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The Chem-Simons Lagrangian has been studied previously in (2+1)-dimensional spacetime,
where it is both gauge and Lorentz invariant. In 3+1 dimensions, this term couples the dual elec-

tromagnetic tensor to an external four-vector. If we take this four-vector to be fixed, the term is

gauge invariant but not Lorentz invariant. In this paper, we examine both the theoretical conse-

quences of such a modification and observational limits we can put on its magnitude. The Chern-
Simons term would rotate the plane of polarization of radiation from distant galaxies, an effect
which is not observed. From the observations we deduce that the magnitude of the vector is

& 1.7 X 10 "h, GeV, where ho is the Hubble constant in units of 100 km sec ' Mpc

I. INTRODUCTION

Gauge and Lorentz invariance are two symmetries of
Maxwell's electrodynamics that have come to dominate
all fundamental physical theory. They provide physical
principles that guide the invention of models describing
fundamental phenomena, and their experimental
status —within electromagnetism —is well established.
The properties of electromagnetic radiation, both in a
natural setting and in high-energy accelerators, are pre-
cisely described by Lorentz-invariant dynamics. Gauge
invariance, interpreted as the masslessness of the photon,
is validated by stringent limits on the photon mass.

Experimental tests of such well-established and univer-
sal physical ideas are best discussed within a theoretical
framework that allows departures to be governed by arbi-
trary parameters; experimental data then set limits on the
magnitude of these symmetry-breaking parameters.
Thus, violations of gauge invariance are parametrized by
a mass p for the photon field A, . A mass term is hy-
pothesized to modify the electromagnetic Maxwell
Lagrange density REM,

EM
———4F~t,F

so that the photon becomes massive:

2

Z = —-'F F"'+" A "A
P 4 VA. 2 V (2)

Here F & is the electromagnetic tensor F &
=B,, A &—B&A, and the field equations in the presence of a con-

served current J read

~A +By (4)

is clearly lost. Geomagnetic data then set the limit'

A +p A =4m.J, 0 A =0,
where is the d'Alembertian 0= t), —V . (We set c
equal to unity throughout. ) Gauge invariance

&cs —,
'
p A13F (6)

where F ~ is the dual electromagnetic tensor,
F P =

—,
' e ~"'F„,. This modification couples the elec-

tromagnetic field to an (as yet unspecified) four-vector p .
When electromagnetic phenomena are confined to a

plane, as in the quantum Hall effect and high-T, super-
conductivity, the approximation can be made that no in-
teresting dynamical motion takes place in the direction
perpendicular to the plane. Then the external vector p
may be chosen to lie in that direction as well, and (6)
reduces to an unconventional electrodynamic action that
is Lorentz and gauge invariant in a three-dimensional
spacetime, i.e., boosts in the plane leave dynamics un-
changed. It was in this context that the Chem-Simons
term was initially investigated as a "topological mass"
term for gauge fields in (2+ I)-dimensional spacetime. 3

Models in which Xcs is taken to be the entire gauge field
action have found application in examinations of the
quantum Hall effec and high- T, superconductivity.
Moreover, several purely mathematical applications for
Lcs have also been found.

In this paper we shall consider the (3+1)-dimensional
case, where considerations of both Lorentz and gauge in-
variance play a crucial role.

p ~ 3 X 10 GeV; observations of the galactic magnetic
field set the more stringent bound of p ~ 3 X 10 GeV;
see below.

In this paper we explore the experimental limits on
another modification of Maxwell theory, which also in-
volves a mass parameter p, but respects gauge
invariance —rather, it is Lorentz invariance that is violat-
ed.

The modification we consider involves adding to the
Maxwell Lagrange density a Chem-Simons term:

+p +EM+pcs '

The Chem-Simons term is given by
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II. PHYSICAL INTERPRETATION

We begin by determining under what conditions Xcs
will be gauge invariant. The variation ~cs under the
gauge transformation 6 A =B~ is

(7)

to within a divergence. Gauge invariance requires that
Eq. (7) vanish for arbitrary y.

Equation (7) will vanish if p is, in some sense, a con-
stant of nature. In flat spacetime, when B~&=0 in some
frame it will vanish in all frames, ~cs=0, and the
theory is gauge invariant. The notion of a constant four-
vector is distressing, for if p couples to observable fields,
it would then pick out a preferred direction in spacetime.
Specifically, a nonvanishing spatial component p violates
rotational invariance, and a nonvanishing time com-
ponent p destroys invariance under Lorentz boosts.
Since there would be no way to "shield" an experiment
from the effects of the Chem-Simons term, Lorentz in-
variance would be violated. Thus, by putting limits on
the magnitude of p we are testing Lorentz invariance it-
self.

The above discussion applies to Minkowski spacetime,
but the actual Universe is a curved spacetime manifold.
If we define "constant" in a generally covariant way, we
require that the covariant derivative vanishes every-
where:

Vg, =0 .

This expression is generally covariant, while Bg„=O is
not. It is well known, however, that a vector cannot have
vanishing covariant derivative everywhere on a curved
manifold.

The solution to this apparent dilemma is that, because
we have introduced p as a parameter which violates
Lorentz invariance, it is inappropriate to demand general
covariance. That is, p picks out a preferred direction,
and therefore a preferred coordinate frame, in which

Bg,=O. Once this is true, B~ d~„=V'g„——V~„=O
in any frame, and gauge invariance will be maintained.

In fact, the requirement that Eq. (7) vanish is some-
what less restrictive than the statement that 8~„=0.
For example, F is identically zero, so a nonvanishing
a~, would not violate gauge invariance if Ozark =0; thus

p0 may vary with time. Further, the quantity Bg„—B~„
will vanish identically if p is a gradient of a scalar; that
is, if p =8 0 for some scalar field 0. However, these
cases amount to considering p to be a field, with dynam-
ics of its own, a possibility we do not consider in this pa-
per.

Observationally, of course, the Universe does exhibit a
preferred frame of reference, that of a typical galaxy
(with peculiar motions removed). It is only in this frame
that the surrounding Universe will appear homogeneous
and isotropic. The existence of this frame introduces a
preferred time direction and notion of simultaneity.
While these observational facts do not necessarily imply
that p points along this preferred time direction, they do
indicate that it would be a natural possibility to consider.

m= ——B-A.CS (10)

However, when no additional complexity is encountered,
we shall retain the full four-vector p =(pa, p). It is evi-
dent that nonisotropic effects due to pAO are attained by
moving with a constant velocity relative to the rest
frame. Therefore, absolute motion of the observer is
detectable, which vividly demonstrates the Lorentz
noninvariance of the Chem-Simons term in four dimen-
sions.

In this paper we shall examine the observational effects
of the Chem-Simons term to put limits on p as a param-
etrization of violation of Lorentz invariance. Of course,
the axial structure of the term also leads to parity viola-
tion, as is seen from (10), which involves the scalar prod-
uct of the axial vector B and the polar vector A.

III. FIELD EQUATIONS AND SOLUTIONS

The effect of the Chem-Simons term on the field equa-
tions is simply to replace the source current four-vector
J"by J +p„F""/4m. . Thus the field equations which fol-
low from Xz are

d„F""=4n J"+pqF ""

or, in terms of components,

V E=4mp —p B,
—B,E+V X B=4m J—pDB+p XE .

(12a)

(12b}

Of course the homogeneous Maxwell equations that ex-
press the field-potential relationship,

8 F""=0
P

or, in components,

V B=O,

B,B+VXE=O

(13)

(14a)

(14b}

are not modified. These equations, which reduce to
Maxwell's equations when p =0, are expressed in terms
of field strengths; hence, the Chem-Simons addition
preserves gauge invariance.

The energy-momentum tensor for our theory is

PV Ve~"=—F~ F" +~ r~F + p r& wp a 4 aP 2 a (15}

In the absence of sources, this is conserved by virtue of
the equations of motion; with vanishing J" in (11) and
(13),

Sources produce the conventional modification

(16)

In this case p is timelike, so

pap =m )0.
For simplicity, we shall frequently work in the rest frame
ofp, where



41 LIMITS ON A LORENTZ- AND PARITY-VIOLATING. . . 1233

3 e" =4mJ FP P
(17) satz and get

e~"we' (18)

Note that the Chem-Simons addition, which contrib-
utes the last term to (15), renders the energy-tnomentum
tensor nonsymmetric:

co E—k E+(k.E)k=i( —pok XE+cop XE), (24)

where co is the frequency and k the wave vector, which
form the four-vector k = (co, k ); k =

~
k ~. The corre-

sponding dispersion relation is

which again indicates the absence of Lorentz invariance.
The energy and momentum densities are not gauge in-

variant: or

(k k ) +(k k )(p~p&)=(k p )

' —1/2

(25)

0g=e~=~E'+-'B'+ p B A
P 2 2 2

(19a) co —k =+(pok —cop cos6)) 1—p sin L9

k
(26)

P=e"=(ExB)'+ (B A) .
P (19b)

which holds provided functions drop off sufficiently rap-
idly at large distances so that the integration by parts
needed to relate the two sides of (20) does not produce
surface terms. Thus

Rather, under a gauge transformation they change by a
total derivative, since

B A~B (A —Vy)=B A —V (By) .

Consequently, the integrals over all space, which define
the electromagnetic energy and momentum, are gauge in-
variant. Indeed, the spatial integrals may be presented as
explicitly gauge invariant by spatially nonlocal formulas
that make use of the identity

fdr B(r) A(r) =fdr B(r) fdr', V X B(r'),1

4~fr —r'f

(20)

where 8 is the angle between p and k, p =
~ p~, and the +

and —correspond to right-and left-handed circularly po-
larized waves, respectively. From this it is clear that in-
troducing p has the consequence of splitting the photons
into two modes. The waves travel with a group velocity
which differs from one in second order in p:

= 1+0(p (27)

co'=k(k+m ) (28)

while the phase velocity co/k already differs from 1 even
in the lowest order. That the two polarization modes
propagate at different velocities is forceful evidence for
violation of Lorentz and parity invariance.

Note that the wave four-vector k can become space-
like; i.e., exponentially unstable modes can so1ve the field
equations. This is clearly seen in the p rest frame, where
(26) implies

E=f dry(r)

=
—,
' fdr[E (r)+B (r)]

0
+ dr dr'B "(r)K" (r r')B (r'), —

2

P= f drP(r)

dr Er XBr

+ dr dr'B "(r)K" (r r')B (r'), —
2

where the kernel K" is given by

K nm(r ) pnmig 1
' 4mr

(21a)

(21b)

(22)

Ez+m V X E = —4mB, J

GB+m VXB=4~VXJ, ,

(29a)

(29b)

where Ez and Jz are transverse electric field and current,
respectively. Equivalently we have, in the Coulomb
gauge,

A+m V X A=4'~ . (30)

so co becomes imaginary for k &m. Such runaway solu-
tions do not contradict energy conservation because the
two integrals in (23) can each become arbitrarily large
while their difference remains a finite, time-independent
quantity.

However, runaway, exponentially growing, tachyonic
modes need not be excited by well-behaved sources. The
modified Maxwell equations imply (for p =0)

0
E=—' dr E2+ Q+ P A

2 2

2 2

8
(23)

Note that the energy is not positive definite. This is
most easily seen from (19a), which implies

The form of the fields responding to the source is most
appropriately described by constructing the Green's func-
tion for (29), i.e., the response function to a disturbance
localized by a 6 function at the origin in space and time.
The Green's function is transverse and is given by

Here we encounter the first evidence of an instability in
the theory; we shall discuss this in more detail below.

To find wave solutions to the source-free (p=J=O)
versions of (11)—(14), we posit the phase-exponential an-

O'J(t, r)=[(5"—B,B)/V )Cl+me" BI, ]g(t, r),
where g satisfies

g+m V g=4~5 (x) .

(31)

(32)
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[(—co +k ) —m k ]g= 1 . (33)

In Fourier space, with g(co, k)= f dt dre' ' ""g(t,r),
this reads

From (33) we see that a tachyonic pole arises in g for long
wavelengths, k & m. A solution which does not grow in
time, and reduces to the Lienard-Wiechert formula when
m=0, is

g(t, r)=
m

2 sin —r
2

vrmr
9(t)f dz

0

m
cosr +z

4

2m

4

1/2

m/2
sintz ——' dz

2 0

m
cosr

4
Z

2

' 1/2

m 2

4
Z

—jtjz. 1/2 (34)

This solution is noncausal, in the sense that the second
term in parentheses, present when mAO, acts even at
t &0, before the 5-function disturbance has occurred. A
causal solution, vanishing for t &0, would of course pos-
sess exponential growth in time —it would be a runaway
solution.

The potential instability manifests itself once again in
the existence of no nsingular, static solutions to the
source-free equations. To find these we set sources and
time derivatives to zero in (11)—(14) and find (for p=O)
that the divergence and curl of E vanish, hence so does E,
while 8 is a divergence-free vector field satisfying

VXB= —mB,

which also implies

(V' +m )B=O .

(35a)

(35b)

A=V Xa—ma, (36a)

where a is any triplet of fields satisfying

(V +m )a=O (36b)

then B=VX A solves (35). For example, a could have a
single nonvanishing component equal to (sinmr)Ir. This
space-filling magnetic field makes stationary the magnetic
energy, defined as the energy in (21a) with vanishing elec-
tric field:

E~=—,
' f dr B (r)

Equations (35) have arisen previously in magnetohy-
drodynamics. There they are obtained within conven-
tional electrodynamics, in the presence of static, neutral
sources (p=O, V J=O), when the condition is imposed
that J is proportional to B, so that (35a) is equivalent to
Ampere's law. Here, Eqs. (35) arise in the static, source-
free case when Maxwell theory is modified by the Chern-
Simons term.

The solution to (35) is most easily presented in terms of
the vector potential A whose curl is B. One verifies that
with A given by

ventional mass arising, for example, as in (2) and (3),
leads to the static equation ( —V +p, }A =0, which hasP
no regular solutions. In the Chem-Sirnons case p is re-
placed by —m, and regular solutions do exist.

IV. GEOMAGNETIC CONSTRAINTS

Just as for the gauge-noninvariant modification (2) and
(3), geomagnetic data limit the magnitude of the Chern-
Sirnons modification, but not as effectively as astrophysi-
cal data (discussed below). Static fields arising from sta-
tionary, neutral sources (p=O, V J=O) obey equations
which follow from (11)—(14) with p set to zero, so that
@0=m:

V B=O,

VXE=O,

V E=O,
VXB=4n.J—mB .

(38a)

(38b)

(38c)

(38d)

Evidently, the magnetic field satisfies

(
—V —m )B=4n.VXJ—4am J . (39)

The geomagnetic constraint on p is determined by ex-
panding the integrand of (41) in powers of r'Ir and keep-
ing the dipole term:

Again we see the mass parameter m entering as an imagi-
nary mass. The solution to (39) is

B(r)= fdr', [V XJ(r') —m J(r')]+Bo, (40), cosm ~r —r'~

jr —r'/

where B0 is the space-filling solution to the homogeneous
equations (35) and (36).

This is to be contrasted with the corresponding solu-
tion when the mass term violates gauge invariance:

e
—

)M jr —r'j

B(r)=fdr', V'X J(r') . (41)

+ drdr'8 "(r)K" (r —r')B (r') .
2

(37)

—pr
B(r)= [[3(r D)r —D](1+pr+ ,'p r )—

r

It is seen that the vanishing of 5E~I5A(r) implies (35);
also, EM vanishes when evaluated on a solution to (35}.

Note that the Chem-Simons mass term enters (35b)
and (36b) as an imaginary mass, in the sense that a con-

where

——"

,V"'D]

D= —,
' f drrX J(r)

(42)

(43)



41 LIMITS ON A LORENTZ- AND PARITY-VIOLATING. . . 1235

is the dipole moment. The first term in the curly brackets
is also present in the conventional theory; evaluated at
r =R, the radius of Earth, the effect of finite p cannot
be separated from a redefinition of D. (Spherical har-
monics of the dipole field arising in the conventional
theory, [3(r.D)r —D]/r, are now known'o through thir-
teenth order and degree. ) The second term proportional
to the dipole moment is constant over the surface of
Earth (unlike a dipole field or any higher-order spherical
harmonic) and in principle can be used to deduce p. Un-
fortunately, currents in the magnetosphere can mimic the
same effect, leading Goldhaber and Nieto' to conclude
that the best that can be said is

2p2 &0.0012 G
R~

whence

(44)

p + 3X10 GeV . (45)

A similar analysis of (40) is hampered by our lack of
any information about Bo. Setting it (arbitrarily) to zero,
which certainly weakens any conclusions about m, and
expanding the remainder of (40) in powers of m leaves

B=—[3(r.D)r —D]+ (mr)(rXD—) .
1 1

r r
(46)

The first term is conventional; the second is the first non-
vanishing correction in the expansion of our modified
theory in powers of m. It represents an azimuthal field

D
8& = —(mr )—3cos8, (47)

I,(A)
(4&)

In fact, it has not yet been possible to detect such small
fields because, as explained by Langel, ' surface magnetic
fields generated by time-variable currents in the iono-
sphere and/or magnetosphere make it difficult to mea-
sure Earth's field with a precision better than —10 " G.

where 0 is the angle from the dipole axis. Because the
conventional theory assumes that V XB=0 outside
Earth, such a terin cannot then occur, because $8 ds
vanishes for solenoidal magnetic fields. It is readily
shown that a field of the form (47) is generated in the con-
ventional theory by a uniform current density J, along
the dipole axis equal to (m /2m)(D /r ).

If the effect of nonvanishing m is to be sought in az-
imuthal magnetic fields, the effect of nonvanishing axial-
vector currents must be removed first. It is known" that
worldwide, an upward surface current of 1500 A generat-
ed by thunderstorms is canceled in time scales of minutes

by a fair weather downward conduction current of the
same magnitude. It is likely that the net current through
either magnetic hemisphere is a small fraction of 1500
amperes. However, an extreme upper limit on the associ-
ated equatorial azimuthal magnetic field can be found by
assuming that all of the thunderstorms are located in one
magnetic hemisphere. In this case I, would be 750 am-

peres, and the associated azimuthal field would be

Since D jr is 0.3 G, if we assume that net azimuthal
components larger than 10 G would have been no-
ticed, ' (47) indicates that mr ~ 3 X 10,so

m +5X10 ' cm '=6X10 GeV . (49)

Fortunately, much more definite information can be
obtained from astrophysical data, which we now exam-
ine.

V. ASTROPHYSICAL TESTS

2(gt, Pii )= 2(po p cos0)L . (51)

Note that this result is independent of the wavelength.
It is this efFect, the rotation of the polarization vector,

which is amenable to observational constraint.
Evidently, the best chance of detecting a small p is to

observe objects at the largest possible distance L. Radio
galaxies and quasars at distances comparable to the Hub-
ble length (= I/Ho-10' light year) provide ideal cases
to search for the predicted rotation. The polarization of
the synchrotron radiation of these objects has been exten-
sively studied. ' The objects themselves are often
elongated along one axis, so that one may define an "in-
trinsic position angle" g from observation. If the polar-
ization angle of the radiation at the source were aligned
either parallel or perpendicular to lt, then the difFerence
between the polarization as measured on Earth and that
at the source could, in principle, be determined. Since
models indicate that the polarization at the source is due
to the presence of a magnetic field B aligned either paral-
lel or perpendicular to the elongation of the source, such
an expectation might not be unrealistic.

To determine if the polarization at the source is corre-
lated with the intrinsic position angle, Faraday rotation
(due to the radiation moving through an intervening
magnetized plasma) must first be removed. This can be
done by using the fact that Faraday rotation is propor-
tional to the square of the wavelength. The process of re-
moving Faraday rotation is well understood. ' This
leaves us with an observed polarization angle g, which
would be rotated from the polarization angle at the
source only by the effect of the Chem-Simons term. Note
from Eq. (51) that, unlike Faraday rotation, the predicted

Returning now to our plane-wave solutions, we observe
that if a plane polarized wave is considered as the super-
position of two circularly polarized modes of opposite
handedness, the different velocities of the two modes
causes a rotation of the polarization as the wave travels
through space. As in the Faraday effect, this is due to the
changing phase relation between the two modes. The an-
gle by which the plane of polarization rotates is half of
the difference in phase. Since we expect p to be small,
we can expand the dispersion relation (26) in powers of
p to obtain, to first order,

k =co+ —,'(po —p cos8) . (50)

As the change in phase of a circularly polarized mode
traveling a distance L is P=kL, the polarization vector
rotates by
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TABLE I. The source designations are 3CR catalogue numbers. p,„ is the maximum polarization,

y is the angle of polarization, Q is the intrinsic position angle, and z is the redshift. "z ref' is the refer-

ence from which we obtained z; "a" means Burbidge and Crowne (Ref. 17); "b" means Spinrad (Ref.
18); and "ab" means both.

No.

1

3
3
4
5

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Source

0017+ 15
0031+39
0033+ 18
0034—01
0038+ 32
0040+51
0048+50
0104+32
0105+72
0106+ 13
0107+31
0114—47
0123+32
0128+06
0132+37
0133+20
0145+53
0152+43
0154+28
0214—48
0220+39
0221 +27
0229+34
0300+ 16
0307+ 16
0325+02
0336—35
0356+ 10
0404+03
0404+42
0410+ 11
0427 —53
0433+29
0453+ 22
0459+35
0511+00
0518—45
0605+48
0610+26
0618—37
0640+23
0651 +54
0659+25
0702+74
0710+ 11
0711+ 14
0724 —01
0725+ 14
0733+70
0734+80
0742+02
0755+37
0802+24
0809+48
0818+47
0819+06
0824+29

P max

18
2
6.5
6
6
1.8
6
3.8
7
9.5
8

15
7.5

12
17
5.5
3.5
5

6.5
17
14
3.5
6.5

17
9
6

10.5
7.5
5

12
6
6
7
9
5

3.2
6.5
7

13
10
10.5
7.5
7

10.5
15
2
3.8
5.5
3
9

12
5
3.3
5

10
6

34
74
80
49

118
61
25
31

134
92
4

123
33
95

160
38

151
67

179
82

168
62
85

113
28
81

116
46
49
74
60

175
195

18
141
87
95
37
13
72
65
85
95
52
16

136
153
67

176
65
56

113
72

157
166
95
34

143
143
171
144
30

105
104
160
47
19
78

155
139

4
67
32
21
24
96

178
99

178
173
110
106
65
40
27

129
160
143
79

137
132
108
88

104
57
99
90

120
101

16
20
59
68

171
116
112
157
160
115
121
24

8

38
157

2.012
1.351
1.469
0.0730
0.4820
0.350
0.937
0.0167
0.181
0.0595
0.689
0.1460
0.794
0.66
0.4373
0.425
0.2854
0.8274
0.2400
0.0640
1.176
0.3102
1.238
0.0324
0.2559
0.0302
0.0049
0.0306
0.0886
0.33
0.3056
0.0392
0.2177
0.2140
0.2775
0.1273
0.0350
0.2771
0.5804
0.0326
0.29
0.2384
0.5191
0.2920
0.768
0.920
0.22
1.382
0.994
0.1178
0.3500
0.0433
0.0598
0.871
0.1301
0.0815
0.4580

z ref

b

b

b

ab
ab

b
b

ab
b

ab
b

a
b

b

ab
b

b

b

a
a
b

ab
b

ab
ab
ab

a
ab
ab

b

ab
a

ab
ab

b
ab

a
ab

b
a
b

ab
b

ab
b

b
b
b
b

ab
ab

a
ab

b
ab
ab
ab
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No. Source

TABLE I. (Continued)

P max z ref

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

0835+58
0838+ 13
0855+ 14
0903+ 16
0905+38
0917+45
0927+36
0936+36
0938+39
0941 + 10
0945+07
0947+ 14
0958+29
1030+58
1040+ 12
1056+43
1100+77
1108+35
1137+66
1140+22
1142+19
1142+31
1147+13
1157+73
1158+31
1203+64
1206+43
1216—10
1216+06
1218+33
1222+ 13
1226+02
1228+ 12
1232+21
1233+16
1241 + 16
1251+27
1252—12
1254+47
1258+40
1308+27
1319+42
1330+02
1343+50
1350+31
1358—11
1414+ 11
1420+ 19
1425 —01
1441+52
1502+26
1508+08
1511+26
1514+00
1522+54
1529+24
1545+21
1547+21
1549+62
1550+20

13
4
4
0
8.5
5.5
7.5
8

3.5
9
6
8

4
6

11
6
4

14
3
2.3

10
6.5
4.5
3
0
4

11
7

12
11
7.5
2.7
4

19
0
3
5.5
7

12
7.5

14
8.5
4.5
5.5
1 ' 8

11
16
2
7
5

5

2.6
7
8

6
11.5
7.5
6
8
9

74
20
51
76
15

155
18
79
46
67

162
108
179
118
22
12
7

99
41
89

129
41

149
148
83
77
41

113
93
91

147
154
20

165
24

124
7

14
34
38
20
82

145
6

74
121
36
96

120
36
37
4

118
161
92
0

130
153

11

15
100
136
134
104
35
43

164
16

144
86
9

67
167
100
69
95

104
111
55
20

105
76
93
19

160
37

165
85

160
3

43
111
66
96

167
166
71
92

124
100
78
93

108
127
125
37

132
83
97

163
59
10

133
47

116
22
73

123
99

1.534
0.684
1.049
0.411
0.8975
0.1744
1.157
0.1368
0.1075
0.823
0.0861
0.5524
0.1848
0.4280
1.029
0.7489
0.311
1.10
0.6563
0.366
0.0208
0.8110
1.140
0.97
0.3620
0.3710
1.400
0.0875
0.0073
1.519
0.0031
0.158
0.0043
0.4220
0.0784
0.557
0.0857
0.0145
0.996
1.659
0.2394
0.0794
0.2159
0.9674
0.0452
0.0250
0.0237
0.2700
0.3080
0.1410
0.0540
0.4610
0.1083
0.0530
0.192
0.0960
0.264
1.2063
0.860
0.0895

b

b
b

b

b

ab
b

ab
ab

b

ab
b

ab
ab

b

b

b

b

b

b
ab
ab

b

b

ab
ab

b

a
ab

b

ab
b

ab
ab
a
b

ab
a
b
b

ab
ab
ab

b
ab

a
ab
ab
ab
ab
ab
ab
ab

a
b

ab
b

b
b

b
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TABLE I. ( Conti n ued ).

No.

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

Source

1559+02
1602—63
1609+66
1615+32
1618+17
1622+23
1625+27
1627+23
1641+ 17
1658+47
1709+46
1717—00
1723+51
1826+74
1828+48
1832+47
1836+ 17
1845+79
1949+02
2014—55
2018+29
2019+09
2040 —26
2058 —28
2104—25
2104+76
2117+60
2130—53
2141+27
2203+29
2211—17
2212+ 13
2221 —02
2229+39
2243+39
2247+ 11
2252+ 12
2310+05
2318+23
2335+26
2345+ 18
2353+79
2356—61

P max

9
14
4.5
9
6.3
6.5

24
12.5
2.5
4.8
8
6.8
8.8
4.5
1.8
5
2
7.5
6.5

10
5.4
8.5
9.2
0
3

10
5.5
3.1

8
14
0

11.5
8.8
8

11
12
4
4.2
3

7
7

11
8.5

160
112
131
122

132
143
177
172
39
64
93

131
114

15
71
28
18
45

108
0

172
160
57

175
51

160
77

169
0

176
148
103
106

3
54

145
49

101
21

114
85
19

90
120
62
17

125
32
49
90
71

145
167
88

161
164
142

4
15

145
82

155
129
112
158
169
136
140
35

130
172
148
164
65

170
179
80
30
45
72
36

123
159
172
133

0.1039
0.0591
0.5490
0.1515
0.555
0.927
0.448
0.7754
0.1610
0.2050
0.8057
0.0304
1.079
0.256
0.691
0.1605
0.0170
0.0561
0.0590
0.0606
0.2480
0.4690
0.0403
0.0377
0.0370
0.572
0.1016
0.0763
0.2145
0.707
0.1530
0.0263
0.0562
0.0171
0.0811
0.0243
0.5427
0.2890
0.2700
0.0293
0.6320
1.336
0.0963

z ref

ab
a

ab
b
b
b

b
b

ab
ab
ab
ab

b
b
b

ab
ab
ab
ab

a
b

ab
a

a
b

ab
Q

ab
b
a
b

ab
ab
ab

a
b

ab
ab
ab
a
b
a

effect is independent of wavelength.
Clarke, Kronberg, Simard-Normandin, ' and Haves

and Conway' investigated the correlation between the
observed polarization angle y (corrected for Faraday ro-
tation) and the observed position angle g, and found that
there is a large peak at y —$=90 and a smaller one at
y —/=0', a result which can be explained by models of
the sources. The correlation holds most strongly for
sources with the larger values of integrated polarization
considered as a function of wavelength. However, there
appears to be no study in the literature of the relationship
between g —P and distance L or redshift z.

We have searched the catalogues of radio galaxies of
Burbidge and Crowne' and Spinrad et al. ' to determine
the redshifts of the galaxies with known y —g in Clarke,
Kronberg, Simard-Normandin the data are listed in
Table I. There are a total of 160 sources whose values of
both z and y —f have been determined; however, since
the polarization angles of those with very low polariza-
tions seem to correlate with position angle weakly, if at
all, we have chosen to work only with those 116 galaxies
with polarizations ~ 5'.

To determine the theoretical phase shift due to p, we
take the distance traveled along the light path to be
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This is an approximation because the two modes will be
moving at slightly different velocities, but that is a
higher-order effect. In an 0=1 (flat), matter-dominated
universe, the time elapsed since an object at redshift z em-
itted the light we observe is given by

12—

10—
Galaxies with redshift & 0.4

and maximum polarization &= 5%

t =to[1—(1+z) 'i'],
where

2
0

(53)

(54)

is the present age of the Universe and Ho is the Hubble
constant, (R /R )0. Thus, Eqs. (51)—(53) give

po p cosO
bP= — [1—(1+z) ' ] .

3HO
(55)

0 I I j I I j I l j I I

-80 -40 -20 0
x-0

j I I j I j I I I j I I I j I I l j I I [ I

20 40 80 80 100 120 140
(polarization —position angle)

Note that for sources with large values of z, the predicted
angle of rotation is of order p /Ho, offering the chance to
quantify p for values as low as Ho-10 '

y
-3X10 ' sec

In Fig. 1 we have plotted y —
lt vs z for the 116 sources

with polarization ~ 5%%uo. Several features of the data are
immediately apparent. First, most of the points are
clustered around y —/=90', with others around

y —/=0', in agreement with the findings of Clarke,
Kronberg, Simard-Normandin. ' For us this is an impor-
tant result, because it gives us confidence both that the
polarization vectors of the sources are aligned either
parallel or perpendicular to their position angles, and
that the process of removing Faraday rotation is success-
ful. The second obvious feature is that the clustering
seems to hold for all redshifts. Ifp were large enough to
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FIG. l. The polarization angle y minus the position angle l(
of the galaxies with maximum polarizations p, „=5%%uo, plotted
vs redshift z. It is clear that the data are grouped around the
horizontal lines at 0' and 90', even at large redshift. The verti-
cal line at z =0.4 indicates the point beyond which we searched
for deviation from these values.

FIG. 2. A histogram of number of galaxies vs y —P, in bins

of 10', for those sources with p,„&=5% and z)0.4. The
peak near 90' is obvious.

y —
1(

=90.4'+3.0', (56)

where the errors are standard errors of the mean. Thus,
bP 6.0' (at the 95%%uo confidence level) at z =0.4.

We put this result into Eq. (55) to obtain

po
—p cosO ~ 1.7 X 10 h o GeV, (57)

where ho=HO/100 km sec ' Mpc '. Current observa-
tions indicate that 0.5 ~ ho ~ 1.0. If p is small compared
to po, then po

—p cosO= m. To illustrate the precision of
this test, we can compare the effectiveness of p as a pa-
rametrization of deviations from Lorentz invariance to
that of p, the mass of the photon, as a measure of depar-
tures from gauge invariance. Chibisov uses the Galactic
magnetic field to set

p~3X10 GeV . (5g)

Thus, as such measures go, we are able to put very
stringent bounds on the magnitude of p as a Lorentz-
invariance-violating quantity.

make b,P several radians, then we would expect the corre-
lation between y and g to become weaker as z increases.

Since b, P is evidently small, the functional form of Eq.
(55) implies that hP approaches a limiting value for large
z. Therefore, we have grouped all of the data for which
z ~0.4 to search for any deviation from y —/=90'. A
histogram of the number of points (with z &0.4) at a
given g —

1(t appears as Fig. 2. The peak near 90' is clear.
There is no peak, however, at 0', this may be due to a
selection effect; because sources with g —/=0' are known
to be predominantly low-luminosity objects, they are un-
derrepresented in a sample of very distant objects having
z ~0.4. Taking only points with 45' y —g 135 we
obtain a mean for the sample of
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VI. SUMMARY AND CONCLUSIONS

We have considered the introduction of a Chern-
Simons term

&cs —,'p A pF

to the Lagrange density of classical electromagnetism in
3+1 spacetime dimensions. This term, which couples
the electromagnetic field to a "constant" external four-
vector p, violates Lorentz invariance and parity, while
preserving gauge invariance. The theory possesses an in-
stability at long wavelengths which involves exponential-
ly growing modes, but it is found that these do not violate
energy conservation. Exponential growth is absent in
noncausal solutions. The instability also gives rise to
space-filling magnetic fields, familiar in magnetohydro-
dynamics.

As with the introduction of a mass for the photon,
geomagnetic data can put limits on the Chem-Simons pa-
rameter trt =(p~ )'~: namely,

m &6X10 GeV .

However, a more stringent bound comes from examining
the correlation between observed position angles and po-
larization angles of distant radio galaxies; this astrophysi-
cal test yields

m ~1.7X10 ho GeV .

Effects of nonzero m can appear only at distances greater
than the associated Compton wavelength, which with the
above limit is essentially the distance to the horizon.
Thus the question whether m vanishes is answered posi-
tively by the astrophysical data, since a nonzero value
satisfying the above inequality would lead to phenomena
outside the horizon, which cannot be observed.
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