannot prevent
the flavored massless fermion from being seen in the
multiflavored case. In the correlation functions of singlet
physical observable such as (f'„„(x)f' &(y)), the ghost
efFectively cancels one degree of freedom as in the U(1)
case.

In summary, we have carried out a path-integral evalu-
ation of correlation functions of the energy-momentum
tensor in the N-flavored Schwinger model using point-
splitting regularization. The results agree with the expec-
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tations from Abelian and non-Abelian bosonization
methods. The C function is obtained from the correla-
tion functions. It decreases from N to N —1 along
renormalization-group trajectory. Our method can be
applied to other interesting models such as the N-Aavored
chiral Schwinger model. These are currently under inves-
tigation.
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