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Sufficient conditions are found which, if satisfied, would justify the use of Wick rotation in super-

string loop amplitudes. Unfortunately, infinities in the superstring chiral-anomaly amplitude block
this justification. The point amplitude is first presented in terms of both string parameters and

Feynrnan parameters. An interchange of loop-momentum and string-parameter integrals is found
to violate Fubini's theorem by equating a Minkowski integral to a Euclidean integral. In the full

superstring anomaly amplitude, an interchange of loop-momentum and string-parameter integrals
also requires simultaneous Wick rotation if the infinite sums involved are uniformly convergent in a
particular sense. It is observed that the amplitude actually contains infinities in canceled-

propagator terms which violate this condition. It must therefore be regulated. Clavelli, Cox, and
Harms [Phys. Rev. D 35, 1908 (1987)] only proved the finiteness of an amplitude with such terms

subtracted out, corresponding to a point-splitting regularization. In fact, if Wick rotation is valid
for dimension-changing regularizations, the result of Mann [Nucl. Phys. B303, 99 (1988)] implies
that the Green-Schwarz anomaly is not regularizable and anomaly cancellation does not hold.

I. INTRODUCTION

Superstring theory has encountered both nonperturba-
tive difficulties' and a breakdown of uniqueness when
the perturbation theory is compactified to four dimen-
sions. Proton decay and cosmology are likely the only
areas of observational physics where relevant constraints
may be found. This paper comments on a more formal
question: is the Green-Schwarz anomaly cancellation
mathematically consistent?

Wick rotation is an essential procedure required for the
regularization of open superstring anomalies. s It is of in-
terest, therefore, to determine general conditions under
which it is justified. For the first time a convergence cri-
terion is found for this. Unfortunately, it requires the
open-superstring chiral-anomaly amplitude to be finite
which, as pointed out in Sec. IV, is not true. Clavelli,
Cpx, and Harms did not prove its finiteness as they had
claimed since they used the canceled-propagator argu-
ment in an unregulated formula. Natural ultraviolet
finiteness, which is desirable for a realistic extended-
particle model, does not occur for superstrings. In fact,
recent work shows that the full amplitude cannot even be
unambiguously regulated since the corresponding current

divergences were found to be infinite when conventional
dimensional regularization (CDR) and regularization by
dimensional reduction (RDR) were used. ' The validity
of Wick rotation must be checked for each regularization
technique separately.

In the next section, the usual point quantum-field-
theory anomaly is briefly reviewed and, for the first time,
Wick rotation is justified by its necessity for the inter-
change of string-parameter integrals" and loop-
momentum integrals. The regularization independence
of the alternating sum of current divergences is also corn-
mented on. In Sec. III the resultant anti-Fubini theorem
is generalized to the full superstring. Finally, in Sec. IV,
the superstring is examined to find where in the ampli-
tude the infinities reside which prevent the use of this
theorem to justify an ad hoc Euclidean approach. A dis-
cussion of this result is also presented there.

II. STRING PARAMETRIZATION
OF THE POINT AMPLITUDE

A typical chiral-anomaly graph with polarizations g,
may be written as' '

asap, . u„, pako ' 'kn g A ki '''[k ] k
r=1

(2.1)

n
ao a„4' X '~t4 ktk~'

p=1 I=1
(2.2)
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where notation and conventions from Appendix A is
used. Expression (2.2) is a generalized Adler-Rosenberg
expansion with coefficients A, and ~BI yet to be deter-
mined. When the resultant current divergences are com-
pared with the generic regulated form

S((I, . . . , k„, . . . , g„;kl, . . . , k„)
~ n

( —1)"X„e'„(g,k),
(2~)"n!

Since g,"=oy;=1 andy, ~0, then x,. C[0,1] and x;+I~x;.
Also, since

k„k, =Q(m'+k„')(m'+k, '}—Ik, Ilk, Icos~~ o (2.10)

for k =m, therefore D(k, x)~0. By momentum con-
servation, all the k, cannot point in the same direction
and hence D) 0 for nonzero x's, even if k, =0.

Next, the string parameters are also denoted by x; and

(2.3) p, = P x, , w=p„,
j=0

(2.11)

the Xr being some real parameters, the relationship

2X„ n—
(
—1)" "g "8(ki k

(2mi)"n! 1=1
(2.4)

is found. Thus if the 8's are calculated to be finite, the
A's are also finite but ambiguous. Such an ambiguity
does not affect the full amplitude

lnp;
v, =, v„=1, v= —lnw .

lnw
' (2.12)

n n+1 lnp
g p„lnx„=inn p' —g k,

Here x E(0,1] and so v;&[0,1], v&[0, ~ ) and v;+, ~v;.
Let us now revise (8.1.16) of Ref. 5 for these parameters.
In this case,

g ( —1)"S(go, . . . , k„, . . . , g„;k)
r=0

"B(k~ k e(g, k) .

(2.5)
where

—$ k„.k, lnc,„—
r(s

(inc,„}z

lnw
(2.13)

Note that although the current divergences are deter-
mined by the X„'s, the full graph is independent of them.
This shows that the anomaly is an intrinsic result —it is
fundamental to the system rather than to the description
of the system.

Strictly speaking, the formal amplitude (2.1) has poles
for any p =0. In order to perform the analytic integra-
tion required for Wick rotation, the anomaly amplitude is
rigorously defined to be the a~0 limit of

csr Ps —
1 ~Ps —

1

Then,

n+I k
'2

PJ'~2 ~ Xs=l s s —I
X =W

Jj=0

(2.14)

(2.15)

1 (inc,„)
X exp g ——inc,„+— k„k,

2 '" 2 lnw

d
2"p ' TpT(g, k;p '

)
S,= (2n)" (2.6) The expression in the large square brackets may be

rewritten as

where

j=0
[v„,—v, , +(v, ,

—v„, ) ]( —k„.k, )
O~r~s n+1

TpT(g k;p')=Tr 1'~. +I g giP&
1=0

(2.7) D(k, v„) . (2—.16)

The phrase "finiteness of the anomaly" refers to the
finiteness of this limit. We shall discuss this further at
the end of this section.

fhe amplitude (2.6} was evaluated using Feynman pa-
rameters in Ref. 13. Let us compare this analysis with
the corresponding analysis using string parameters. "
First of all, let the Feynman parameters be y; and define,
using the metric g in (Al),

where

D(k, v„)=2 g k„k,v„,(1—v, , )
O~r~s~n

+ g k„v„,(1—v„,) . (2.17)

Now the sum in the first factor of (2.15) may be written as
n+1
gkv, , =gkv, , —gk„

x;= Qy~, Os ~ ~ ~ ) Pl (2.8)
s=l s=1

= —g k„(1—v„)}=—g k„V„, (2.18)

D(k, x)=2 g k„.k,x, (1—x„)+ g k„x„(1—x„) .
1 ~r(s~n where



41 WICK ROTATION AND INFINITIES IN THE SUPERSTRING. . . 1195

Rewriting (2.17) in terms of v„gives

D(k, v, ) =D (k, v„),
and (2.15) becomes

(2.20)

2
p. I2 p' —g„" ) k„v„2 v—D(k, v, )/2

xj =w e
j=0

Let us now expand (2.6),

(2.21)

' n+ 1 +PT(p

g y;(p; +l6)
i=0

n n

g dyi5 gy, —1

oo j=0 I =0
S,= n!

(2~)2n
'

p n
(2.22)

and, similarly,

d 2np&

2n p

g yl 17—FT(p )
j=0 1=0

'2
p'+ g k~xi +D(k, x)+i@

j=1

n+1 (2.23)

(2.24)

f 'TFT(p') f g 8(v;, —v; )d v, f d v v"exp —— p'+ g k„V„+D(k, v„)+i e (2.25)

Here the changes of variable (2.11) and (2.12) have been
made to give

or

n n —1 dp.
IId = II

i =0 j=p Pj
(2.26)

(2.27)

1S,= 2 A&T PVrVe pz P'2"+ '(2n. )'"

~here

(2.32)

and,

n —1 dp. d n —1= g dv, (
—lnw)"dw,

~

p pj w

dPj dW
f, rI &(p, —

p, + )
p Pj W

1n —1

=f, rId;~(;. , )f—

(2.28)

(2.29)

n I=O
dAFy(p y &) d p g dyi

[p +D+ie]"+'

d AsT(p, vi, v; 6)

2/2
—v[D(k, v )+ ie]/2=d p w~ e

1 =0

n —1

(2.33)

(a) p'=p —g kjx, , (b) p'=p —g k„v„. (2.30)
r=p

This would give

n!
(2m. )

" (2.31)

Note that the v, can be identified with the Feynman x; in
reverse order.

At this stage, it would be convenient to shift p'~p
where

=d "p g 6)(v +, —v )dv v dv
j=0

2 I2
—v[ D ( k, v„)+l n] I2

Xw~ e

In fact, the linearly divergent pieces of the Feynman in-
tegral in (2.33) give rise to finite surface terms upon shift-
ing. These end up in the A terms of the Adler-Rosenberg
expansion (2.2). The remainder of the integral is less-
than-linearly divergent and shifting is allowed. For the
string integral in (2.25), let us perform the v integration
first in order to determine if shifting is allowed. This
gives'
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d2n 1
n —1 Tpr(p')

S,=n!f f g dv;0(v;+( —v, )
(2m) " p;=(1

p + g k„v„+D+It
(2.35)

+1

n!D
(2.37)

pd 2n

, =O,
(p +D+ie)"

for any DAO. The contributions from the p integral to
the A terms come from the logarithmically divergent in-
tegrals

(2.38)

f p p'vd p =5(" ao,
(p +D+ie)"+'

and the integrals

pppd p
(p2+D + ~)n+1

[(2IDI —b)& IDI+b
g, b~+ oo

(2.39}

—(2IDI —a)&IDI+a ]
=5""fi"P lim ( a —P }=ambiguous . (2.40)

(y, P~+ oo

However, (2.4} shows that the infinites in the A terms
cancel' under the various regularization techniques leav-

Since this has the same finite form as the Feynman result,
shifting is allowed. The surface terms which arise from
shifting the linearly divergent pieces' contribute to the
A terms.

After changing variable in (2.25) according to (2.30),
the usual procedure of performing the p-integration be-
fore the v-integration gives integrals like

fd2n p /2 (2.36)

which for a Minkowski spacetime are infinite. This con-
tradicts the finite result of (2.35) and means that it is in-
valid to naively interchange the p and v integrals. ' Note
that ad hoc Euclideanization will give acceptable results
and this is popular among many string theorists. Below
it will be seen that this Euclideanization arises naturally
from the correct interchange of integration and so is
justified in the point case.

The derivation of the anomaly using Feynman parame-
ters is well known;' ' however, since it will be general-
ized to strings, let us reiterate it here for the integral
(2.35). Since the v integral of (2.35) is finite, the p' and v
integrals may be interchanged. The 8 terms in the
Adler-Rosenberg expansion may then be extracted from
the trace TpT(p') by using "symmetric integration. " To
be specific, if the +~ limits of the integrals are taken
separately and the techniques of analytic integration are
used, it turns out that

d 211

(p +D+ie)"+'
2np

= lim( —1}"+'isgnD
(pE+ IDI+i sag Dn)"

ing a constant but technique-dependent remainder.
On the domain given by D) 0, Eq. (2.37) shows that

the shifted p-integral is a factor ( —1) i times the cor-
responding Euclideanized integral. Since the Euclidean
integral is finite, the p and v integrations may be inter-

changed in this context and, working backwards through
(2.35) and (2.25), it can be seen that

p 1 f 1 + i (p, +i~. l/2+
(2 )2n 2n (1

dX' d 2 +is 2=( —1) i
1 ~ i PE (p&, +ill/2+

i PT pE(2~)2"

2(n 1
n —1 f i(k ~ v)'~= '. f'rr d-, ~(.„,--, )' '

(2m )" p; (1

as e~O, where

X (1—xi), l (p,
x(1—2 ), p~l .

The corresponding alternating sum is

(2.42)

(2.43)

g (
—I)"S(gp, . . . , k„, . . . , g„;k)= E(g, k),

„=p (2n) "n!

(2.44)

which corresponds to the previously calculated value.
This result is dependent only on the E~O limit definition
of the anomaly in (2.6).

Let us finally note that the ambiguity inherent in (2.1)
is reflected in the X, 's. The physics comes from the fact
that (2.5) is independent of the X,'s—in a restricted sense.
If (2.5) is evaluated directly from (2.3) and the result is
compared to (2.44), a compatibility relation is found, viz. ,

r=0
(2.45)

Note that this did not have to be imposed on the regulari-
zation technique as before, but arises from an intrinsic
analysis. Similarly, the value of the anomaly (2.44) can be
easily derived from the compatibility. Geometrically,
(2.45) describes an n-dimensional hyperplane V in the
(n + 1)-dimensional linear X„space. Reference 12 shows

(2.41)

Thus, the interchange of integrals in (2.24) requires a
simultaneous spatial Wick rotation. This is a very impor-
tant point that will be explored for superstring ampli-
tudes in the next section.

Using the above, the 8 coeScients are found to have
the form
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that regularization techniques correspond to linear sub-

sets of V. Regularization independence is expressed by
the constancy of physical quantities such as (2.5) on V.

III. STRING EXTENSION OF THE POINT AMPLITUDE

In the amplitude (2.44), g. is the polarization of the jth
vertex with incoming momentum k . Note that there is

only one label per vertex and one momentum propaga-
ting between vertices. ' These physically describe point
particles. Let us now modify the amplitude to corre-
spond to extended stringlike particles.

Let V(j) be an operator giving the jth emission around
the loop and let 5 be an operator representing the propa-
gation between emissions. If I 2„+, is a generalization of
y2„+„ the planar loop given by Green and Schwarz'
corresponding to (2.44) is the parity-violating piece of

f d2n i n+1
Eii i V2n '+1

n+1
XTr g Vo(j) I dLO+l

(3.4)

This piece contains the string-vacuum part of (3.3), which
correspond to point field theory. After standard separa-
tion of the zero-mode factors, (3.4) takes a form similar to
(2.24):

The planar amplitude naturally breaks into a sum of
four nontrivial pieces which shall be considered in the
next section. Each term may be reexpressed as the in-
tegral of a Dirac trace times a string trace by replacing
p'~ —p'. As an example, one term is

T= f d "p'Tr[b V(1)b AV(n+1) —,'(1+I 2„+&)],

(3.1)
where the explicitly written loop-momentum integral
may be put implicitly into the trace. I.et us use the ex-
pressions for 5, V, and I 2„+, from the old covariant
superstring formalism as given in Ref. 10 so that the pla-
nar anomaly becomes

2)n+ t

Here 'TPT(p') is defined in (2.7) and

n+1
5' =Tr w g Vo(k;, p;)I ~

(3.5)

(3.6)

n+1—T =Tr g V(j)~ I 2„+,
j=i 0

(3.2)

where the reversal of the order of the factors so as to imi-
tate (2.44) introduces a minus sign. The Mobius loop T"
and the nonplanar loop T have the same form as (3.2)
except with one and two factors of ( —1), respectively,
introduced in a nontrivial way. ' In detail, (3.2) is

T

as in (A. 19a) of Ref. 10. It was shown in the last section
that the p' integration cannot be arbitrarily performed
first. For the remainder of this section, let us investigate
the conditions under which an interchange of integrals
will alter the p' integration from Minkowski to Euclidean
for a general integral of the form (3.5).

Naively, if T is analytic, i.e., if it has the convergent
expansion

n+1
T =Tr g (g +i &2 y „,(,C) Vo( j) Tp(x;k)= g a (k, v)v

m=0
(3.7)

P ii&2+ yz„+,8
1 2 +l~dL0+le

where a is continuous in 7, then, following (2.25), as-
suming that the sum commutes with the integrals, (3.5}
becomes

'2

f
2n

1
n —

1 00 n

„+& TpT(p') g 8(v; ~

—v;)dv; dvv"exp —— p'+ g k„v„+D(k,V„)+is 'T (x;k)(i&2}"+'

d2n t
1

n —1=f, 'T~T(p') f g 0(v, +,—v, )dv,
(i 2}"+' 0 i=0

(3.8)

oo n

X ga f dvv +"exp —— p'+ g k„V„
0 2

+D (k, v„}+is (3.9)

1 1n 1

+) f g 0(v;~) —v, )dv, g (m +n)!a (k, v) f 2

p'+ g k„v„+D+i e
r=l

(3.10)

Finiteness and power counting show that the integrals may be interchanged and shifting is allowed.
Equation (2.37) is derived for X =D) 0 by analytically continuing the ~p~ integral to an imaginary integral, where

p =(p, p). This equates (2.37) with the Euclideanized integral which can then be easily evaluated. The same Euclide-
anization is valid for the integrals
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l
e ( p)kdzn pg "d "p

2+X + ~ &)m+n+1 0 ( 2+~+ ~

)m +n +1 (3.11}

where pE=5„~/pe. These integrals vanish if k &2(m+n)+1 is odd and they are finite for k ~2m even —otherwise
they are at best ambiguous. As a result, working backwards through (3.8)—(3.10), we see that (3.5) becomes

d2n

(i 2)"+' o,. 0 x;

=o x & 2 "+

VF (i)= V(k;, 1)=g; I (1):exp[ik; X(1)):,
2

the operator product

VF (0)VF (1)=go I (1)gi I (1)VO(0)VO(1)

(4.1)

(4.2)

explicitly involves the factor

using the Euclidean equivalent of (A4). Thus Euclideani-
zation is naively effected by the intercharge of the
momentum and string parameter integrals.

The exact condition for the superstring anomaly graph
to have equivalent Euclidean and Minkowski expressions
is that the non-point-like factors (3.7} be uniformly con-
vergent in v on [0,~ ) for all v and k. Appendix B con-
tains a rigorous proof of this general "anti-Fubini"
theorem. It is useful for deciding the validity of Wick ro-
tation in superstring loop amplitudes.

IV. LOCATION OF THE INFINITIES

An important point to clarify is that superstring loop
amplitudes are not finite. In fact, in the usual formalism
they are not even well defined. Green and Schwarz have
stated that an unregulated calculation of the parity-
violating open-superstring amplitude leads to infinities. '

A hint as to where infinities can arise is found in Ref. 7
which gives an operator-product expansion for adjacent
vertex operators. The ill-defined nature of the expansion
is dealt with by legislating apparent infinities away with
an anaiyticity requirement. Clavelli, Cox, and Harms
(CCH) have found that the chiral anomaly amplitude is
finite in the same sense as the point anomaly discussed in
Sec. II as iong as terms which have adjacent vertex
operators are subtracted out. Let us consider this in
more detail.

With vertex operators of the form'

g, r(l)g, r(1)=gg, +i&a(g,g,„g,g,„) y d~

—2(o„g,„g dl" d„" . (4.3)
m, n = —oo

If this expression were assumed to be finite, an incon-
sistency would be found. For example, in the case that
go=(, the last term becomes

—ko„0o.
m, n = —oo

Id(, d„'I = —
go g 1, (4.4)

which diverges. If (4.3) were conditionally convergent, a
divergent rearrangement of the infinite series would exist.
In order to make sense of (4.2), some kind of regulariza-
tion is required.

Vertex operator products of the form (4.2) are the only
source of infinite behavior in the anomaly since, as found

by CCH, the amplitudes are finite after terms involving
them are subtracted away. This would also give the
infinite current divergences found earlier. ' CCH use the
"canceled propagator argument" which is defined to be
"the 'fact' that a term with a canceled propagator van-
ishes" (single quotes mine). This is indeed a fact for re-
gulated amplitudes since the implicit point-splitting limit
can be straightforwardly interchanged with the in-

tegrals. ' However, for an unregulated amplitude such as
(3.2), which is studied by CCH, the limit would be con-
sidered as a regularization technique in itself. ' They
are erroneous, therefore, in concluding that the ampli-
tude is finite. Unfortunately, straightforward regulariza-
tion is found to give inconsistent results. '

Let us examine where the divergence arise in the un-
subtracted amplitude. First of ail, let us list the terms of
(3.3). In addition to (3.5) there is

—1

(i 2)" ' „(,rf d p Tr(~+& [~ ) [~ ) ~ +A+&) 2 +&}

r —1 s —1
1

n+1
V (J) ~ + . g„C P V (I) g, C g V ( ) I ,LP+lE I „LP+l6 m s LP+lE

(4.5)

) X f '"P' [Edi [P, I [P, ) f.+A+&1'z. +&)
r(s

1
S n+1

1
&& g vo(J)& +. ~ g vo(~) a g vo( ) r„, (4.6}
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and,

(
~ +2)n —i

(4.7)

where the Dirac trace

T«EPi . ((,) 4, ) f.+A+1Y2 +1)

TrMP, b, ] [0,]. E.+A+ r .+ I r»
and the oscillator trace

(4.8)

n+1
g V (kf pJ )g„cg V (k, ,p, }8 g V (k,p )I'„

m =s+1
n+1

m g V(k p)8 g V(kp)(C ff V(k, p )I, r~s.
(4.9)

I=s+1 m=r

Note that all the terms may be written in the form of (3.5)
as required by the general anti-Fubini theorem of the
preceding section.

Now let us assume that the T factors are uniformly
convergent as in (Bl). Further, assume the 7 factors for
(4.5)—(4.7) vanish for v=0. Then, Wick-rotating to Eu-
clidean space, the momentum integration may be per-
formed first. It has already been seen that (3.5) is finite.
Also, since the remaining Dirac traces are at most first
degree in p', symmetric integration,

In conclusion, we are now in a position to test the va-
lidity of Wick rotation for any integer-dimension regular-
ization of (3.1). On the other hand, if ill-defined canceled
propagator terms of the unregulated amplitudes are "sub-
tracted" following CCH, the resultant expression is finite
and Wick rotation is not required. This subtraction,
however, is a regularization technique and at this stage
must be considered as good as others that do not give a
vanishing anomaly. Further study of the validity of Wick
rotation for dimension-changing regulators would be in
order.

' 1/2
2n &E~2

2v
(4.10) ACKNOWLEDGMENTS

2n p JE 0 (4.11)

leaves regularization-independent finite integrals. As a
result, the existence of infinities in (3.1) implies that the
7 's are not uniformly convergent and hence contain
poles. ' Similar analysis can be applied to the Mobius
and nonplanar graphs as well.

The point anomaly has been calculated in a manner in-
dependent of regularization. ' On the other hand, the
various topologies of chiral-anomaly graphs give
regularization-dependent amplitudes. ' The difFerence
between the point and superstring one-loop graphs is
found in the nonzero mode 7 factors. Thus, it must be
these that give rise to the above regularization depen-
dence. These must somehow prevent dimensional limits
from being finite. String parameter integrals over the p-
independent poles in T may either be ambiguous or
infinite. In the latter case, since they would be unaffected
by the analytic continuation po~ipo, they would give
essential singularities in the integrand with respect to
p. ' ' This agrees with a preliminary unregulated calcula-
tion. Ambiguity dependence and hence regularization
dependence can be expected when dealing with such
infinities.
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APPENDIX A: POINT MISCELLANEA

~ n+1 0. . . 2n —1
y2n+1 — y (A2)

so that y2n+, =1 and

Tr(72„+i@„.. 7'„)=( 2)"i"— (A3)

Note that the replacements y"~y2„+1y", and

y2„+,~i" 'y2n+, relate our conventions to the conven-
tions of Ref. 5.

Next, let p and p' be the integration variables

Let us use the same conventions and definitions as Ref.
10 with the following modifications. First of all, it is con-
venient to use difTerent symbols for the metrics

g =diag(1, —1, . . . , —1) and i)=diag( —1, 1, . . . , 1) .

(Al)

Now define
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representing loop momentum. It is useful to define

pP—=p'"+ g kt',

where

(A4)

A compact epsilon trace is

(A5)

p."+i =po =—p'" ko=k. +i and k."+i —=ko = —g kP .

r(ki kn&kl kn ) aoa&p& [a ] a p kl kr fr+i kn k 1 kn (A6)

APPENDIX 8: THE GENERAL
ANTI-FUBINI THEOREM

It is of interest to determine the conditions under
which interchange of integrals gives the Wick rotation.
Some of the theorems of infinite integrals on which the
following reasoning is based are found in Ref. 15. Let us
begin with a useful corollary of (3.7).

Equation (2.25) is convergent. Therefore, if (3.7) is uni-

f dvv"e ""T (xv)= pa (k, v)(m+n)!x (81)

to be entire in x and uniformly convergent in v for all
k, n ~0. Then, if@)0,

formly convergent in v on [0,~ ) for all v and k, then (3.9)
is justified. The infinite range of convergence also forces
the inverse Borel transform'

1n —1

f g 8(v;, —v;)dv; g
i=0 m

a (k, v)(m +n)!
'2

p'+ g k„v„+D+ie
m+n+1

1n —1= g f g 8(v;, —v;)dv;
m i=0

a~ (k, v)(m +n)!
'2 m+n+1

p'+ g k„v, +D+ie
(82)

converges since the integrals are all finite. Also,

a (k, v)(m +n)!
2

p'+ g k,v„+D +i e

Tpr(p ) g a (m +n)!f '2

p'+ g k„v„+D+i e
m+n+1

(83)

may be verified by looking at term-by-term interchanges of sums and integrals. Then, if (83) converges uniformly in v;,
(3.10) converges to (3.8) as desired and Euclideanization may be verified for a one-loop superstring anomaly process.

Let us now examine (83). First of all, consider

fdpoX
a (k, v)(m +n)!

2

p'+ g k„v„+D+ie

dpo7pT(p')
m+n+i&pr(p')=pa (m+1)'f „z

p'+ g k„v, +D+ie
m+n+1

This holds if g g (x,y) is uniformly convergent in x ~ 0 and y ~ 0 on
~

x ~, ~y ~

~ M for M sufficiently large, where

g (x,y)=a (m +n)!fX

"po&pT(p')
2

p'+ g k„V„+D+ie
r=1

m+n+1 (85)

In fact,

f oo x dx

( 2+~+ e)m+n+I

I ( 1+—,
'

)I ( m + n +—,
'

)

I (m +n +1)(X+ie) (86)

for k =0,2, respectively, ' while it vanishes for k = 1,3; therefore,
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where,

dpi' &pT(p'}
'2

p'+ g k„v„+D+ie
»=1

dpo7 pT(p'}
m+n+1 2+X+ - m+n+1

Po

ci)a +„(—,') c2a +„(—,
' }

+
(X +1~)m +n +1/2 (X + iE)m+n —1/2

(87)

2 I (s)I (m +n +1—s)X —— p+ g 1);rv„+D, a +„(s)=

and

3

PT(P ) g CkPO
k=0

Also, if p= g k„v„, ~x~ & M and

+„) [2(m +n)]! 2r!(r —1)!
[(m +n)!] [4(x+ie)] +" "+'(2r)!

then,

1 + ) [2(m +n)]!
and

4 +"[(m+n)!]
(88)

dpo "TpT(p') — + dpo TpT(p )

m+" +1
( 2+X+ ~ )m+n+1

p'+ g k„v„+D+ie
(89}

3 x dx

(x +X+ie)
(810)

where the relevant integrals are

00 x dxk

(x +X+ie)
m+n p /m +n)a'„+"' — arctan, k =0, XAO,

(g2+X)r X m+n+1/2 (811)

(m+n —1)
CX»

1
k =0, X=O,

[2(m +n)+ ]1g2( m+n)+ )'

A
k=1, any X,(g2+X)m+n '

+ C m+n —
1m+n +

($2+X)m+n 2(m +n)

(812)

(813)

p(m +n —1)
arctan —,k =2, XWO, (814)(g2+x)' x-+"-'" &x

2 .+. +
(( +X) +" 4(m +n)[(m +n)+1]P

Am+n —1 Am+nX
k =3, any X .(g2+X)m+n —

1 (g2+X)m+n '

(815)

(816)

The coefficients A +„are given in Ref. 19. Since
~
A +„~ (1,using (Bl) it is seen that

gg ( —x,y)= pa (m+n)!{[(y+p)2+X] "+'+[(x—p) +X]

+ ~X~[(y+p) +X] "+~X~[(x —p) +X] (817)
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and (81) is absolutely convergent everywhere. As a result, (86) shows that only the k=0,2 terms of V'pT(p') contribute
to (83). In fact, it is clear from (814)—(815) that (817) will be uniformly convergent for both k=O and 2 if it is for k=O
generically. Clearly a divergence exists if X=O. If XAO, the expression in (812) must be considered. Now
r!(r —1)!& (2r)!, and

[2(m+n)]! & +„
[(m +n)!]

therefore,

+(m+n)g +
' ' m+n

(g'+ )" y &+1
X

'm+n
4

(g +X)

m+-n '

(818)

Also,

m+n)
arctan

Xm +n + 1/2 2Xm + n + 1/2

Thus, the sum

a (m+n)! fp oo dx
' J

~ ( 2+X +i~)m+n+1

(819)

(820)

will be uniformly convergent since each of its terms will be bounded by a uniformly convergent series and will therefore
themselves be uniformly convergent.

It is now clear from (813)—(816) that (85) will be uniformly convergent and (84) holds. In fact,

/duo x
a (k, V)(m +n)!

'2
p'+ g k,V„+D+ie

+n+1 &PT(P»)

a (m +n)!am+„(—,') a (m +n)!a +„(—,')
(X +i&)m+n+)/2 2 ~ (X+ )m+n —1/2

but using standard properties of I functions, ' it can be shown that u +„(s)& n. for 0 & s & m + n + 1, since s not a

positive integer. By the comparison test, then, each of the series of (821) are convergent and the total series is uniform-

ly convergent everywhere.
The next thing to check is that

k+1
a (m +n)!a +„

k =0,2

ck Jdp', g 2

p'+ g k„v„+D+ie
m +n +(1—k)/2

y c„ya (m +n)!a,„
k=02 m

k+1
2

dP 1

2

p'+ g k,v„+D +i@
m + n +(1—k)/2

(822)

m + n +{1—k)/2

p'+ g k„v, +D+ie

As before, this requires g h (x,y) to be uniformly convergent in x and y where

k+1 y dP 1
h (x,y) =a (m +n)!a +„ 22 x n

(823)

Again, it is seen that shifting gives

dP 1

2

p'+ g k, v, +D+ie
r=l

QO dx
m+n+(1 —k)/2, 2 1 ~~ 1 ~m+n+{]—k)/2 (824)
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where X = —(P '+ g„k,V, ) +D, P '=(p, . . . ,p"), etc. This expression is then, for XPO,

dx I ( —,
' )I (m + n —k/2)

( —x +X+ie) +"+" "' I (m +n +(1 k )/2)iX
(825)

and it blows up for X=O. Now, if tT= gk„'v„, shifting takes f "„~f „" [see (84)] and, for X&0 (which can be ar-

ranged},

OO dx

( X 2+X + ie)m + n +( I —k)/2

Therefore,

i (m+n —k/2)!(m+n —k/2 —1)! 4
2 [2(m +n —k/2)]! I

m +n —k/2 m+n —k/2 —1

r=0

(2r)!
4"(1—g'/X)'( r!)'

(826)

gh ( —xy)= ga ( m+n)!a +„
k+1 ~ + (k/2} l

X m +n —k/2 +~2

m +n —k/2 —1 (2r)!
p2

4" 1 —~ (r!)
X

(827}

where,

P +„(s)=8(—,', m +n —s) & 1,
the usual P function. ' Now,

(828)

11
4"(r!)2 X

so that,

.=o X (829}

a (m +n)! 1&h ( —xy)~ T
Qg2 X 2 g2/X X m +n —k/2

~
1 g2/X~m +n —k/2 —I

which is clearly uniformly convergent. Thus g hm is uniformly convergent and (822) holds. As a result,

(830)

f f dp Odp I g
a (k, v)(m +n)!

'2
p'+ g k„v„+D+i e

k+1 8 ( —,', m +n —k)&m+n

m+n —k

1

m+n+I g C2k g Qm(m +n)' ' '2
m i —P '+ g k„V„+D+ie

(831)

Since (Bl) bounds this series, (831) will also be uniformly convergent and the above process for evaluating the double
integrals may be repeated n times if m40 to verify (83}. In the zero-mode (m =0}case, the superficially divergent in-
tegral corresponds to the point anomaly where it has been shown to be finite. ' ' It has been pointed out that this ar-
gument may be made more elegant with the use of powerful results of measure theory and analysis.
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