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Infrared divergences and confinement in massive (2+ 1)-dimensional QED

Diptiman Sen
Centre for Theoretical Studies, Indian Institute of Science, Bangalore 560 012, India

(Received 28 June 1989; revised manuscript received 20 September 1989)

In (2+1)-dimensional quantum electrodynamics with massless photons and massive matter fields,
it is shown that the mass renormalization of the latter is infrared divergent at one loop. This result
remains unchanged at two loops. A simple argument based on a similar divergence of the Coulomb
potential leads us to conjecture that charged states are not observable in this model. This argument
holds in 1+ 1 dimensions also.

Quantum field theories containing massless fields are
usually plagued by infrared (IR) problems. Such prob-
lems are often related to important physical effects. In
four-dimensional QCD, for example, the confinement of
quarks is believed to be related to some of the IR singu-
larities in the theory. However, the connection between
the two in that theory is not completely clear at the mo-
ment. Confinement appears to be a long-distance nonper-
turbative phenomenon, ' whereas IR divergences are well
understood only in perturbation theory which is valid at
short distances alone.

It may therefore be useful to examine theories where
confinement and IR divergences can both occur in per-
turbation theory, and the connection between the two
may be easier to study. This is the situation in some
lower-dimensional superrenormalizable theories, for ex-
ample, in the Schwinger model which is QED in 1+ 1 di-
mensions. Confinement also occurs in non-Abelian
gauge theories, perturbatively in 1+1 dimensions and
nonperturbatively in 2+1 dimensions. A study of such
theories may lead to some additional physical intuition
about the properties of the more realistic four-
dimensional confining theories.

In this paper, we study (2+ 1)-dimensional QED with a
massless photon and massive matter fields (which could
be either fermions or scalars). If the matter fields are also
massless, this theory is known to suffer from severe IR
divergences which can be cured by an unusual resumma-
tion of the perturbative expansions. If the matter fields
are massive, then there is still an IR divergence which
occurs in a gauge-invariant quantity: namely, the on-
shell mass renormalization of the matter fields. We will
argue later that this divergence may be related to a physi-
cal property of the theory: namely, confinement.

To begin with, we show that the divergence occurs at
one loop and is logarithmic in the following sense. If the
matter field has a mass m and the photon is massless, we
find that the mass shift 6m is gauge variant and therefore
physically meaningless. To cure this, a small photon
mass p is introduced. One then finds that 5m is gauge in-
variant, but it diverges as g 1n(m jp) in the IR limit
p~O, where g is the gauge coupling. On going to two
loops, a similar logarithmic divergence is found except
that the coefficient is of order g /m.

On the other hand, the matter fields are probably
confined in this theory if the photon is massless. (The
latter point is not trivial because a photon mass can be
radiatively generated in 2+1 dimensions. ' More on
this later. ) This claim is made plausible by examining the
tree-level Coulomb potential V(r) between two matter
particles with equal and opposite charges +g. The poten-
tial also diverges logarithmically as g 1npr as p~O, for a
fixed distance r. This divergence is related to that in the
mass shift 5m. In fact, the two cancel precisely so that
the mass of this charge-neutral bound state does not
suffer from any IR divergence. "' This observation can
be extended to the mass of any other neutral state and
even to (1+1)-dimensional QED.

Before proceeding further, we must point out that
(2+1)-dimensional QED (QED3) has certain similarities
and differences from both QED2 and QED4. (We take all
the matter fields to be massive in the sense that there is a
bare mass for them in the Lagrangian. ) In 1+1 dimen-
sions, the photon always becomes massive. The quan-
tized matter fields are confined; namely, all physical
states are neutral. In 3+ 1 dimensions, the photon
remains massless to all orders in perturbation theory if its
bare mass is zero. The matter fields are not confined and
charge-carrying physical states are observable. In 2+1
dimensions, the photon can become massive radiatively
even if its bare mass is zero. In that case, there is no
confinement and charged physical states exist. If, howev-
er, the photon mass is strictly zero (this can be arranged
by an appropriate choice of fermionic matter fields as dis-
cussed later), then the matter fields are confined. All
physical states must then be neutral.

We begin by discussing fermionic QED3. The La-
grangian is

A gauge-fixing term proportional to g
' has been intro-

duced. Physical quantities cannot depend on the parame-
ter g. The fermion mass m can appear with either a posi-
tive or a negative sign {this makes a difference to the radi-
atively generated photon mass). Since d =3, the charge g
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is dimensionful and we will assume that g /m is small.
We will also take the p/m ~0 limit at the end of all our
calculations to extract the desired IR divergences. The
photon mass term breaks the ordinary gauge invariance
A„~A„+B„kbut it has a Becchi-Rouet-Stora-Tyutin
(BRST) invariance if one adds Faddeev-Popov ghost
fields c and c in the form'

S(k)=
ii —m +i@

(3)

The one-loop mass correction 5m is obtained from the
fermion self-energy

d k—iX(p)=( ig) I— y"S(p+k)y'D „(k) .
(2m. )

pv (4)

Then Z2 and 5m are given by

X(P =m) =5m,

X(p) =Z —1 .
gf=m

(5)

To cancel these, counterterms of the form
( Z, —1 )g(i 8 m) f an—d a mass Z2 5m gg must be added
to the Lagrangian if the fermion propagator is to contin-
ue to have a pole with unit residue at gf=m. In other
words, if we want the fermion to be an observable parti-
cle with renormalized (physical) mass m, its bare (La-
grangian) mass must be m —5m. Conversely, if the bare
mass is kept fixed at m so that a mass counterterm is not
added to the Lagrangian, the renormalized mass becomes
m +5m. The second point of view will be adopted later
because it proves to be physically more useful.

There is. a simple argument to show the g independence
of 5m at one loop. The term in D„(k) proportional to
(1 g)k&k, B (k ) does not cont—ribute to 5m because

X„p=B„cB"c—p Qcc .

The fact that these ghost fields are uncoupled to A„ in
the Abelian theory means that one can simply work with
Eq. (1) and expect to get gauge-invariant (g-independent)
expressions for various physical quantities. Note that
this introduction of a small gauge-boson mass as an IR
regulator does not work in a non-Abelian theory since a
mass term is not BRST invariant there and unitarity is
ruined.

This trick of adding a small photon mass is also used in
QED in d =4 in order to calculate the wave-function re-
normalization Z2 and the mass renormalization 5m for
the matter fields. ' While Zi is g dependent and IR
divergent as p/m ~0, 5m is g independent, and is finite
in the IR limit in d =4.

To calculate the one-loop expression for 5m, we need
the photon and fermion propagators D„„(k) and S(k)
from Eq. (1). These are

The first term vanishes upon integrating over k because
B (k ) is an even function of k. The second term vanishes
on the mass shell gf =m. However, this formal argument
for the gauge invariance of 5m actually works only if
pXO. If p is set equal to zero to begin with, IR singulari-
ties as k~O spoil the argument in d =3 (and also in

d =2). We then find a g dependent in 5m given by
5m& = —

gg /8m. in d =3. This was discovered by Deser,
Jackiw, and Templeton who then chose to work in the
Landau gauge (=0. We, on the other hand, keep p
nonzero. This makes the mass shift gauge invariant, and
we work in the Feynman gauge g= 1 to simplify the com-
putations.

On calculating the one-loop mass correction, denoted
by 5m, , one finds that it diverges in the IR limit

p/m ~0. The divergent term is given by

5m, = ln —.g m

4m p
(6)

For a fixed bare mass m, the renormalized mass, there-
fore, goes to infinity in the IR limit. (A similar observa-
tion has been made while analyzing some other theories
as well. ' ' )

These calculations can be repeated for a complex scalar
particle whose Lagrangian is

2'=(r)„ig A„—)P*(d"+ig A")P mP—'P .

Just as for fermions, one finds that 5m is g dependent if
p =0. In fact, 5m

&
= —

gg /8m again. With nonzero p,
5m is g independent and the infrared divergent piece of it
is found to be the same as in Eq. (6) as p/m ~0. (Unlike
the fermionic case, the scalar mass shift is also ultraviolet
divergent. This divergence is irrelevant in the present
discussion. )

We have extended the calculation of mass shift to two
loops, denoted by 5m&. For technical siinplicity, we con-
sider only fermionic QED. A two-loop computation is

important for the following reason. The one-loop mass
shift 5m, in Eq. (6) becomes significant compared to m

only if p/m & exp[ 4n(m/g —)], which is tiny even for
modestly small values of the parameter g /4am. At such
a small value of p/m, the actual perturbative expansion
parameter for the on-shell higher-loop IR divergences is,
on dimensional grounds, g /p which is certainly not
small.

This point is borne out by looking at the one-loop fer-
mion gauge vertex ig I "(p,k), wh—ere p and k are the in-
coming fermion and photon mornenta, respectively. At
the tree level, I "=y". At one loop and in the Feynman
gauge, I "(Ji=m, k =0) diverges as —(g /4mp)[1 —(p/
m) ln(m/p)] which is much more divergent than 5ml.
A Ward identity then implies that the IR-divergent part
of Z2 —1 is given by

Z2 —1= g
4m.p

(8)

y"S (p +k)y "k„k„B(k 2)

1=i ic' —(P —m) jt B(k ) .
P+ii —m
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To cancel this divergence, we add a vertex counterterm
to the Lagrangian equal to —g (Zz —1)QA 1(.

We now compute the various two-loop contributions to
5m2 shown in Fig. 1. The IR divergences come from re-
gions in momentum space where one or both photon mo-
menta go to zero. One must also add diagrams contain-
ing insertions of the various counterterms arising from
one-loop corrections to the fermion and photon propaga-
tors and the fermion-gauge vertex. Several cancellations
occur, and the IR-divergent part of 5m =5mi+5m2 is
finally obtained as

2

5m= g
4m

r

2

1+0 g
m

m
ln —,

p

where the O(g /m) terms are infrared finite. In short,
the two-loop on-shell self-energy Xz(g=m) diverges as
(1/p) ln(m/p, ) and [ in(m/p)], but these divergences
cancel with those of Z2 (at one loop) to leave behind a
mass shift which is only logarithmically divergent as in
one loop.

We have not investigated in detail the IR divergence of
5m at higher than two loops. By power counting it is
clear that the divergent terms in the wave-function renor-
malization Z2 diverge as powers of g /p and 1n(m/p).
(It may be possible to sum up these divergences in Z2 by
the methods of Ref. 5.) However, the infrared behavior
of Z2 is not related to that of 5m. Guided by the two-
loop result, I believe that the n-loop mass shift 5m„ is
only as divergent as m(g /m)" ln(m/p) due to a non-
trivial cancellation of stronger divergences between
X„(P=m) and (Z2)„,. This statement can probably be
proven by using the Schwinger-Dyson integral equation
for the fermion self-energy. We will not pursue this here.

So far, we have shown that if the matter quanta are to
be observable with a finite physical mass, the bare mass
must be IR divergent. We now adopt the opposite point
of view. The bare mass is fixed at the finite value m and
the renormalized mass is IR divergent. This has the fol-
lowing benefit. Consider the nonrelativistic Coulomb po-
tential produced by a single photon exchanged between a
fermion and an antifermion. This equals

d2k ik r
v(r)= —g'

(2m) k +p
(10)

(b) (c)

FIG. 1. Two-loop contributions to the fermion self-energy.

If r is kept fixed, and p is taken to zero, this diverges as
(g /2n)lnpr. The H. amiltonian of this system is given by
(ignoring the kinetic energy terms which have no IR
divergences to this order in g ) 2m+ +(g /2m ) in@,r
where the renormalized mass mz =m +5m =m

+(g /4m ) ln(m/p). We thus obtain 2m +(g /2') lnmr
which is free of any IR divergence. Thus, while the re-

normalized mass of a single fermion su8'ers from an IR
problem, the mass of a neutral pair does not. "' Note
that although the elementary charged quanta are not ob-
servable, their bare masses have a physical meaning be-
cause they set the scale of the bound-state masses.

This leads us to conjecture that only neutral states will
be physically observable in this model because their
masses are not IR divergent. The above argument can be
easily generalized to the case of a state consisting of X
particles with finite bare masses and gauge couplings
(m;, g;), where i =1,2, . . . , X. The renormalized mass of
particle i (which may be a fermion or a scalar) will exceed
its bare inass by the IR-divergent term —(g; /4m)in@.
The tree-level potential between particles i and j will have
an IR divergent term —(g;g /2m) lnp, . Adding every-
thing up, the Hamiltonian of the total system has the
divergent term —(1/4n )(g,g;) 1np which vanishes only
for neutral states with charge Q =g;g; =0.

It would be interesting, but difficult, to check if the
higher-loop IR divergences are also proportional to
powers of Q and, therefore, vanish for Q =0 states. This
can only be true, if order by order in perturbation theory,
there are certain correlations between the IR divergences
present in the self-energies of the various elementary
charged particles and those present in the two-body (and
many-body) potentials. '

To summarize, the bare masses of the elementary
charged quanta are fixed at certain values which are not
IR divergent. However, these quanta (and charged com-
binations of them) are postulated to be unobservable be-
cause their renormalized masses sufT'er from IR problems.
[A somewhat similar situation exists in four-dimensional
QCD where the bare- (current-) quark inasses are not IR
divergent and are related to physical quantities such as
the color-neutral pseudoscalar masses. ] Note that the IR
problem is not directly related to the behavior of the
Coulomb potential at large distances. In Eq. (7), r does
not have to be large compared to, say, the physical dis-
tance scales m ' or g . The problem is rather due to
the masslessness of the photon which forces one to even-
tually take the limit p~O.

We must, therefore, discuss the question of the photon
mass now. The IR divergences discussed above occur
only if the photon remains massless even after radiative
corrections are taken into account. In d =3, a photon
mass of the form —,'m e„,&A "F' can be dynamically gen-
erated by the fermions. This parity-violating mass
term is, at one loop, equal to ' m

&,

=g, (g; /47r
Xm;/~m;~ where (m„g;) denote the charge and mass of
fermion i in Eq. (1). At higher loops, there is no further
contribution to m, , (Ref. 10). If such a mass is generated,
then confinement is lost because there are no longer any
IR problems. The Coulomb potential develops no diver-
gences if m~ is nonzero and p~O. (The photon propaga-
tor in the presence of both a parity-violating and a
parity-conserving mass term is available in Ref. 17.) The
mass shift 6m is also infrared finite and gauge invariant if
one lets @~0 keeping m and m, , fixed. [Note that it is
necessary to take p nonzero when doing this computation
and let p~O only at the end. If one puts p=O to begin
with, there are gauge-dependent singularities in the pho-
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ton propagator (even though m WO) which make 5ttt g
dependent and Zz ill defined .] Thus there are no IR
problems in defining the mass of any state, neutral or
charged.

To obtain confinement, we must therefore assume that
such a photon mass is not generated, assuming that the
bare mass is zero. The simplest model in which this is
true is one with two fermions whose masses are equal but
have opposite signs, and whose gauge couplings are
equal. The fermionic Lagrangian

X =ll, (iei —gA —m)g, +$2(i' gA—+m)$2

is parity conserving if the parity transformation is defined
to be (t, x,y)~(t, —x y), (A, A', A )~(A, —3', A ),
g, ~y'gz, and tttz~y'll, . Clearly, the parity-violating
mass term cannot be generated in such a model.

This completes our discussion of IR divergences and
confinement in massive QED3 The arguments put for-

ward in favor of confinement are plausible but certainly
not sufficient. For a comprehensive understanding of
confinement in this theory, one must examine other as-
pects of the theory, for example, the behavior of large
Wilson loops. '

The arguments in this paper also apply to QED2. Since
the massive Schwinger model has been extensively stud-
ied in many different ways, we will be brief. The IR
divergence in the one-loop mass renormalization of an
elementary particle (fermionic or scalar) of charge g, is

given by g; /4p. The potential between two particles is,
to the same order in the charges, equal to
(g;gj /2lt) exp( —pr) whose IR-divergent part is

(g, g~/2p). So the divergent piece in the mass of a com-
posite state equals (I/4p)(g;g;) which only vanishes for
neutral states.

I thank R. Kaul and R. Rajaraman for some enlighten-
ing discussions.
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