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Casimir energy for a piecewise uniform string
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The Casimir energy for the transverse oscillations of a piecewise uniform closed string is calculat-
ed. The string consists of two parts I and II, endowed in general with dift'erent tensions and mass

densities, although adjusted in such a way that the velocity of sound always equals the velocity of
light. The dispersion equation is worked out under general conditions and the frequency spectrum
is determined in special cases. When the ratio L«/L& between the string lengths is an integer, it is

in principle possible to determine the frequency spectrum through solving algebraic equations of in-

creasingly high degree. The Casimir energy relative to the uniform string is in general found to be

negative, although in the special case L& =L» the energy is equal to zero. Delicate points in the

regularization procedure are discussed; in particular, it turns out that a straightforward use of the

Riemann g-function regularization method leads to an incorrect expression for the Casimir energy.

I. INTRODUCTION

Valuable insight into the nature of the Casimir
effect' —as well as the more general aspects of periodicity
in field theories —may be obtained through a considera-
tion of very simple physical models. In this paper we in-
tend to calculate the Casimir energy of the transverse os-
cillations of a string of length L when the string is com-
posed of two parts of lengths L, and L». The tensions T,
and T», and the mass densities p, and p&&, are in general
different, although we require the sound velocity to be
equal to the light velocity:

(with R=c = 1). The situation is sketched in Fig. 1. [The
condition (1) in fact is analogous to the condition ep= 1

in phenomenological electrodynamics, with e denoting
the permittivity and p the permeability of the medium.
This condition requires the velocity of propagation of the
photons in the medium to be equal to the velocity of
light. ]

LI

g =LI

FIG. 1. Basic features of the string.

As far as we are aware, this composite string model has
not been considered before. In the next section we make
use of the basic equations of motion for transverse waves
on the string to derive the dispersion equation. This
equation will not be solved in full generality', we solve it
in some special cases. First, in Sec. III we consider the
special case of a uniform string; we consider the case
where the tension ratio x =—T, /T&&~0, and also the situ-
ation where the pieces L, and L» are equal. In the last
case the Casimir energy is zero, irrespective of the value
of the tension ratio. Thereafter, in Sec. IV we investigate
the case of odd integer values of s=LnlL&. The struc-
ture of the frequency spectrum is investigated and the
formal expression for the Casimir energy is derived. For
low values of s, s =3,5, 7, the calculations are carried out
in detail. Section V contains a parallel development of
the theory when s is an even integer. Also in this case the
lowest values of s, s =2,4, 6, are investigated in detail.
Integer values of s imply that the frequency spectrum can
be evaluated through solving algebraic equations for the
trigonometric functions. Our main results as regards the
Casimir energy are given in Tables II and IV and shown
graphically in Fig. 2.

The divergent zero-point energies are regularized by
means of an exponential cutoff. The regularization pro-
cedure in the present problem is more delicate than what
one might expect beforehand. Thus a straightforward ap-
plication of the Riemann g-function regularization
method would lead to an incorrect result. This point is
discussed in more detail in Sec. IV D. Finally it ought to
be remarked that, although the present paper is con-
cerned with a specific string model, our results may be
given a more general physical interpretation as the ener-

gy of the vacuum state of quantum field theory in a two-
dimensional space-time endowed with special properties.
Thus, the string model may be regarded as a convenient
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g(o, r) =0 . (3)

In the following we separate off the common time factor
e '"' from (2). There are two different kinds of boundary
conditions. First, the transverse displacement itself must
be continuous across the two junctions:

Pr(Lr ) =Ar(Lr )

leading to

4+sr Are'"'+——nrre
' ',

I coL )
re +pre

EctpL
g

(4)

(5)

Second, the transverse elastic force on the string must
also be continuous across the junctions:

~err
I II

~fr ~err
I

BC7 =L OCT =LII

which imply

Tr(gr —gr) =Trr(grre' —grre
' ),

i coL I
—i cuL I

Tt(Ore pre ) = Trr(One rirre

(7)

The compatibility condition for the set of equations (5)
and (7) for the four unknowns gr, gr, g», ri„ is that the
determinant of the coeScients vanishes. It is convenient
to define x as the ratio between the two tensions:

working tool rather than the essential physical element in
the theory.

II. THE DISPERSION EQUATION

Let r(t=g(o, r) be the transverse displacement of a
point with spatial coordinate o. from its equilibrium posi-
tion at time ~. If we consider only motion in one plane,
the field

hatt
can be regarded as a scalar, one-dimensional,

field. Taking into account right- and left-moving waves
in regions I and II, we have the general forms

I CO(O —7.) + —ICu(O+ ~)
SIe

(2)—I ~(~+ ~)
FII SIIe

with the g and ri being constants. These general expres-
sions satisfy the fundamental wave equation

algebraic equations if the ratio between L II and LI is an
integer. This will be the subject of our study in Secs. IV
and V. First, however, we shall in the next section con-
sider some simple special cases. In general, the Casimir
energy for the composite string is calculated as the zero-
point energy E,+„ for parts I+II, summed over all
modes, minus the zero-point energy for the uniform
string:

E =EI+II Euniform (10)

III. SIMPLE SPECIAL CASES

ru„=2nnIL, n =1,2, 3, . . . . (12)

The set of equations (5) and (7) is satisfied for arbitrary
values of fr=a„and rir=ri„, meaning that the ampli-
tudes of the right- and left-moving waves are completely
unspecified.

The basic expression for the Casimir energy is

uniform 2 g ~n
n=1

(13)

where the prefactor 2 takes into account that the modes
(12) are degenerate. One may associate this degeneracy
with the right-left symmetry on the uniform string. Ex-
pression (13), as it stands, is infinite. As in Ref. 3, we reg-
ularize it by means of a high-frequency cutoff function f:

+uniform g ~nf (~n ) &

n =1
(14)

A. Uniform string

This case corresponds to x =1. From (9) we have

coscoL =1 .

This equation admits the formal solution co„L =2~n,
with n being a positive or negative integer. It is however
physically meaningful to associate ~„with a physical
quantity only. [Left-moving waves are associated with
negative waue numbers (not frequencies). Waves of this
type are incorporated in the fundamental form (2).j For
our purpose —Casimir energy —the zero-frequency mode
m„=0 is of no interest. We thus have for the uniform
string

x =Tr/Trr .
where f satisfies the conditions

(&)

Some calculation results in the equation

(1 x) cos(coL 2—coL, ) —(1+x—) coscuL+4x =0 .

This is the dispersion equation, determining the frequen-
cies co of the possible transverse oscillations once the
quantities x, L, and L, are given. Note that the equation
is invariant under the substitution x~1/x. For this
reason we shall only consider x in the interval 0 &x ~ 1 in
the following.

A characteristic feature of (9) is that it allows the fre-
quency spectrum to be calculated in principle in terms of

f(0)=1, f( )o=of'( )o=of"( )o=o (15)

As regards the dependence of f on co„, the following
physical argument may be given. Qn physical grounds
one expects that it is possible to estimate the value of n at
the high-frequency cutoff by a local experiment, i.e., at an
arbitrary point on the string without information about
the string's remote parts. Choosing f to be, for instance,
a function of n alone would lead to a conAict with this re-
quirement, since a small observer placed at some point on
the string only observes the frequencies co„on the string
but does not otherwise see how the string is and so is un-
able to estimate for how high n the modes are excited.



41 CASIMIR ENERGY FOR A PIECEWISE UNIFORM STRING 1187

The fundamental form (14} is seen to be compatible with

this physical argument about local observability.
In the following we choose the simplest imaginable—ace„

form for f: namely, f =e ", with a a small positive
parameter. We obtain

m.an
E,+»= g n exp

2 I

vran+ g nexp
II n=1 II

2m.a 6L
(16) L

27Ta

1 1

24 L L
+O(a ) . (20)

If we simply omit the cutoff divergent term in the limit
a~O, we can interpret the finite term m/6—L as the
Casimir energy of the uniform string. It is physically
suggestive to rewrite the finite term as

'Il L ~ dt's ci)

6L m o

and interpret it as an integral over a thermal spectrum
with a temperature equal to 1/L. However, one has to be
somewhat cautious about this point. Ford has recently
examined the Casimir energy of a uniform string, using
spectral weight functions. According to his analysis,
there are only limited circumstances in which the quan-
tum fluctuations are similar to thermal fluctuations.

Expression (16) for the uniform string plays in our
theory an important role: it is the energy to be subtract-
ed from the zero-point energy of the composite string; cf.
(10). As we shall see, the cutoff terms in the Casimir en-

ergy for the composite string thereby drop out automati-
cally.

B. Thecasex~0

This case implies that TI ~0, if T» is assumed finite.
Recall that the energy density is adjusted corresponding-
ly, so that condition (1) is always satisfied. We impose no
condition on the ratio Lt/L» Equation (.9) reduces to

sincoL Isin~L I, =0,

so that the modes can be associated with part I or part II
of the string separately. We get the two sequences

co„=nn/L &, . (19a)

co„=mn /L (19b)

with n =1,2, 3, . . . , as before. There exists a notable
physical diff'erence between the modes (19a) and (19b) un-
der the present conditions. Using (19a) in Eqs. (5) and (7)
we find, as long as co„ is diferent from any of the eigen-
frequencies 2mn /L of the uniform string, that
g» =g» =0. That is, modes of this kind are unable to
penetrate into region II. Only those modes that are asso-
ciated with the string as a whole can propagate. The
modes (19b) behave differently, in that they do not lead to
an analogous restriction on the coefficients g and g; the
modes can propagate in both regions I and II. The total
zero-point energy of regions I+II is

Equation (10) now yields the Casimir energy. We choose
to express it in terms of L and the quantity s, where the
latter is defined as the ratio between the lengths of the
two pieces:

s =L»/Lr (21)

For definiteness we take LI to be the smaller of the two
lengths, so that s ~ 1. We obtain, in the limit of a~0,

1s+ 2
24L s

(22)

The cutoff divergent terms are seen to drop out. It
should be stressed that when subtracting E„„;&„ it is ir-
relevant whether the uniform string is made up of type I,
or type II, material. In any case the cutoff function

f =exp( —2nan /L) depends on the total length L as the
single physical string parameter. Consequently, the ex-
pression (16) is independent of material type.

It should be mentioned that the two branches in (19a)
and (19b) are not degenerate, so that there is no extra fac-
tor of 2 appearing in (20).

The Casimir energy (22} is never positive. Its max-
imum value is zero, corresponding to s =1. For increas-
ing values of s ( & 1) the energy decreases monotonically.
The s = 1 result can be elucidated if we return to Eqs. (19}
which yield co„=2m n /L in this case. This is actually the
same spectrum as for the uniform string Therefore, .
when we calculate the zero-point energy for the compos-
ite string in the case s =1 (still maintaining x~O) and
subtract off the uniform string energy, we must necessari-
ly obtain zero as result. The case s =1 moreover serves
to illustrate why the branches (19} are nondegenerate:
the sum of the two terms in the first two lines of Eq. (20)
is equal to the single expression (13) for the uniform
string, in which the degeneracy factor of 2 has been im-
posed explicitly.

As regards the sign of the Casimir energy for general
values of s, there seems to exist no simple principle ex-
plaining why the sign is negative. The situation is in this
respect analogous to that of the Casimir energy evaluated
for different geometries. The sign depends on which
geometry is chosen, without there being any simple clue
to the understanding of the resulting sign in each case.

It ought to be mentioned that instead of adopting an
exponential cutoff function, as above, we might alterna-
tively have used the analytic extension of Riemann's g
function in the regularization of the energy. Such a pro-
cedure consists in writing simply

E=— + —— g n,1 1 4
(23)

2 LI LII L
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and thereafter replacing the divergent sum by the finite

expression g(
—1)= —

—,', for the analytic continuation of
g(s):

~(P+n),
NL m.(1 —/3+ n ), (28)

g(s)= g n
n = I

(24)

This latter method is however rather formal in nature.
As a final point, we refer to the conceptually possible

interpretation of the finite term (17) as a thermal term.
We may conceive of applying analogous interpretations
to the finite terms m/2—4L, and ~/—24L» associated
with parts I and II of the composite string. The "temper-
atures" 1/L, and 1/L„of the two parts are however in
general different. In pictorial terms, we may associate
part I with "our" Universe and part II with a "mirror"
universe. Thermal equilibrium between the two universes
is thus seen to be present only in the special case Li =L».

C. The case Li=L»

IV. s BEING AN ODD INTEGER

In the following we shall investigate the dispersion
equation in detail when s runs through the lowest integer
values, s =2, 3, . . . , 7 (the case s =1 was treated above).
When s is an integer, it is in principle straightforward to
calculate the spectrum by solving algebraic equations al-
though in practice the calculations become increasingly
heavy when s becomes large. For general s it is con-
venient to rewrite (9) in the form

In this special case the formalism becomes significantly
simplified. (The value x ~0 was treated above. ) For gen-
eral x, the dispersion equation (9) reduces to cosroL = l.
That is, the frequency spectrum becomes identical to that
holding for the uniform string; cf. (12). It follows that for
s =1 the Casimir energy is equal to zero, for any value of
X.

where n =0, 1,2, . . . and where P is a number in the in-
terval 0 & P &

—,'. The value of P is found by explicit calcu-
lation in each case. For the double branch there are in
general four solutions for coL, in the region between 0
and 2', viz. vrP, m(1 —P), m(1+P), and m(2 —P).

We now consider the lowest odd values of s separately.

A. s=3

Equation (25) yields, in this case,

z [4(1+F)z 4F ——3]=0, (29)

from which P is calculated once F is given. For small
values of F (i.e., small x) we see that

/l(F «1)=—+ F, (31)
3 6a

giving coincidence with the situation discussed in Sec.
III B when F~O. At the other extreme, for large values
of F, we obtain correspondingly

(32)

When F~ oo (i.e., x ~1) we recover the uniform string,
as discussed in Sec. III A. Note that the complete spec-
trum in this case, as calculated from (28) in conjunction
with (27), is identical with the uniform string spectrum
(12).

where we for simplicity have defined z=—sincoLi. The
root z =0 gives the degenerate branch, as stated in (27).
There is only one nondegenerate double branch in this
case. It is determined by

3+4F
4(1+F}

sincoL&sin(scoLt)+F(x)sin coL& =0,1+s

where we have defined F as

F(x)=4x /(1 —x)

(25)

(26)

B. s=5

The dispersion equation yields

z~[16(1+F)z 4(5+6F)z +5—+9F]=0 . (33)

In the present section we consider henceforth only odd
integers s. It is convenient to regard F(x), instead of x,
as the input parameter. As mentioned previously, x is re-
stricted to lie in the region 0 &x ~ 1. It corresponds to F
lying in the region 0 & F & ~.

For s =3,5, 7, . . . the general structure of the Irequen-
cy spectrum is the following. First, the dispersion equa-
tion (25}has one degenerate branch, given by

In addition to the degenerate branch, there are —,'(5 —1)
=2 double branches, determined by

5+6F+v'5+4F
8(1+F) (34)

There are two values of P: P;=(P„P2). It is useful to
write down the approximate expressions for P in the lim-

iting cases. First,

sin~L, =0, ~Lr=m-n . (27)

Next, there are —,'(s —1) nondegenerate double branches,
obtained by solving an algebraic equation of degree
—,'(s —1) in sin coL&. Each double branch corresponds to
a definite solution for sin ~Li. The frequency spectrum
corresponding to such a branch can always be expressed
in the form

P, (F «1)=—— (5 —2&5)'",
5 10m

/3, (F«1)=—+ (5+2&5)'i' .
5 10m

Second,

P(F»1)=—+ v'3/F1 1

3 6~

(35)

(36)
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C. s=7

The dispersion equation is

z [64(1+F)z 16—(7+8F)z +8(7+10F)z

In the first term here we insert the frequency spectrum
(27), multiply by a factor 2 for degeneracy, and apply
again the cutoff'function exp( —ace„). Thus

E(degenerate branch)
—7 —16F]=0, (37)

showing that in addition to the degenerate branch there
are three double branches. The cubic equation in z has
in general three real roots (two of these may coincide).
Defining the abbreviations

1 n(s+1)=2
2 L g nexp

n.a(s +1)n
L

It is convenient to introduce the abbreviation

(41)

—b/2
t)It

=arccos —a /27

7+8F 7+ 10F+4F
4(1+F) ' 48(1+F)'

b= 7 —12F —33F —16F
1728(1+F}'

(38}

t =ma(s +1)/L, (42)

and to use the Bernoulli number expansion up to third
order:

we may write the solutions for the double branches z;,
i =1,2, 3, in the form

=1 ,'t + ,
—', t—'+—O(t'),

e 1
(43)

2mk;
z,'= —++2&—a/3 cos ~+

3 3 3
(39)

whereby

g ne '"=——
—,', +O(t ) .

n=] t' (44)

where the parameter k; takes the values k; = [0, 1,2}.
Approximate analytic expressions in limiting cases will

now not be given. We note, however, that when F~ ~
the double branches are z; =

I 1, —,', —,
' }, so that two of the

branches are coincident. These solutions, together with
the degenerate solution z =0, naturally are in agreement
with the uniform string solution (12). Table I shows p,
for the double branches calculated for three different in-
put values of F.

D. The Casimir energy

We assume that the condition t &&1 is always satisfied.
We obtain

1
E(degenerate branch)=

at
+O(t )

12a
(45)

(note that t/a is of order unity). Consider next one of
the double branches. Its zero-point energy can be writ-
ten, when we take into account (28), as

E(double branch)

The basic formula for the Casimir energy is (10), as be-
fore. The zero-point energy for regions I+ II can be writ-
ten as

E,+„=E(degenerate branch)+ g E(double branches) .

[P
—tP+(1 P)

—t(1 —P)] y —tn

2Q n=0

—tp+ t(1 —p)] y-

n=1

Using (44), together with the analogous expansion
QO

g e '"=—+ ,'+ ,', t+0(t')-, —
O

(46)

(47)

TABLE I. Values of P, for the double branches calculated
for some given values of F. F=}0.1, 1, 100} correspond to
x = }0.0238,0. 1716,0.8190}, respectively, in the region 0(x
&1.

and similar expansions of the terms in square brackets in
(46), we obtain

E(double branch)= +1

at 6a

0.1

$=3

0.3418

0.3850

$=5

0.2089
0.3978

0.2500
0.3850

$ =7

0.1517
0.2847
0.4313

0.1893
0.2785
0.4468

[P'+(1—P)']+O(t') .

(48)

We now write P, instead of P, and sum (48) over all the
—,'(s —1) double branches. Combining also with the de-
generate branch result (45) we obtain

0.4842
0.3239
0.3422

0.2441
0.2553
0.4921

Et+&i = s+1 t(s —2)+
2at 12a

(s —1)/2

[P,'+(1—P, )']+O(t') .
4a

(49)
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Subtracting off' the expression (16) for the uniform string,
and letting t ~0, we finally have

ns(s —1) m(s+1) "~' )P2+(1 P )i)
12L 4L

the cutoff divergent terms drop out.
The presence of the P terms in (50) refiects actually a

delicate point. These terms owe their existence to the
fact that the sums in (47} and (44) are cutoff divergent.
Thus the 1/t term in (47} implies that we get contribution
to the P terms from an expansion of the expression in the
first set of square brackets in (46) to first order in t
Analogously, the 1/t term in (44) implies that there is a
contribution from the second-order terms in the second
set of square brackets in (46). In (50), both these contri-
butions are included.

As a further illustration of this point, we may consider
how the g-function regularization method works in the
present case. Giving an extra subscript g to mark quanti-
ties calculated with this regularization, we obtain for the
uniform string, and for the degenerate branch,

gggfPgn l g=
6L

E(degenerate branch)~ =—
12a '

(51)

in agreement with the finite terms in (16) and (45). For
one of the double branches we have in view of the spec-
trum (28) the analogous construction for the energy:

00

E(double branch)~&= g (P+n)
2a „,

QO

+ g (1 P+n)—
2cx

n =0

1+ g (1+2n)2'

proceed in the present context is to define a g function
(not the Riemann g function) for the wave operator. If
the eigenvalues of the operator are A.„,then the associate
g function is g(s}=+A,„'. Since the eigenvalues are as
given in (27) and (28), the relevant g function will involve
a sum containing terms of the form (P+n) ' and
(1 P—+n) ' Consequently, the resulting expression for
the Casimir energy may be expected to be a function of P
and may so agree with the result of the cutoff method.
We only mention this point here, without going into a de-
tailed study. The following physical argument can in ad-
dition be given to show that (54) cannot be the correct ex-
pression for the Casimir energy. For a given value of L
the expression increases without bounds when s becomes
large. Suppose now that "our Universe" (part I) is small
and the "mirror universe" (part II} is large. Thus s &) 1.
Expression (54}, if it were true, would in principle allow
an observer in our Universe to determine the magnitude
of the mirror universe by performing a measurement of
the Casimir energy. This is physically unreasonable. Re-
call that in the conventional evaluations of the Casimir
energy the physical system is embedded into a large ficti-
tious "box" whose magnitude drops out in the final ex-
pression for the Casimir energy.

Our expression (50), by contrast, does not suffer from
the above drawback. Table II shows calculated values of
(L In )E, for various values of s and F. For
F = I0. 1, 1, 100I, the P terms in the Casimir energy are
calculated using the data in Table I. We have for the
sake of comparison included also the special cases F =0
and F~ 00. The energy in the case F =0(x =0) is calcu-
lated from expression (22). When F~oo(x~1) we re-

0

-+ [I+((0)+2((—1)] .
2cx

Since g(0)= —
—,', g( —1)=—

—,', , we have

(52)
-0.05

E(double branch}~&=
6a ' (53)

which is seen to be different from our previous (48). The
Casimir energy becomes now

-O. IO

UJ

s(s —1).
12L

(54)
-O. l5

This is identical to the jFst term in (50). Thus, if we em-
ploy the ordinary Riemann g-function regularization, we
miss the P terms in the energy. Recall that the presence
of the P terms was intimately related to the cutoff' diver-
gences in the expansions (44) and (47). Does this cir-
cumstance, which at first sight may appear surprising,
imply that the g-function regularization method as such
is inapplicable in the present problem? Probably this is
not so. The point is that in the above we were concerned
with the Riemann g function only. The proper way to

-0.20

FIG. 2. Nondirnensional Casimir energies calculated for
various values of F and s =L»/L&.
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TABLE II. Values of (L/n }E calculated from Eq. (50) for
some odd integer values of $, with F as input parameter.

TABLE III. Values of P„corresponding to the spectrum
(57), when $ is an even integer.

0
0.1

1

100

$ =3
—0.055 6
—0.050 1
—0.026 5
—0.000 50

0

$ =5
—0.133 3
—0.1189
—0.060 5
—0.001 10

0

$=7
—0.214 3
—0.189 5
—0.093 7
—0.001 68

0

0.1

$=2

0.5074
0.9312

$=4

0.2588
0.4963
0.7516
0.9517

$=6

0.1756, 0.3319
0.5025, 0.6624
0.8340, 0.9608

cover the uniform string, corresponding to zero Casimir
energy. The energy, always nonpositive, is seen to vary
smoothly with s and F. See also Fig. 2.

For dimensional reasons the Casimir energy of a little
piece of string embedded in an essentially infinite string
of a different tension has to be inversely proportional to
the length L, of the little string. This means that for
large values of s we should get EL/A dominated by the
contribution from the little string and thus

0.5468
0.8256

0.6487
0.6853

0.3014
0.4750
0.7608
0.8820

0.3877
0.4118
0.7929
0.8078

0.2149, 0.3232
0.5171, 0.6388
0.8382, 0.9080

0.2783, 0.2925
0.5628, 0.5804
0.8535, 0.8613

EL/~~s .

This agrees precisely with what we see from Fig. 2.

V. s BEING AN EVEN INTEGER

A. The frequency spectrum

(55) where the quartic equation is to be solved numerically.
Finally, when s =6 we obtain the dispersion equation

(q —1)[64(1+F)q +64(1+F)q 16(4—+3F)q
—16(4+3F)q +4(3+2F)q +4(3+2F)q+F]=0,

(61)
When s =2,4, 6, . . . it is in principle possible, such as

in the previous case, to determine the frequency spectrum
by solving algebraic equations. From the dispersion
equation (25) we infer the following general properties.
There exists one degenerate branch, given by

again necessitating numerical solution .
Table III shows the calculated values of p;, when

s =2,4, 6. The input values for F are chosen to be the
same as in Table I.

coscoL, =1, coL, =2vrn . (56)
B. The Casimir energy

Next, there are s nondegenerate simple branches, ob-
tained by solving an algebraic equation of degree s in

q =coscuL&. Each of these branches corresponds to

In analogy to (40}we have now

Et+&& =E(degenerate branch)

+ g E(simple branches) . (62)

m(P+2n),
t m(2 P+2n) (57)

where n =0, 1,2, . . . and where now p lies in the interval
0 & p ~ 1. (The reason why p & 1 instead of p ~

—,
' as in the

previous section, is that the branches are now simple in-
stead of double. ) For each branch there are two solutions
for cuL& in the region between 0 and 2m. , viz. , mP and
~(2 —P}.

Let us consider the lowest values of s separately. When
s =2, we obtain, from (25),

E(degenerate branch)= —' g ne 2™
~ n-—i

1 t +o(t ).
2at 6o,

(63)

For each of the remaining s simple branches we have,
when we take into account the form (57),

In terms of the quantity t defined in (42) we obtain for the
first term

(q —1)[4(1+F)q +4(1+F)q +F]=0, (58)

so that in addition to (56} there are two branches given by TABLE IV. Values of (L /vr)E calculated for even integers $.

(59)

4(2+F)q +F]=0, —(60)

1 1
q = ——+

2 2&1+F
When s =4, we obtain correspondingly

(q —1}[16(1+F)q+16(1+F)q —4(2+F)q

0
0.1

1

100

$=2
—0.020 8
—0.018 9
—0.0102
—0.000 194

0

$=4
—0.093 8
—0.084 4
—0.043 5
—0.000 803

0

$=6
—0.173 6
—0.154 1
—0.077 3
—0.001 413

0
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E(simple branch) string, we obtain for the Casimir energy, in the limit as
a~0,

[p
—(P+(2 p)

—r(2 —P)] y —2tn

2(x n=0
mrs(2s + I ) tr(s + 1) ~ [p2+(261. 8I.

(66)

+2( —tp+ —t(2 —p)) y
—2tn

n=1
(64)

s+1 + t(2s —1)
+

We expand in powers of t, in the manner shown in Sec.
IV D, sum over all the s branches, and combine with (63).
The result is

Again, the cutoff divergent terms drop out.
Table IV shows calculated values of (Llm. )E for the

lowest even integers s. The F entries are the same as in
Table II. The points in Fig. 2 give a graphical represen-
tation of all calculated energies in the region sE[1,7].
The energies are seen to vary smoothly with F and s, as
indicated by the dashed lines. For F =100 the calculated
points are lying practically on the horizontal axis (corre-
sponding to F~ 0() ) and are not shown. The solid curve
in the figure corresponds to F =0 and is calculated from
(22).

g [P2+(2—
)t3, )']+O(t') .

8a,.
(65)
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